植物生态学报 ›› 2013, Vol. 37 ›› Issue (10): 912-921.DOI: 10.3724/SP.J.1258.2013.00094
所属专题: 植物功能性状
黄海侠1,2,杨晓东1,2,孙宝伟1,2,张志浩1,2,阎恩荣1,2,*()
收稿日期:
2013-04-15
接受日期:
2013-08-08
出版日期:
2013-04-15
发布日期:
2013-09-29
通讯作者:
阎恩荣
基金资助:
HUANG Hai-Xia1,2,YANG Xiao-Dong1,2,SUN Bao-Wei1,2,ZHANG Zhi-Hao1,2,YAN En-Rong1,2,*()
Received:
2013-04-15
Accepted:
2013-08-08
Online:
2013-04-15
Published:
2013-09-29
Contact:
YAN En-Rong
摘要:
植物叶片性状随叶龄的变化是植物生活史策略的体现, 反映了植物叶片的物质投资和分配方式。该研究通过在个体和物种2个水平, 比较浙江天童1 hm 2样地内常绿阔叶树种的平均叶面积(MLA)、比叶面积(SLA)和叶片干物质含量(LDMC)在当年生和往年生叶片间的差异和关联, 探究叶片物质分配策略在异龄叶间的变化, 并分析叶龄对植物叶片性状, 特别是叶片面积建成消耗的影响。结果显示: 1)在个体和物种水平上, MLA变异系数最大(个体: 79.5%; 物种: 66.5%), SLA次之(个体: 28.1%; 物种: 24.7%), LDMC较低(个体: 17.0%, 物种: 14.1%); 当年生叶片MLA、LDMC和SLA的变异系数均高于往年生叶片; 2)往年生叶MLA显著大于当年生叶(t = -38.53, p < 0.001), 往年生叶SLA显著小于当年生叶(t = 45.30, p < 0.001), 往年生叶LDMC显著大于当年生叶(t = -9.71, p < 0.001); 3)在个体水平, 当年生叶片MLA、SLA和LDMC值分别解释了往年生叶片MLA、SLA和LDMC变异的86%、48%和41%; 在物种水平, 当年生叶片MLA、SLA和LDMC值分别解释了往年生叶片MLA、SLA和LDMC变异的97%、83%和85%; 4) SLA在异龄叶间的变化表明, 与往年生叶片相比, 投资相同干物质, 当年生叶片可形成较大的叶面积, 其叶片面积建成消耗较小。研究认为, 植物叶性状在异龄叶间具有较大的变异性和关联性, 叶面积形成过程中生物量建成与消耗的协调可能影响植物叶片的发育。
黄海侠,杨晓东,孙宝伟,张志浩,阎恩荣. 浙江天童常绿植物当年生与往年生叶片性状的变异与关联. 植物生态学报, 2013, 37(10): 912-921. DOI: 10.3724/SP.J.1258.2013.00094
HUANG Hai-Xia,YANG Xiao-Dong,SUN Bao-Wei,ZHANG Zhi-Hao,YAN En-Rong. Variability and association of leaf traits between current-year and former-year leaves in evergreen trees in Tiantong, Zhejiang, China. Chinese Journal of Plant Ecology, 2013, 37(10): 912-921. DOI: 10.3724/SP.J.1258.2013.00094
物种 Species | 多度 Abundance | 当年生叶片MLA MLA of current- year leaves (cm2) | 往年生叶片MLA MLA of former-year leaves (cm2) | 当年生叶片SLA SLA of current-year leaves (m2·kg-1) | 往年生叶片SLA SLA of former-year leaves (m2·kg-1) | 当年生叶片LDMC LDMC of current- year leaves (mg·g-1) | 往年生叶片LDMC LDMC of former-year leaves (mg·g-1) |
---|---|---|---|---|---|---|---|
豹皮樟 Litsea coreana var. sinensis | 17 | 11.3 ± 3.6 | 13.4 ± 3.5 | 12.7 ± 3.4 | 10.9 ± 1.9 | 450.6 ± 75.2 | 451.0 ± 57.2 |
红楠 Machilus thunbergii | 52 | 15.2 ± 5.0 | 20.0 ± 4.4 | 10.4 ± 1.9 | 9.0 ± 1.4 | 430.8 ± 56.6 | 422.4 ± 43.6 |
薄叶润楠 Machilus leptophylla | 59 | 60.1 ± 21.5 | 80.8 ± 25.0 | 15.6 ± 2.6 | 13.5 ± 3.6 | 310.4 ± 38.6 | 339.7 ± 46.9 |
黄丹木姜子 Litsea elongata | 746 | 19.5 ± 6.9 | 25.2 ± 7.0 | 14.4 ± 2.5 | 11.8 ± 1.8 | 431.0 ± 53.2 | 441.2 ± 46.9 |
香桂 Cinnamomum subavenium | 42 | 15.4 ± 4.2 | 19.9 ± 5.5 | 12.3 ± 2.8 | 10.1 ± 1.6 | 424.8 ± 60.2 | 451.1 ± 48.8 |
