植物生态学报 ›› 2011, Vol. 35 ›› Issue (12): 1271-1280.DOI: 10.3724/SP.J.1258.2011.01271
所属专题: 植物功能性状
收稿日期:
2011-04-06
接受日期:
2011-09-07
出版日期:
2011-04-06
发布日期:
2011-12-15
通讯作者:
李胜功
作者简介:
*(E-mail:lisg@igsnrr.ac.cn)
WEI Ya-Fen1,2, FANG Jie1,2, ZHAO Xue-Yong3, LI Sheng-Gong1,*()
Received:
2011-04-06
Accepted:
2011-09-07
Online:
2011-04-06
Published:
2011-12-15
Contact:
LI Sheng-Gong
摘要:
樟子松(Pinus sylvestris var. mongolica)又称蒙古松, 是我国“三北”防护林建设的主要造林树种。人工林建立初期, 在水分、养分匮乏的干旱、半干旱沙地, 樟子松仍表现出较强的适应性; 近年来, 各地樟子松人工林均出现衰退迹象。在沙地这种特殊生境下, 樟子松针叶的光合作用、水分利用效率、氮利用效率等主要性状的研究对于理解樟子松的沙地适应性具有非常重要的意义。该文以位于科尔沁沙地南缘的中国科学院寒区旱区环境与工程研究所奈曼沙漠化研究站(42°55′ N, 120°43′ E) 30龄樟子松人工林为研究对象, 对不同年龄针叶的光合作用、蒸腾作用、针叶碳氮含量、针叶形态(叶长、宽、厚)等主要生理生态属性进行测定, 计算出针叶的蒸腾系数(Kc)、光合氮利用效率(PNUE), 阐明了这些性状与樟子松叶龄的关系, 进而探讨了叶片性状在樟子松适应沙地生境中的意义。结果表明, 1)不同年龄针叶的光合速率(Pn)、Kc和PNUE存在显著差异, 四龄针叶的Pn、Kc和PNUE显著低于其他龄针叶。氮含量减少是导致Pn差异的根本原因, Pn随着氮含量的减小而降低。2)各龄针叶的长、宽等形态参数及碳含量受其形成前一年的降水量影响显著。3)从水分及养分利用(Kc、PNUE)角度来看, 一至三年生针叶的利用效率更高, 四龄针叶较低。合理的叶龄结构既能增强针叶对氮素的利用又能增大植株的光合叶面积, 有利于提高个体乃至冠层的光合能力。此外, 遇到严重干旱时, 老叶脱落可以增强樟子松个体的适应性。
魏雅芬, 方杰, 赵学勇, 李胜功. 科尔沁沙地樟子松人工林不同年龄针叶生理生态性状. 植物生态学报, 2011, 35(12): 1271-1280. DOI: 10.3724/SP.J.1258.2011.01271
WEI Ya-Fen, FANG Jie, ZHAO Xue-Yong, LI Sheng-Gong. Eco-physiological traits of different-age needles of Pinus sylvestrisvar.mongolica plantation in Horqin sandy land of China. Chinese Journal of Plant Ecology, 2011, 35(12): 1271-1280. DOI: 10.3724/SP.J.1258.2011.01271
图1 光合作用测定(2009年8月4日, 年序日216)前(2009年7月9日至8月3日(年序日190-215))的气温、降水(A)及土壤含水量(B)的变化(平均值±标准误差)。
Fig. 1 Variations of air temperature and precipitation (A), and soil water content (SWC) (B) from 9 July to 3 August of 2009 (day of year 190-215) prior to the photosynthesis measurements (4 August of 2009, DOY 216) (mean ± SE).
图2 樟子松不同年龄针叶净光合速率(Pn) (A)和测定期间环境要素的日动态(B, C) (平均值±标准误差)。
Fig. 2 Daily variations of net photosynthetic rate (Pn) (A) of different age needles of Pinus sylvestris var. mongolica, and environmental variables: (B) atmospheric vapor pressure deficit (VPD) and photosynthetically active radiation (PAR), and (C) atmospheric CO2 concentration (Ca) and air temperature (Ta) (mean ± SE).
图3 樟子松各龄针叶日平均净光合速率(A)、蒸腾系数(Kc) (B)、光合氮素利用效率(PNUE) (C)及其结构性状(D, E, F) (平均值±标准误差)。图中不同字母表示不同年龄针叶间差异显著(n = 3, p < 0.05)。
Fig. 3 Daily means of net photosynthetic rate (Pn, A), transpiration coefficient (Kc, B), photosynthetic nitrogen use efficiency (PNUE, C), and leaf constructional traits (specific leaf area (SLA), leaf area-based carbon content (Carea) and nitrogen content (Narea)) (E, F, G) for different age needles of Pinus sylvestris var. mongolica (mean ± SE). Different letters indicate significant difference between four needle age groups of three trees (n = 3, p < 0.05).
