植物生态学报 ›› 2010, Vol. 34 ›› Issue (1): 29-38.DOI: 10.3773/j.issn.1005-264x.2010.01.006
所属专题: 植物功能性状
收稿日期:
2009-01-12
接受日期:
2009-06-03
出版日期:
2010-01-12
发布日期:
2010-01-01
通讯作者:
贺金生
作者简介:
* E-mail: jshe@pku.edu.cn
XU Bing, CHENG Yu-Xi, GAN Hui-Jie, ZHOU Wen-Jia, HE Jin-Sheng*()
Received:
2009-01-12
Accepted:
2009-06-03
Online:
2010-01-12
Published:
2010-01-01
Contact:
HE Jin-Sheng
摘要:
植物的叶片与细根分别作为植物体地上和地下部分重要的营养器官, 很多功能性状在二者之间存在着一定的关联性。研究这种关联有助于理解植物各性状之间的相互作用、植物生长过程中对资源的利用和分配, 以及建立细根性状的估算模型。该研究对内蒙古锡林河流域65种植物叶片与细根的氮(N)含量、磷(P)含量、N:P以及比叶面积(SLA)和比根长(SRL)进行了比较研究, 结果表明: 在种间尺度上, 叶片与细根间的N、P和N:P存在显著的相关性, 而SLA与SRL之间相关性较弱; 在种内尺度上, 叶片和细根的N、P及SLA与SRL, 在不同的物种中呈现出不同的趋势。此外, 叶片与细根性状的关联, 在不同的植物功能群之间存在差异。例如, 双子叶植物叶片与细根间的N含量显著相关, P含量不相关; 而单子叶植物二者之间的P含量显著相关, N含量无关联。该研究的主要结论是, 在相对一致的生境中, 植物叶片与细根性状的关联主要发生在不同物种之间, 在种内尺度上这种关联不明显, 这可能与植物功能性状在种内存在较小的变异幅度有关。
徐冰, 程雨曦, 甘慧洁, 周文嘉, 贺金生. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联. 植物生态学报, 2010, 34(1): 29-38. DOI: 10.3773/j.issn.1005-264x.2010.01.006
XU Bing, CHENG Yu-Xi, GAN Hui-Jie, ZHOU Wen-Jia, HE Jin-Sheng. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34(1): 29-38. DOI: 10.3773/j.issn.1005-264x.2010.01.006
图1 不同尺度上植物叶片与细根功能性状潜在关系示意图。A, 物种之间表现出相关性(数据点示一个物种内的平均值)。B, 物种间正相关, 物种内正相关。C, 物种间正相关, 物种内不相关。D, 物种间正相关, 物种内负相关。
Fig. 1 The theoretical correlations between leaf and fine root traits at different scales. A, Correlations among species (date point represents mean value of each species). B, Positive correlation among species and within species. C, Positive correlation among species, but random within species. D, Positive correlation among species, but negative correlation within species.
图2 物种水平叶片与细根N含量(A)、P含量(B)、N:P比(C), 以及取对数比叶面积(SLA)与取对数比根长(SRL)(D)之间的关系。数据为平均值±标准误差。
Fig. 2 Correlations between leaf traits and fine root traits in N concentrations (A), P concentrations (B), N:P ratios (C) and log-transformed specific leaf area and specific root length (D). Values are mean ± SE.