浙江新木姜子 Neolitsea aurata var. chekiangensis | 88 | 13.3 ± 3.3 | 17.1 ± 4.1 | 13.2 ± 2.5 | 11.3 ± 2.6 | 478.6 ± 56.0 | 492.5 ± 49.5 |
薄叶山矾 Symplocos anomala | 25 | 10.9 ± 3.1 | 13.1 ± 1.8 | 14.9 ± 3.1 | 12.1 ± 1.8 | 338.6 ± 32.9 | 339.8 ± 31.6 |
光叶山矾 Symplocos lancifolia | 29 | 8.4 ± 2.7 | 11.0 ± 2.5 | 24.1 ± 7.5 | 18.1 ± 3.1 | 392.1 ± 118.7 | 323.9 ± 61.9 |
总状山矾 Symplocos botryantha | 1 | 14.6 | 15.4 | 11.4 | 10.7 | 360.8 | 321.0 |
黄牛奶树 Symplocos laurina | 4 | 17.4 ± 4.7 | 21.0 ± 7.9 | 14.8 ± 4.6 | 12.6 ± 4.9 | 314.1 ± 29.6 | 310.9 ± 45.3 |
老鼠矢 Symplocos stellaris | 4 | 24.8 ± 8.6 | 33.2 ± 5.1 | 9.7 ± 1.4 | 8.2 ± 1.4 | 348.0 ± 60.2 | 331.2 ± 16.0 |
山矾 Symplocos sumuntia | 40 | 9.0 ± 3.3 | 11.6 ± 2.3 | 13.4 ± 2.6 | 10.7 ± 1.3 | 319.7 ± 49.2 | 333.2 ± 34.4 |
四川山矾 Symplocos setchuensis | 17 | 16.6 ± 5.3 | 22.8 ± 5.6 | 11.5 ± 2.7 | 8.4 ± 1.3 | 380.2 ± 52.4 | 382.1 ± 21.9 |
港柯 Lithocarpus harlandii | 43 | 38.0 ± 13.7 | 54.9 ± 18.9 | 9.4 ± 2.2 | 8.5 ± 1.9 | 436.3 ± 77.2 | 443.0 ± 54.9 |
赤皮青冈 Cyclobalanopsis gilva | 4 | 12.4 ± 1.0 | 17.2 ± 2.6 | 12.8 ± 3.5 | 10.2 ± 1.6 | 476.8 ± 21.7 | 465.8 ± 17.7 |
栲树 Castanopsis fargesii | 23 | 15.1 ± 4.1 | 22.1 ± 7.8 | 11.4 ± 3.2 | 10.0 ± 2.1 | 427.9 ± 78.5 | 422.1 ± 43.9 |
米槠 Castanopsis carlesii | 2 | 10.4 ± 1.9 | 13.9 ± 1.8 | 11.5 ± 1.2 | 12.7 ± 0.0 | 435.5 ± 11.8 | 454.8 ± 2.3 |
青冈 Cyclobalanopsis glauca | 2 | 17.6 ± 1.2 | 27.0 ± 3.9 | 9.5 ± 1.1 | 9.1 ± 1.5 | 459.2 ± 57.2 | 441.9 ± 37.8 |
细叶青冈 Cyclobalanopsis gracilis | 2 | 15.5 ± 12.5 | 21.1 ± 7.7 | 11.5 ± 0.4 | 11.6 ± 0.0 | 422.7 ± 43.8 | 467.6 ± 37.4 |
小叶青冈 Cyclobalanopsis myrsinifolia | 12 | 13.0 ± 2.5 | 17.3 ± 4.6 | 12.6 ± 1.5 | 10.4 ± 1.3 | 451.1 ± 18.7 | 448.4 ± 32.0 |
格药柃 Eurya muricata | 27 | 13.5 ± 4.1 | 18.2 ± 5.2 | 10.2 ± 3.4 | 8.4 ± 2.4 | 359.7 ± 54.0 | 372.0 ± 52.6 |
毛柄连蕊茶 Camellia fraterna | 285 | 5.5 ± 1.8 | 7.3 ± 1.8 | 14.8 ± 3.1 | 11.7 ± 1.9 | 360.9 ± 64.0 | 378.8 ± 59.3 |
木荷 Schima superba | 17 | 29.5 ± 10.2 | 36.8 ± 12.2 | 10.3 ± 2.0 | 9.2 ± 2.1 | 409.6 ± 51.6 | 404.3 ± 51.2 |
细枝柃 Eurya loquaiana | 494 | 6.8 ± 2.2 | 9.9 ± 2.1 | 18.4 ± 3.8 | 14.3 ± 2.1 | 349.0 ± 60.0 | 372.1 ± 57.4 |
窄基红褐柃 Eurya rubiginosa | 19 | 12.0 ± 4.4 | 16.6 ± 3.8 | 13.6 ± 3.2 | 10.1 ± 1.41 | 320.5 ± 37.0 | 362.9 ± 30.1 |
杨桐 Cleyera japonica | 44 | 18.1 ± 5.6 | 25.3 ± 6.5 | 10.4 ± 2.2 | 9.0 ± 1.5 | 353.3 ± 48.3 | 366.6 ± 36.4 |