图4 针叶形态参数(长(l)、宽(w)、厚(d)) (A)、碳含量(Carea) (B)与针叶形成前一年年降水的关系。
Fig. 4 Relationships between leaf morphological parameters (leaf length (l), leaf width (w) and thickness (d)) (A) and annual precipitation of the year prior to leaf formation, and (B) between foliar area-based carbon content (Carea) and annual precipitation of the year prior to leaf formation.
[1] | Bleecker AB (1998). The evolutionary basis of leaf senescence: Method to the madness? Current Opinon in Plant Biology, 1,73-78. |
[2] |
Bormann FH, Likens GE, Melillo JM (1977). Nitrogen budget for an aggrading northern hardwood forest ecosystem. Science, 196,981-983.
DOI URL PMID |
[3] | Chabot BF, Hicks DJ (1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13,229-259. |
[4] | Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11,233-260. |
[5] | Chen GS, Zeng DH, Chen FS (2004). Concentrations of foliar and surface soil in nutrients Pinus spp. plantations in relation to species and stand age in Zhanggutai sandy land, Northeast China. Journal of Forestry Research, 15,11-18. |
[6] | Escudero A, Mediavilla S (2003). Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. Journal of Ecology, 91,880-889. |
[7] | Evans JR, von Caemmerer SV, Setchell BA, Hudson GS (1994). The relationship between CO 2 transfer conductance and leaf anatomy in transgenic tobacco with reduced content of Rubisco. Austrlian Journal of Plant Physiology, 21,475-495. |
[8] | Feng YL (冯玉龙), Wang WZ (王文章), Ao H (敖红) (1998). Drought resistance of Larix olgensis Henry and Pinus sylvestris var. mongolica etc. Journal of Northeast Forestry University(东北林业大学学报), 26(6),16-20. (in Chinese with English abstract) |
[9] | Field C (1983). Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. Oecologia, 56,341-347. |
[10] |
Field C, Mooney HA (1983). Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia, 56,348-355.
URL PMID |
[11] |
Gower ST, Reich PB, Son Y (1993). Canopy dynamics and aboveground production of five tree species with different leaf longevities. Tree Physiology, 12,327-345.
URL PMID |
[12] | Hikosaka K (2004). Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. Journal of Plant Research, 117,481-494. |
[13] | Hom JL, Oechel WC (1983). The photosynthetic capacity, nutrient content and nutrient use efficiency of different needle age-classes of black spruce ( Picea mariana) found in interior Alaska. Canadian Journal of Forest Research, 13,834-839. |
[14] | Hu ZH (胡振华), Wang DL (王电龙), Hu QY (呼起跃) (2008). Comparative study on growth and transpiration of Pinus sylvestris var. mongolica and Pinus tabulaeformis in North Shanxi Province. Research of Soil and Water Conservation (水土保持研究), 15,69-71. (in Chinese with English abstract) |
[15] |
Jordan GJ, Brodribb TJ (2007). Incontinence in aging leaves: deteriorating water relations with leaf age in Agastachys odorata (Proteaceae), a shrub with very long-lived leaves. Functional Plant Biology, 34,918-924.
URL PMID |
[16] | Kang HZ (康宏樟), Zhu JJ (朱教君), Li ZH (李智辉), Xu ML (许美玲) (2004). Natural distribution of Pinus sylvestris var. mongolica on sandy land and its cultivation as an exotic species. Chinese Journal of Ecology (生态学杂志), 23(5),134-139. (in Chinese with English abstract) |
[17] |
Kitajima K, Mulkey SS, Wright SJ (1997). Decline of photosynthetic capacity with leaf age in relation to leaf longevities for five tropical canopy tree species. American Journal of Botany, 84,702-708.
URL PMID |
[18] | Li MS (李铭枢) (1984). The study of photosynthesis for Pinus sylvestris var. mongolica in sandy land. Journal of Liao- ning Forestry Science and Technology(辽宁林业科技), (2),45-50. (in Chinese with English abstract) |
[19] | Li SG (李胜功) (1994). A preliminary study on adaptation of Mongolian Scotch pine to sandy land at Naiman, Inner Mongolia. Journal of Desert Research(中国沙漠), 14,60-67. (in Chinese with English abstract) |
[20] | Li SG, Harazono Y, He ZY, Zhao HL, Chang XL, Zhang TH, Oikawa T (2002). Micrometeorological changes following establishment of artificial Artemisia vegetation on dunes and their implication in combating desertification in Inner Mongolia. Journal of Arid Environments, 52,101-119. |
[21] | Li SG, Harazono Y, Oikawa T, Zhao HL, He ZY, Chang XL (2000). Grassland desertification by grazing and the resulting micrometeorological changes in Inner Mongolia. Agricultural and Forest Meteorology, 102,125-137. |
[22] | Mooney HA (1983). Carbon-gaining capacity and allocation patterns of Mediterranean-climate plants. In: Kruger FJ, Mitchell DT, Jarvis JUM eds. Mediterranean-Type Ecosystems. The Role of Nutrients. Springer-Verlag, Berlin. 103-119. |
[23] |
Mooney HA, Field C, Gulmon SL, Bazzaz FA (1981). Photosynthetic capacity in relation to leaf position in desert versus old-field annuals. Oecologia, 50,109-112.