植物功能群 Functional group | n | Leaf N-Root N | Leaf P-Root P | Leaf N:P-Root N:P | SLA-SRL | ||||
---|---|---|---|---|---|---|---|---|---|
b | R2 | b | R2 | b | R2 | b | R2 | ||
禾草 Grass | 13 | 0.083 | 0.138 | 1.052 | 0.590** | 0.177 | 0.146 | 0.970 | 0.346* |
杂类草 Forb | 36-45 | 0.376 | 0.208** | 0.293 | 0.023 | 0.621 | 0.427** | 1.521 | 0.234** |
木本植物 Woody | 5-6 | 0.767 | 0.701 | 1.524 | 0.599 | 0.886 | 0.732 | -0.324 | 0.057 |
双子叶植物 Dicotyledon | 35-44 | 0.458 | 0.251** | 0.273 | 0.017 | 0.673 | 0.379** | 1.205 | 0.156* |
单子叶植物 Monocotyledon | 19-20 | 0.079 | 0.035 | 0.916 | 0.593** | 0.196 | 0.192 | 0.582 | 0.047 |
豆科植物 Legume | 5 | 0.252 | 0.021 | 1.011 | 0.539 | -0.249 | 0.027 | -0.376 | 0.026 |
非豆科植物 Non-legume | 49-59 | 0.265 | 0.129** | 0.712 | 0.142** | 0.290 | 0.186** | 0.744 | 0.088* |
表1 不同功能群植物叶片与细根性状的关系
Table 1 Correlations between leaf and fine root traits among different functional groups
植物功能群 Functional group | n | Leaf N-Root N | Leaf P-Root P | Leaf N:P-Root N:P | SLA-SRL | ||||
---|---|---|---|---|---|---|---|---|---|
b | R2 | b | R2 | b | R2 | b | R2 | ||
禾草 Grass | 13 | 0.083 | 0.138 | 1.052 | 0.590** | 0.177 | 0.146 | 0.970 | 0.346* |
杂类草 Forb | 36-45 | 0.376 | 0.208** | 0.293 | 0.023 | 0.621 | 0.427** | 1.521 | 0.234** |
木本植物 Woody | 5-6 | 0.767 | 0.701 | 1.524 | 0.599 | 0.886 | 0.732 | -0.324 | 0.057 |
双子叶植物 Dicotyledon | 35-44 | 0.458 | 0.251** | 0.273 | 0.017 | 0.673 | 0.379** | 1.205 | 0.156* |
单子叶植物 Monocotyledon | 19-20 | 0.079 | 0.035 | 0.916 | 0.593** | 0.196 | 0.192 | 0.582 | 0.047 |
豆科植物 Legume | 5 | 0.252 | 0.021 | 1.011 | 0.539 | -0.249 | 0.027 | -0.376 | 0.026 |
非豆科植物 Non-legume | 49-59 | 0.265 | 0.129** | 0.712 | 0.142** | 0.290 | 0.186** | 0.744 | 0.088* |
图3 单子叶植物和双子叶植物叶片与细根性状关系的对比。叶片与细根性状之间显著的相关关系给出II类线性回归曲线。A, N含量的关系: 双子叶植物y = 0.92x - 1.20 (R2 = 0.251, p = 0.001)。B, P含量的关系: 单子叶植物y = 1.21x - 0.04 (R2 = 0.593, p < 0.001)。C, N/P比的关系: 双子叶植物y = 1.09x - 11.10 (R2 = 0.379, p < 0.001), 单子叶植物y = 0.45x - 1.31 (R2 = 0.192, p = 0.061)。D, SLA与SRL取对数后的关系: 双子叶植物y = 3.05x - 5.38 (R2 = 0.156, p = 0.011)。
Fig. 3 Comparison of correlations between leaf and fine root traits among monocotyledons and dicotyledons. The significant correlations between leaf and fine root traits are shown by type II regression lines. A, N concentration: y = 0.92x - 1.20 (R2 = 0.251, p = 0.001) for dicotyledons. B, P concentration: y = 1.21x - 0.04 (R2 = 0.593, p < 0.001) for monocotyledons. C, N:P ratio, y = 1.09x - 11.10 (R2 = 0.379, p < 0.001) for dicotyledons, and y = 0.45x - 1.31 (R2 = 0.192, p = 0.061) for monocotyledons. D, Log-transformed specific leaf area and specific root length: y = 3.05x - 5.38 (R2 = 0.156, p = 0.011) for dicotyledons.