短梗冬青 Ilex buergeri | 14 | 8.6 ± 2.4 | 10.4 ± 3.3 | 14.1 ± 3.2 | 11.1 ± 1.7 | 396.7 ± 33.6 | 411.4 ± 38.7 |
铁冬青 Ilex rotunda | 1 | 12.4 | 15.9 | 17.8 | 13.0 | 283.1 | 312.6 |
光叶石楠 Photinia glabra | 7 | 9.67 ± 5.2 | 14.3 ± 4.7 | 11.9 ± 6.1 | 10.5 ± 5.8 | 393.9 ± 144.3 | 436.3 ± 70.2 |
腺叶桂樱 Laurocerasus phaeosticta | 53 | 10.8 ± 3.0 | 13.7 ± 3.8 | 18.4 ± 3.3 | 14.7 ± 2.3 | 352.2 ± 43.2 | 366.4 ± 41.0 |
马银花 Rhododendron ovatum | 1 | 8.8 | 9.9 | 14.4 | 12.3 | 396.8 | 408.6 |
江南越桔 Vaccinium mandarinorum | 2 | 7.9 ± 1.7 | 11.8 ± 2.9 | 19.9 ± 11.9 | 12.5 ± 2.1 | 302.9 ± 130.7 | 359.6 ± 44.5 |
檵木 Loropetalum chinense | 3 | 5.6 ± 2.1 | 6.5 ± 0.3 | 17.2 ± 4.2 | 15.3 ± 2.6 | 382.8 ± 47.0 | 373.5 ± 30.4 |
杨梅叶蚊母树 Distylium myricoides | 25 | 10.3 ± 4.2 | 14.3 ± 3.7 | 8.6 ± 1.6 | 7.8 ± 1.2 | 430.3 ± 30.4 | 445.2 ± 36.7 |
木犀 Osmanthus fragrans | 5 | 24.9 ± 5.2 | 35.5 ± 4.5 | 10.1 ± 1.1 | 8.6 ± 0.4 | 458.1 ± 27.6 | 404.2 ± 11.7 |
宁波木犀 Osmanthus cooperi | 7 | 20.9 ± 6.8 | 30.9 ± 6.1 | 9.4 ± 01.0 | 8.6 ± 0.9 | 447.8 ± 42.8 | 438.6 ± 21.1 |
赤楠 Syzygium buxifolium | 2 | 6.1 ± 1.3 | 6.1 ± 0.9 | 13.0 ± 1.6 | 11.4 ± 2.3 | 371.7 ± 17.4 | 407.2 ± 42.2 |
虎皮楠 Daphniphyllum oldhami | 3 | 19.0 ± 8.1 | 32.5 ± 9.7 | 15.7 ± 2.4 | 12.7 ± 1.6 | 301.5 ± 23.7 | 308.5 ± 2.6 |
披针叶茴香 Illicium lanceolatum | 51 | 13.4 ± 4.5 | 17.7 ± 4.3 | 12.5 ± 3.0 | 9.7 ± 1.6 | 296.8 ± 54.9 | 314.3 ± 54.4 |
杨梅 Myrica rubra | 4 | 18.4 ± 2.3 | 28.6 ± 8.6 | 17.2 ± 0.8 | 13.8 ± 1.1 | 370.6 ± 28.2 | 410.4 ± 34.7 |
厚壳树 Ehretia thyrsiflora | 1 | 15.4 | 11.8 | 13.5 | 10.1 | 303.6 | 376.4 |
全部 Total | 2 277 | 15.5 ± 10.5 | 21.0 ± 13.7 | 13.4 ± 3.3 | 11.1 ± 2.2 | 382.8 ± 57.3 | 395.8 ± 51.4 |
表1 浙江天童1 hm2样地内常绿物种多度和当年生与往年生叶片的性状特征(平均值±标准偏差)
Table 1 Species abundance and leaf traits of current-year and former-year leaves for evergreen trees in a 1 hm2 plot in Tiantong, Zhejiang (mean ± SD)
物种 Species | 多度 Abundance | 当年生叶片MLA MLA of current- year leaves (cm2) | 往年生叶片MLA MLA of former-year leaves (cm2) | 当年生叶片SLA SLA of current-year leaves (m2·kg-1) | 往年生叶片SLA SLA of former-year leaves (m2·kg-1) | 当年生叶片LDMC LDMC of current- year leaves (mg·g-1) | 往年生叶片LDMC LDMC of former-year leaves (mg·g-1) |
---|---|---|---|---|---|---|---|
豹皮樟 Litsea coreana var. sinensis | 17 | 11.3 ± 3.6 | 13.4 ± 3.5 | 12.7 ± 3.4 | 10.9 ± 1.9 | 450.6 ± 75.2 | 451.0 ± 57.2 |
红楠 Machilus thunbergii | 52 | 15.2 ± 5.0 | 20.0 ± 4.4 | 10.4 ± 1.9 | 9.0 ± 1.4 | 430.8 ± 56.6 | 422.4 ± 43.6 |