DOI URL PMID |
[24] | Ono K, Nishi Y, Watanabe A, Terashima I (2001). Possible mechanisms of adaptive leaf senescence. Plant Biology, 3,234-243. |
[25] | Pons TL, van der Werf A, Lambers H (1994). Photosynthetic nitrogen use efficiency of inherently slow- and fast- growing species: possible explanations for observed differences. In: Roy J, Garnier E eds. A Whole Plant Perspective on Carbon-Nitrogen Interactions. SPB Academic Publishing, The Hague. 61-77. |
[26] | Reich PB (1984). Loss of stomatal function in ageing hybrid poplar leaves. Annals of Botany, 53,691-698. |
[27] | Reich PB, Borchert R (1988). Changes with leaf age in stomatal function and water status of several tropical tree species. Biotropica, 20,60-69. |
[28] |
Reich PB, Uhl C, Walters MB, Ellsworth DS (1991). Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia, 86,16-24.
DOI URL PMID |
[29] | Small E (1972). Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Canadian Journal of Botany, 50,2227-2233. |
[30] | Sobrado MA (1994). Leaf age effects on photosynthetic rate, transpiration rate and nitrogen content in a tropical dry forest. Physiologia Plantarum, 90,210-215. |
[31] | Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995). On the relationship between leaf anatomy and CO 2 diffusion through the mesophyll of hypostomatous leaves. Plant, Cell & Environment, 18,149-157. |
[32] | Tang FD (唐凤德), Yan CF (闫彩凤), Han SJ (韩士杰) (2009). Effects of biological preparations on photosynthetic characteristics and nutrient contents of Mongolian pine seedlings in sandy soil. Journal of Northeast Forestry University(东北林业大学学报), 37(6),7-9. (in Chinese with English abstract) |
[33] |
Vitousek PM, Field CB, Matson PA (1990). Variation in foliar δ 13C in Hawaiian Metrosideros polymorpha: A case of internal resistance? Oecologia, 84,362-370.
DOI URL PMID |
[34] | Wang GH (2007). Leaf trait co-variation, response and effect in a chronosequence. Journal of Vegetation Science, 18,563-570. |
[35] | Wang T (王涛) (2004). Study on sandy desertification in China: 3. Key regions for studying and combating sandy desertification. Journal of Desert Research(中国沙漠), 24,1-9. (in Chinese with English abstract) |
[36] | Warren CR (2006). Why does photosynthesis decrease with needle age in Pinus pinaster? Trees, 20,157-164. |
[37] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428,821-827.
URL PMID |
[38] | Zhang JC (张锦春), Wang J (汪杰), Li AD (李爱德), E YH (俄有浩) (2000). Research on root distribution and growth adaptability of Pinus sylvestris var. mongolica. Protection Forest Science and Technology(防护林科技), 44(3),46-49. (in Chinese with English abstract) |
[39] | Zhang JY (张继义), Zhao HL (赵哈林), Cui JY (崔建垣), Zhang TH (张铜会), Zhao XY (赵学勇) (2005). Community structure, soil water dynamics and community stability of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land. Scientia Silvae Sinicae(林业科学), 41(3),1-6. (in Chinese with English abstract) |
[40] | Zhang L (张林), Luo TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica (植物生态学报), 28,844-852. (in Chinese with English abstract) |
[41] | Zhou RL (周瑞莲), Zhao HL (赵哈林), Wang HO (王海鸥) (2001). Physiological mechanism of succession of the plants in Horqin Sandland, China. Arid Zone Research(干旱区研究), 18(3),13-19. (in Chinese with English abstract) |
[42] | Zhu JJ (朱教君), Kang HZ (康宏樟), Li ZH (李智辉), Wang GC (王国臣), Zhang RS (张日升) (2005). Impact of water stress on survival and photosynthesis of Mongolian pine seedlings on sandy land. Acta Ecologica Sinica(生态学报), 25,2527-2533. (in Chinese with English abstract) |
[1] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[2] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[3] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[4] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[5] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[6] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[7] | 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响[J]. 植物生态学报, 2018, 42(6): 672-680. |
[8] | 邢娟, 郑成洋, 冯婵莹, 曾发旭. 河北塞罕坝樟子松人工林生长及碳储量的变化[J]. 植物生态学报, 2017, 41(8): 840-849. |
[9] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[10] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[11] | 司晓林, 王文银, 高小刚, 徐当会. 氮硅添加对高寒草甸垂穗披碱草叶片全氮含量及净光合速率的影响[J]. 植物生态学报, 2016, 40(12): 1238-1244. |
[12] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
[13] | 杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应[J]. 植物生态学报, 2015, 39(1): 32-42. |
[14] | 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121. |
[15] | 黄海侠,杨晓东,孙宝伟,张志浩,阎恩荣. 浙江天童常绿植物当年生与往年生叶片性状的变异与关联[J]. 植物生态学报, 2013, 37(10): 912-921. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19