物种名 Species | Leaf N-Root N | Leaf P-Root P | SLA-SRL | ||||||
---|---|---|---|---|---|---|---|---|---|
n | r | p | n | r | p | n | r | p | |
棉团铁线莲 Clematis hexapetala | 8 | 0.464 | 0.247 | 4 | -0.767 | 0.233 | 10 | 0.140 | 0.812 |
瓣蕊唐松草 Thalictrum petaloideum | 10 | 0.231 | 0.522 | 10 | -0.250 | 0.636 | |||
二裂委陵菜 Potentilla bifurca | 8 | 0.226 | 0.591 | 7 | 0.132 | 0.778 | 10 | 0.645 | 0.113 |
菊叶委陵菜 Potentilla tanacetifolia | 8 | 0.376 | 0.358 | 7 | -0.571 | 0.181 | 10 | 0.374 | 0.467 |
地榆 Sanguisorba officinalis | 5 | -0.138 | 0.825 | 5 | 0.909 | 0.042 | |||
披针叶黄华 Thermopsis lanceolata | 8 | 0.283 | 0.497 | 5 | 0.874 | 0.052 | 10 | -0.330 | 0.488 |
歪头菜 Vicia unijuga | 5 | 0.877 | 0.051 | 5 | 0.438 | 0.460 | 5 | 0.857 | 0.067 |
狭叶柴胡 Bupleurum scorzonerifolium | 5 | 0.150 | 0.809 | 4 | 0.409 | 0.591 | 7 | 0.412 | 0.365 |
阿尔泰狗娃花 Heteropappus altaicus | 8 | 0.555 | 0.153 | 4 | 0.640 | 0.360 | 10 | -0.036 | 0.786 |
全缘橐吾 Ligularia mongolica | 5 | 0.961 | 0.009 | 5 | 0.785 | 0.116 | 4 | 0.785 | 0.314 |
芨芨草 Achnatherum splendens | 4 | -0.604 | 0.396 | 5 | 0.138 | 0.825 | 5 | 0.938 | 0.115 |
雀麦 Bromus japonicus | 10 | 0.798 | 0.006 | 10 | -0.452 | 0.147 | |||
草 Koeleria cristata ![]() | 9 | -0.447 | 0.228 | 6 | -0.341 | 0.509 | 10 | 0.087 | 0.883 |
黄囊薹草 Carex korshinskii | 10 | 0.750 | 0.012 | 6 | 0.542 | 0.267 | 10 | -0.773 | 0.005 |
日阴菅 Carex pediformis | 4 | -0.624 | 0.376 | 5 | 0.796 | 0.107 | 5 | 0.548 | 0.197 |
野韭 Allium ramosum | 10 | 0.446 | 0.196 | 4 | -0.357 | 0.643 | 10 | 0.260 | 0.357 |
山韮 Allium senescens | 10 | 0.487 | 0.154 | 4 | 0.595 | 0.405 | 9 | 0.054 | 0.697 |
知母 Anemarrhena asphodeloides | 8 | -0.049 | 0.908 | 8 | 0.322 | 0.612 | |||
小黄花菜 Hemerocallis minor | 5 | 0.242 | 0.695 | 4 | 0.258 | 0.742 | 5 | -0.428 | 0.548 |
野鸢尾 Iris dichotoma | 5 | 0.003 | 0.997 | 5 | -0.318 | 0.602 | 4 | 0.579 | 0.373 |
表2 种内水平叶片与细根对应性状的关系
Table 2 Correlations between leaf and fine root traits within species
物种名 Species | Leaf N-Root N | Leaf P-Root P | SLA-SRL | ||||||
---|---|---|---|---|---|---|---|---|---|
n | r | p | n | r | p | n | r | p | |
棉团铁线莲 Clematis hexapetala | 8 | 0.464 | 0.247 | 4 | -0.767 | 0.233 | 10 | 0.140 | 0.812 |
瓣蕊唐松草 Thalictrum petaloideum | 10 | 0.231 | 0.522 | 10 | -0.250 | 0.636 | |||
二裂委陵菜 Potentilla bifurca | 8 | 0.226 | 0.591 | 7 | 0.132 | 0.778 | 10 | 0.645 | 0.113 |
菊叶委陵菜 Potentilla tanacetifolia | 8 | 0.376 | 0.358 | 7 | -0.571 | 0.181 | 10 | 0.374 | 0.467 |
地榆 Sanguisorba officinalis | 5 | -0.138 | 0.825 | 5 | 0.909 | 0.042 | |||
披针叶黄华 Thermopsis lanceolata | 8 | 0.283 | 0.497 | 5 | 0.874 | 0.052 | 10 | -0.330 | 0.488 |
歪头菜 Vicia unijuga | 5 | 0.877 | 0.051 | 5 | 0.438 | 0.460 | 5 | 0.857 | 0.067 |
狭叶柴胡 Bupleurum scorzonerifolium | 5 | 0.150 | 0.809 | 4 | 0.409 | 0.591 | 7 | 0.412 | 0.365 |
阿尔泰狗娃花 Heteropappus altaicus | 8 | 0.555 | 0.153 | 4 | 0.640 | 0.360 | 10 | -0.036 | 0.786 |
全缘橐吾 Ligularia mongolica | 5 | 0.961 | 0.009 | 5 | 0.785 | 0.116 | 4 | 0.785 | 0.314 |
芨芨草 Achnatherum splendens | 4 | -0.604 | 0.396 | 5 | 0.138 | 0.825 | 5 | 0.938 | 0.115 |
雀麦 Bromus japonicus | 10 | 0.798 | 0.006 | 10 | -0.452 | 0.147 | |||