薄叶润楠 Machilus leptophylla | 59 | 60.1 ± 21.5 | 80.8 ± 25.0 | 15.6 ± 2.6 | 13.5 ± 3.6 | 310.4 ± 38.6 | 339.7 ± 46.9 |
黄丹木姜子 Litsea elongata | 746 | 19.5 ± 6.9 | 25.2 ± 7.0 | 14.4 ± 2.5 | 11.8 ± 1.8 | 431.0 ± 53.2 | 441.2 ± 46.9 |
香桂 Cinnamomum subavenium | 42 | 15.4 ± 4.2 | 19.9 ± 5.5 | 12.3 ± 2.8 | 10.1 ± 1.6 | 424.8 ± 60.2 | 451.1 ± 48.8 |
浙江新木姜子 Neolitsea aurata var. chekiangensis | 88 | 13.3 ± 3.3 | 17.1 ± 4.1 | 13.2 ± 2.5 | 11.3 ± 2.6 | 478.6 ± 56.0 | 492.5 ± 49.5 |
薄叶山矾 Symplocos anomala | 25 | 10.9 ± 3.1 | 13.1 ± 1.8 | 14.9 ± 3.1 | 12.1 ± 1.8 | 338.6 ± 32.9 | 339.8 ± 31.6 |
光叶山矾 Symplocos lancifolia | 29 | 8.4 ± 2.7 | 11.0 ± 2.5 | 24.1 ± 7.5 | 18.1 ± 3.1 | 392.1 ± 118.7 | 323.9 ± 61.9 |
总状山矾 Symplocos botryantha | 1 | 14.6 | 15.4 | 11.4 | 10.7 | 360.8 | 321.0 |
黄牛奶树 Symplocos laurina | 4 | 17.4 ± 4.7 | 21.0 ± 7.9 | 14.8 ± 4.6 | 12.6 ± 4.9 | 314.1 ± 29.6 | 310.9 ± 45.3 |
老鼠矢 Symplocos stellaris | 4 | 24.8 ± 8.6 | 33.2 ± 5.1 | 9.7 ± 1.4 | 8.2 ± 1.4 | 348.0 ± 60.2 | 331.2 ± 16.0 |
山矾 Symplocos sumuntia | 40 | 9.0 ± 3.3 | 11.6 ± 2.3 | 13.4 ± 2.6 | 10.7 ± 1.3 | 319.7 ± 49.2 | 333.2 ± 34.4 |
四川山矾 Symplocos setchuensis | 17 | 16.6 ± 5.3 | 22.8 ± 5.6 | 11.5 ± 2.7 | 8.4 ± 1.3 | 380.2 ± 52.4 | 382.1 ± 21.9 |
港柯 Lithocarpus harlandii | 43 | 38.0 ± 13.7 | 54.9 ± 18.9 | 9.4 ± 2.2 | 8.5 ± 1.9 | 436.3 ± 77.2 | 443.0 ± 54.9 |
赤皮青冈 Cyclobalanopsis gilva | 4 | 12.4 ± 1.0 | 17.2 ± 2.6 | 12.8 ± 3.5 | 10.2 ± 1.6 | 476.8 ± 21.7 | 465.8 ± 17.7 |
栲树 Castanopsis fargesii | 23 | 15.1 ± 4.1 | 22.1 ± 7.8 | 11.4 ± 3.2 | 10.0 ± 2.1 | 427.9 ± 78.5 | 422.1 ± 43.9 |
米槠 Castanopsis carlesii | 2 | 10.4 ± 1.9 | 13.9 ± 1.8 | 11.5 ± 1.2 | 12.7 ± 0.0 | 435.5 ± 11.8 | 454.8 ± 2.3 |
青冈 Cyclobalanopsis glauca | 2 | 17.6 ± 1.2 | 27.0 ± 3.9 | 9.5 ± 1.1 | 9.1 ± 1.5 | 459.2 ± 57.2 | 441.9 ± 37.8 |
细叶青冈 Cyclobalanopsis gracilis | 2 | 15.5 ± 12.5 | 21.1 ± 7.7 | 11.5 ± 0.4 | 11.6 ± 0.0 | 422.7 ± 43.8 | 467.6 ± 37.4 |
小叶青冈 Cyclobalanopsis myrsinifolia | 12 | 13.0 ± 2.5 | 17.3 ± 4.6 | 12.6 ± 1.5 | 10.4 ± 1.3 | 451.1 ± 18.7 | 448.4 ± 32.0 |
格药柃 Eurya muricata | 27 | 13.5 ± 4.1 | 18.2 ± 5.2 | 10.2 ± 3.4 | 8.4 ± 2.4 | 359.7 ± 54.0 | 372.0 ± 52.6 |
毛柄连蕊茶 Camellia fraterna | 285 | 5.5 ± 1.8 | 7.3 ± 1.8 | 14.8 ± 3.1 | 11.7 ± 1.9 | 360.9 ± 64.0 | 378.8 ± 59.3 |
木荷 Schima superba | 17 | 29.5 ± 10.2 | 36.8 ± 12.2 | 10.3 ± 2.0 | 9.2 ± 2.1 | 409.6 ± 51.6 | 404.3 ± 51.2 |
细枝柃 Eurya loquaiana | 494 | 6.8 ± 2.2 | 9.9 ± 2.1 | 18.4 ± 3.8 | 14.3 ± 2.1 | 349.0 ± 60.0 | 372.1 ± 57.4 |
窄基红褐柃 Eurya rubiginosa | 19 | 12.0 ± 4.4 | 16.6 ± 3.8 | 13.6 ± 3.2 | 10.1 ± 1.41 | 320.5 ± 37.0 | 362.9 ± 30.1 |
杨桐 Cleyera japonica | 44 | 18.1 ± 5.6 | 25.3 ± 6.5 | 10.4 ± 2.2 | 9.0 ± 1.5 | 353.3 ± 48.3 | 366.6 ± 36.4 |
短梗冬青 Ilex buergeri | 14 | 8.6 ± 2.4 | 10.4 ± 3.3 | 14.1 ± 3.2 | 11.1 ± 1.7 | 396.7 ± 33.6 | 411.4 ± 38.7 |
铁冬青 Ilex rotunda | 1 | 12.4 | 15.9 | 17.8 | 13.0 | 283.1 | 312.6 |
光叶石楠 Photinia glabra | 7 | 9.67 ± 5.2 | 14.3 ± 4.7 | 11.9 ± 6.1 | 10.5 ± 5.8 | 393.9 ± 144.3 | 436.3 ± 70.2 |
腺叶桂樱 Laurocerasus phaeosticta | 53 | 10.8 ± 3.0 | 13.7 ± 3.8 | 18.4 ± 3.3 | 14.7 ± 2.3 | 352.2 ± 43.2 | 366.4 ± 41.0 |
马银花 Rhododendron ovatum | 1 | 8.8 | 9.9 | 14.4 | 12.3 | 396.8 | 408.6 |
江南越桔 Vaccinium mandarinorum | 2 | 7.9 ± 1.7 | 11.8 ± 2.9 | 19.9 ± 11.9 | 12.5 ± 2.1 | 302.9 ± 130.7 | 359.6 ± 44.5 |
檵木 Loropetalum chinense | 3 | 5.6 ± 2.1 | 6.5 ± 0.3 | 17.2 ± 4.2 | 15.3 ± 2.6 | 382.8 ± 47.0 | 373.5 ± 30.4 |
杨梅叶蚊母树 Distylium myricoides | 25 | 10.3 ± 4.2 | 14.3 ± 3.7 | 8.6 ± 1.6 | 7.8 ± 1.2 | 430.3 ± 30.4 | 445.2 ± 36.7 |
木犀 Osmanthus fragrans | 5 | 24.9 ± 5.2 | 35.5 ± 4.5 | 10.1 ± 1.1 | 8.6 ± 0.4 | 458.1 ± 27.6 | 404.2 ± 11.7 |
宁波木犀 Osmanthus cooperi | 7 | 20.9 ± 6.8 | 30.9 ± 6.1 | 9.4 ± 01.0 | 8.6 ± 0.9 | 447.8 ± 42.8 | 438.6 ± 21.1 |
赤楠 Syzygium buxifolium | 2 | 6.1 ± 1.3 | 6.1 ± 0.9 | 13.0 ± 1.6 | 11.4 ± 2.3 | 371.7 ± 17.4 | 407.2 ± 42.2 |
虎皮楠 Daphniphyllum oldhami | 3 | 19.0 ± 8.1 | 32.5 ± 9.7 | 15.7 ± 2.4 | 12.7 ± 1.6 | 301.5 ± 23.7 | 308.5 ± 2.6 |
披针叶茴香 Illicium lanceolatum | 51 | 13.4 ± 4.5 | 17.7 ± 4.3 | 12.5 ± 3.0 | 9.7 ± 1.6 | 296.8 ± 54.9 | 314.3 ± 54.4 |
杨梅 Myrica rubra | 4 | 18.4 ± 2.3 | 28.6 ± 8.6 | 17.2 ± 0.8 | 13.8 ± 1.1 | 370.6 ± 28.2 | 410.4 ± 34.7 |
厚壳树 Ehretia thyrsiflora | 1 | 15.4 | 11.8 | 13.5 | 10.1 | 303.6 | 376.4 |
全部 Total | 2 277 | 15.5 ± 10.5 | 21.0 ± 13.7 | 13.4 ± 3.3 | 11.1 ± 2.2 | 382.8 ± 57.3 | 395.8 ± 51.4 |
叶片类型 Leaf type | 水平 Level | 样本量 n | 平均叶面积 MLA (cm2) | 比叶面积 SLA (m2·kg-1) | 叶片干物质含量 LDMC (mg·g-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值±标准偏差 Mean ± SD | 范围 Range | 变异系数 CV (%) | 平均值±标准偏差 Mean ± SD | 范围 Range | 变异系数 CV (%) | 平均值±标准偏差 Mean ± SD | 范围 Range | 变异系数 CV (%) | |||||
当年生叶 Current-year leaves | 个体 Individual | 2 277 | 14.8 ± 11.7a | 1.6-114.2 | 79.2 | 14.9 ± 4.1b | 5.3-27.5 | 27.5 | 386.7 ± 68.5a | 124.8-666.2 | 17.7 | ||