草 Koeleria cristata ![]() | 9 | -0.447 | 0.228 | 6 | -0.341 | 0.509 | 10 | 0.087 | 0.883 |
黄囊薹草 Carex korshinskii | 10 | 0.750 | 0.012 | 6 | 0.542 | 0.267 | 10 | -0.773 | 0.005 |
日阴菅 Carex pediformis | 4 | -0.624 | 0.376 | 5 | 0.796 | 0.107 | 5 | 0.548 | 0.197 |
野韭 Allium ramosum | 10 | 0.446 | 0.196 | 4 | -0.357 | 0.643 | 10 | 0.260 | 0.357 |
山韮 Allium senescens | 10 | 0.487 | 0.154 | 4 | 0.595 | 0.405 | 9 | 0.054 | 0.697 |
知母 Anemarrhena asphodeloides | 8 | -0.049 | 0.908 | 8 | 0.322 | 0.612 | |||
小黄花菜 Hemerocallis minor | 5 | 0.242 | 0.695 | 4 | 0.258 | 0.742 | 5 | -0.428 | 0.548 |
野鸢尾 Iris dichotoma | 5 | 0.003 | 0.997 | 5 | -0.318 | 0.602 | 4 | 0.579 | 0.373 |
[1] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] | Bai YF (白永飞), Li LH (李凌浩), Huang JH (黄建辉), Chen ZZ (陈佐忠) (2001). The influence of plant diversity and functional composition on ecosystem stability of four Stipa communities in the Inner Mongolia Plateau. Acta Botanica Sinica (植物学报), 43, 280-287. (in Chinese with English abstract) |
[3] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[4] | Cannon WA (1949). A tentative classification of root systems. Ecology, 30, 542-548. |
[5] | Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260. |
[6] | Comas LH, Eissenstat DM (2004). Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 18, 388-397. |
[7] |
Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
URL PMID |
[8] | Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19. |
[9] | Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002). Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. Functional Ecology, 16, 563-574. |
[10] | Craine JM, Wedin DA, Chapin FS III, Reich PB (2003). Relationship between the structure of root systems and resource use for 11 North American grassland plants. Plant Ecology, 165, 85-100. |
[11] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42. |
[12] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL PMID |
[13] | Eviner VT, Chapin FS III (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution and Systematics, 34, 455-485. |
[14] | Feng QH (冯秋红), Shi ZM (史作民), Dong LL (董莉莉) (2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae (林业科学), 44, 125-131. (in Chinese with English abstract) |
[15] | Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL (2008). Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-456. |
[16] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
DOI URL |
[17] | Hattenschwiler S, Aeschlimann B, Couteaux MM, Roy J, Bonal D (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytologist, 179, 165-175. |
[18] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006a). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
DOI URL PMID |
[19] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
URL PMID |
[20] | He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006b). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848. |
[21] |
Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000). Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69.