物种 Species | 41 | 15.5 ± 10.5A | 5.5-60.1 | 67.7 | 13.4 ± 3.3B | 8.5-24.1 | 24.6 | 382.8 ± 57.3A | 283.1-478.6 | 15.0 | |||
往年生叶 Former-year leaves | 个体 Individual | 2 277 | 19.7 ± 15.1b | 3.4-138.9 | 76.4 | 12.0 ± 2.7a | 5.0-24.3 | 22.9 | 406.7 ± 64.5b | 243.3-812.1 | 15.9 | ||
物种 Species | 41 | 21.0 ± 13. 7B | 6.1-80.8 | 65.1 | 11.1 ± 2.2A | 7.8-18.1 | 20.0 | 395.8 ± 51.4B | 308.5-492.5 | 13.0 | |||
总体 Total | 个体 Individual | 4 554 | 17.3 ± 13.7 | 1.6-139.0 | 79.5 | 13.4 ± 3.8 | 5.0-40.8 | 28.1 | 396.7 ± 67.3 | 124.8-812.1 | 17.0 | ||
物种 Species | 82 | 18.1 ± 12.1 | 5.5-80.8 | 66.5 | 12.2 ± 3.0 | 7.8-24.1 | 24.7 | 388.1 ± 54.1 | 283.1-492.5 | 14.1 |
表2 浙江天童1 hm2样地常绿植物个体水平和物种水平上叶片性状的统计结果
Table 2 Statistical results of leaf traits at both individual and species levels among evergreen trees in a 1 hm2 plot in Tiantong, Zhejiang
叶片类型 Leaf type | 水平 Level | 样本量 n | 平均叶面积 MLA (cm2) | 比叶面积 SLA (m2·kg-1) | 叶片干物质含量 LDMC (mg·g-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均值±标准偏差 Mean ± SD | 范围 Range | 变异系数 CV (%) | 平均值±标准偏差 Mean ± SD | 范围 Range | 变异系数 CV (%) | 平均值±标准偏差 Mean ± SD | 范围 Range | 变异系数 CV (%) | |||||
当年生叶 Current-year leaves | 个体 Individual | 2 277 | 14.8 ± 11.7a | 1.6-114.2 | 79.2 | 14.9 ± 4.1b | 5.3-27.5 | 27.5 | 386.7 ± 68.5a | 124.8-666.2 | 17.7 | ||
物种 Species | 41 | 15.5 ± 10.5A | 5.5-60.1 | 67.7 | 13.4 ± 3.3B | 8.5-24.1 | 24.6 | 382.8 ± 57.3A | 283.1-478.6 | 15.0 | |||
往年生叶 Former-year leaves | 个体 Individual | 2 277 | 19.7 ± 15.1b | 3.4-138.9 | 76.4 | 12.0 ± 2.7a | 5.0-24.3 | 22.9 | 406.7 ± 64.5b | 243.3-812.1 | 15.9 | ||
物种 Species | 41 | 21.0 ± 13. 7B | 6.1-80.8 | 65.1 | 11.1 ± 2.2A | 7.8-18.1 | 20.0 | 395.8 ± 51.4B | 308.5-492.5 | 13.0 | |||
总体 Total | 个体 Individual | 4 554 | 17.3 ± 13.7 | 1.6-139.0 | 79.5 | 13.4 ± 3.8 | 5.0-40.8 | 28.1 | 396.7 ± 67.3 | 124.8-812.1 | 17.0 | ||
物种 Species | 82 | 18.1 ± 12.1 | 5.5-80.8 | 66.5 | 12.2 ± 3.0 | 7.8-24.1 | 24.7 | 388.1 ± 54.1 | 283.1-492.5 | 14.1 |
图1 浙江天童1 hm2样地常绿植物在个体(A、B、C)和物种水平(D、E、F)上当年生与往年生叶片性状的回归关系。LDMC, 叶片干物质含量; MLA, 平均叶面积; SLA, 比叶面积。
Fig. 1 Regression relationships of leaf traits between current-year and former-year leaves at both individuals (A, B, C) and species levels (D, E, F) among evergreen trees in 1 hm2 plot in Tiantong, Zhejiang. LDMC, leaf dry matter content; MLA, mean leaf area; SLA, specific leaf area.
[1] |
Ackerly DD, Donoghue MJ(1998). Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). The American Naturalist, 152, 767-791.
DOI URL |
[2] |
Aerts R(1995). The advantages of being evergreen. Trends in Ecology and Evolution, 10, 402-407.
DOI URL |
[3] |
Bleecker AB(1998). The evolutionary basis of leaf senescence: method to the madness? Current Opinion in Plant Biology, 1, 73-78.
DOI URL |
[4] |
Chabot BF, David JH(1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13, 229-259.
DOI URL |
[5] |
Cornelissen JHC(1999). A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia, 118, 248-255.
DOI URL |
[6] |
Doust JL(1980). A comparative study of life history and resource allocation in selected Umbelliferae. Biological Journal of the Linnean Society, 13, 139-154.
DOI URL |
[7] |
Feng YL, Fu GL, Zheng YL(2008). Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
DOI URL |
[8] |
Field C, Mooney HA(1983). Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. Oecologia, 56, 348-355.
DOI URL |
[9] | Frak E, Roux XL, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R(2001). Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant, Cell & Environment, 24, 1279-1288. |
[10] |
Gratani L, Bombelli A(2000). Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environmental and Experimental Botany, 43, 141-153.
DOI URL |
[11] |
Griffin KL(1994). Calorimetric estimates of construction cost and their use in ecological studies. Functional Ecology, 8, 551-562.
DOI URL |
[12] |
He JS, Wang XP, Flynn DFB, Wang L, Schmid B, Fang JY(2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90, 2779-2791.
DOI URL |
[13] |
Hu QP, Guo ZH, Li CY, Ma LY (2008). Advance at phenotypic plasticity in plant responses to abiotic factors. Scientia Silvae Sinicae, 44(5), 135-142. (in Chinese with English abstract)
DOI URL |
[ 胡启鹏, 郭志华, 李春燕, 马履一 (2008). 植物表型可塑性对非生物环境因子的响应研究进展. 林业科学, 44(5), 135-142.]
DOI URL |
|
[14] |
Kayama M, Sasa K, Koike T(2002). Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 22, 707-716.
DOI URL |
[15] |
Kitajima K, Mulkey SS, Wright SJ(1997). Decline of photosynthetic capacity with leaf age in relation to leaf longevities for five tropical canopy tree species. American Journal of Botany, 84, 702-708.
DOI URL |
[16] |
Liao XJ, Chen J, Jiang MX, Huang H(2012). Leaf traits and persistence of relict and endangered tree species in a rare plant community. Functional Plant Biology, 39, 512-518.
DOI URL |
[17] |
Milla R, Reich PB(2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115.
DOI URL |
[18] |
Monk CD(1966). An ecological significance of evergreenness. Ecology, 47, 504-505.
DOI URL |
[19] |
Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T(2006). Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. Plant, Cell and Environment, 29, 1159-1178.
DOI URL |
[20] | Oguchi R, Hikosaka K, Hirose T(2003). Does the photosynthetic light-acclimation need change in leaf anatomy? Plant, Cell & Environment, 26, 505-512. |
[21] |
Ono K, Nishi Y, Watanable A, Terashima I(2001). Possible mechanisms of adaptive leaf senescence. Plant Biology, 3, 234-243.
DOI URL |
[22] |
Pérez-Harguindeguy N, Díza S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen HC(2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[23] |
Pickup M, Westoby M, Basden A(2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97.
DOI URL |
[24] | Poorter H, Garnier E (1999). Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire F, Valladares FF eds. Handbook of Functional Plant Ecology. Marcel Dekker, New York. 81-120. |
[25] | Reich PB, Oleksyn J(2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[26] |
Reich PB, Walters MB, Ellsworth DS(1991). Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. Plant, Cell and Environment, 14, 251-259.