DOI URL |
[22] | Hooper DU, Vitousek PM (1998). Effects of plant composition and diversity on nutrient cycling. Ecological Monographs, 68, 121-149. |
[23] | Hu N (胡楠), Fan YL (范玉龙), Ding SY (丁圣彦), Liao BH (廖秉华) (2008). Progress in researches on plant functional groups of terrestrial ecosystems. Acta Ecologica Sinica (生态学报), 24, 3302-3311. (in Chinese with English abstract) |
[24] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
URL PMID |
[25] | Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005). Toward a stoichiometric framework for evolutionary biology. Oikos, 109, 6-17. |
[26] | Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14, 585-598. |
[27] |
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 168, E103-E122.
DOI URL PMID |
[28] | Koide RT (1991). Nutrient supply, nutrient demand and plant-response to mycorrhizal infection. New Phytologist, 117, 365-386. |
[29] | Kuo S (1996). Phosphorus. In: Bigham JM ed. Method of Soil Analysis. Part 3. Chemical Method. Soil Science Society of American/American Society of Agronomy, Madison, WI, USA. 869-919. |
[30] | Luscher A, Nosberger J (1997). Interspecific and intraspecific variability in the response of grasses and legumes to free air CO2 enrichment. Acta Oecologica-International Journal of Ecology, 18, 269-275. |
[31] | McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720. |
[32] | Meng TT (孟婷婷), Ni J (倪健), Wang GH (王国宏) (2007). Plant functional traits, enviroments and ecosystem functioning. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 150-160. (in Chinese with English abstract) |
[33] | Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12. |
[34] |
Novotny AM, Schade JD, Hobbie SE, Kay AD, Kyle M, Reich PB, Elser JJ (2007). Stoichiometric response of nitrogen- fixing and non-fixing dicots to manipulations of CO2, nitrogen, and diversity. Oecologia, 151, 687-696.
DOI URL PMID |
[35] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[36] | Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengtson W, Lee TD (2001). Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150, 435-448. |
[37] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[38] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[39] | Ryser P, Lambers H (1995). Root and leaf attributes accounting for the performance of fast-growing and slow-growing grasses at different nutrient supply. Plant and Soil, 170, 251-265. |
[40] | Shipley B, Almeida-Cortez J (2003). Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability. EcoScience, 10, 74-79. |
[41] | Sun GJ (孙国钧), Zhang R (张荣), Zhou L (周立) (2003). Trends and advances in researches on plant functional diversity and functional groups. Acta Ecologica Sinica (生态学报), 23, 1430-1435. (in Chinese with English abstract) |
[42] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[43] | Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508. |
[44] |
Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003). Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 12, 3085-3095.
DOI URL PMID |
[45] | Weaver JE (1958). Classification of root systems of forbs of grassland and a consideration of their significance. Ecology, 39, 393-401. |
[46] | Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparison of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397. |
[47] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[48] | Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica (植物生态学报), 29, 1007-1019. (in Chinese with English abstract) |
[49] | Zhang L (张林), Luo TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica (植物生态学报), 28, 844-852. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[6] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[7] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[8] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[9] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[11] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[12] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[13] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[14] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[15] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19