DOI URL |
[27] |
Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD(1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia, 114, 471-482.
DOI URL |
[28] | Silvertown J, Franco FB, Harper JL (1997). Plant Life Histories: Ecology, Phylogeny and Evolution. Cambridge University Press, Cambridge, UK. |
[29] |
Sims DA, Pearcy RW(1992). Response of leaf anatomy and photosynthetic, capacity in Alocasia macrorrhize(Araceae) to a transfer from low to high light. American Journal of Botany, 79, 449-455.
DOI URL |
[30] | Song YC, Wang XR (1995). Vegetation and Flora of Tiantong National Forest Park, Zhejiang Province, China. Shanghai Scientific and Technological Literature Publishing House, Shanghai, 11-12. (in Chinese) |
[ 宋永昌, 王祥荣 (1995). 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海, 11-12.] | |
[31] |
Sultan SE(2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542.
DOI URL |
[32] | Tilman D (1998). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton. |
[33] | Wang XH, Zhang J, Zhang ZX (2000). Leaf longevity of evergreen broad-leaved species of Tiantong National Forest Park, Zhejiang Province. Acta Phytoecologica Sinica, 24, 625-629. (in Chinese with English abstract) |
[ 王希华, 张婕, 张正祥 (2000). 浙江天童国家森林公园主要常绿阔叶树种叶子寿命的研究. 植物生态学报, 24, 625-629.] | |
[34] |
Weiner J(2004). Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology Evolution and Systematics, 6, 207-215.
DOI URL |
[35] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ(2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[36] |
Westoby M, Wright IJ(2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
DOI URL |
[37] | Williams K, Percival F, Merino J, Mooney HA(1987). Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell & Environment, 10, 725-734. |
[38] |
Wilson PJ, Thompson K, Hodgson JG(1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[39] |
Witkowski ETF, Lamont BB(1991). Leaf specific mass confounds leaf density and thickness. Oecologia, 88, 486-493.
DOI URL |
[40] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R(2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[41] |
Wright IJ, Westoby M(2003). Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology, 17, 10-19.
DOI URL |
[42] |
Wyka T, Robakowski P, Zytkowiak R(2000). Leaf age as a factor in anatomical and physiological acclimative responses of Taxus baccata L. needles to contrasting irradiance environments. Photosynthesis Research, 95, 87-99.
DOI URL |
[43] | Yan BG, He GX, Li JC, Ji ZH (2012). Scaling relationships and stoichiometry of plant leaf biogenic elements from the arid-hot valley of Jinsha River, China. Acta Phytoecologica Sinica, 36, 1136-1144. (in Chinese with English abstract) |
[ 闫帮国, 何光熊, 李纪潮, 纪中华 (2012). 金沙江干热河谷地区植物叶片中各生源要素的化学计量特征以及异速增长关系. 植物生态学报, 36, 1136-1144.] | |
[44] |
Yan ER, Milla R, Aarssen LW, Wang XH(2012). Functional relationships of leafing intensity to plant height, growth form and leaf habit. Acta Oecologica, 41, 20-29.
DOI URL |
[1] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[2] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[3] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[4] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[5] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[6] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[7] | 胡梦瑶, 张林, 罗天祥, 沈维. 西藏紫花针茅叶功能性状沿降水梯度的变化[J]. 植物生态学报, 2012, 36(2): 136-143. |
[8] | 魏雅芬, 方杰, 赵学勇, 李胜功. 科尔沁沙地樟子松人工林不同年龄针叶生理生态性状[J]. 植物生态学报, 2011, 35(12): 1271-1280. |
[9] | 路兴慧, 丁易, 臧润国, 邹正冲, 黄卢标. 海南岛热带低地雨林老龄林木本植物幼苗的功能性状分析[J]. 植物生态学报, 2011, 35(12): 1300-1309. |
[10] | 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明. 黔中喀斯特山区植物功能性状的变异与关联[J]. 植物生态学报, 2011, 35(10): 1000-1008. |
[11] | 徐冰, 程雨曦, 甘慧洁, 周文嘉, 贺金生. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[J]. 植物生态学报, 2010, 34(1): 29-38. |
[12] | 周鹏, 耿燕, 马文红, 贺金生. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1): 7-16. |
[13] | 万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞. 羊草草原群落6种植物叶片功能特性对氮素添加的响应[J]. 植物生态学报, 2008, 32(3): 611-621. |
[14] | 马泽清, 刘琪王景, 徐雯佳, 李轩然, 刘迎春. 江西千烟洲人工针叶林下狗脊蕨群落生物量[J]. 植物生态学报, 2008, 32(1): 88-94. |
[15] | 汤亮, 朱艳, 曹卫星. 油菜绿色面积指数动态模拟模型[J]. 植物生态学报, 2007, 31(5): 897-902. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19