植物生态学报 ›› 2011, Vol. 35 ›› Issue (10): 1000-1008.DOI: 10.3724/SP.J.1258.2011.01000
所属专题: 植物功能性状
习新强1,2, 赵玉杰1,2, 刘玉国1,2, 王欣1,2, 高贤明1,*()
收稿日期:
2010-06-21
接受日期:
2010-12-31
出版日期:
2011-06-21
发布日期:
2011-11-07
通讯作者:
高贤明
作者简介:
* (E-mail: xmgao@ibcas.ac.cn)
XI Xin-Qiang1,2, ZHAO Yu-Jie1,2, LIU Yu-Guo1,2, WANG Xin1,2, GAO Xian-Ming1,*()
Received:
2010-06-21
Accepted:
2010-12-31
Online:
2011-06-21
Published:
2011-11-07
Contact:
GAO Xian-Ming
摘要:
认识植物功能性状随演替进展的变化规律和不同性状之间的关系, 有助于从功能生态学的角度来理解群落演替。该文调查了位于贵州省中部的普定县喀斯特山区26个样方的物种组成, 这些样方分别处于灌丛、落叶阔叶林、落叶常绿混交林3个演替阶段; 测量了分布于该区域的82种木本植物的3个功能性状值(叶面积、比叶面积、最大高度); 根据物种在样方中的多度加权计算得到26个样方的性状平均值, 在此基础上分析了随演替进展植物功能性状在群落水平上的变异格局和不同性状之间的相关性; 采用性状梯度分析法分析了各阶段优势物种的功能性状在群落间(β组分)和群落内(α组分)的变异格局及相关性。结果表明: 1)沿灌丛→落叶阔叶林→落叶常绿混交林这一演替顺序, 群落平均叶面积和平均高度逐渐增加, 而群落平均比叶面积则逐渐变小; 2)就群落平均性状值而言, 叶面积与最大高度呈较强的正相关关系, 最大高度与比叶面积、叶面积与比叶面积均呈较强的负相关关系; 3)物种功能性状的α组分之间没有显著的相关关系, 而β组分之间相关性显著。这说明: 随演替的进展, 群落优势物种对环境的适应策略由高速生长转向提高资源利用效率, 而同一群落内共存的物种采取不同的性状组合来适应共同的群落环境。
习新强, 赵玉杰, 刘玉国, 王欣, 高贤明. 黔中喀斯特山区植物功能性状的变异与关联. 植物生态学报, 2011, 35(10): 1000-1008. DOI: 10.3724/SP.J.1258.2011.01000
XI Xin-Qiang, ZHAO Yu-Jie, LIU Yu-Guo, WANG Xin, GAO Xian-Ming. Variation and correlation of plant functional traits in karst area of central Guizhou Province, China. Chinese Journal of Plant Ecology, 2011, 35(10): 1000-1008. DOI: 10.3724/SP.J.1258.2011.01000
演替阶段 Succession stage | 群落类型 Community type | 海拔 Elevation (m) | 坡度 Slope (°) | 坡向 Slope aspect | 样方数 Plot number |
---|---|---|---|---|---|
灌丛 Shrub | 小果蔷薇+火棘 Rosa cymosa + Pyracantha fortuneana | 1 438 | 22 | 西南 Southwest | 3 |
异叶鼠李+火棘 Rhamnus heterophylla + Pyracantha fortuneana | 1 230 | 23 | 西南 Southwest | 3 | |
小果蔷薇 Rosa cymosa | 1 420 | 20 | 西北 Northwest | 2 | |
落叶阔叶林 Deciduous broad-leaved forest | 圆果化香树 Platycarya longipes | 1 378 | 25 | 东南 Southeast | 2 |
圆果化香树+槲栎 Platycarya longipes + Quercus aliena | 1 456 | 27 | 西北 Northwest | 2 | |
槲栎+小叶朴 Quercus aliena + Celtis bungeana | 1 389 | 27 | 西 West | 2 | |
槲栎 Quercus aliena | 1 528 | 31 | 西南 Southwest | 2 | |
落叶常绿混交林 Deciduous- evergreen forest | 云南鼠刺+圆果化香树 Quercus aliena + Platycarya longipes | 1 457 | 28 | 东南 Southeast | 3 |
云南鼠刺+窄叶石栎 Quercus aliena + Lithocarpus confines | 1 436 | 30 | 北 North | 2 | |
窄叶石栎+短萼海桐 Lithocarpus confines + Pittosporum brevicalyx | 1 387 | 32 | 西北 Northwest | 3 | |
窄叶石栎+猴樟+刺楸 Lithocarpus confines + Cinnamomum bodinieri + Kalopanax septemlobus | 1 356 | 27 | 南 South | 3 |
表1 样地概况
Table 1 Basic information of sample plots
演替阶段 Succession stage | 群落类型 Community type | 海拔 Elevation (m) | 坡度 Slope (°) | 坡向 Slope aspect | 样方数 Plot number |
---|---|---|---|---|---|
灌丛 Shrub | 小果蔷薇+火棘 Rosa cymosa + Pyracantha fortuneana | 1 438 | 22 | 西南 Southwest | 3 |
异叶鼠李+火棘 Rhamnus heterophylla + Pyracantha fortuneana | 1 230 | 23 | 西南 Southwest | 3 | |
小果蔷薇 Rosa cymosa | 1 420 | 20 | 西北 Northwest | 2 | |
落叶阔叶林 Deciduous broad-leaved forest | 圆果化香树 Platycarya longipes | 1 378 | 25 | 东南 Southeast | 2 |
圆果化香树+槲栎 Platycarya longipes + Quercus aliena | 1 456 | 27 | 西北 Northwest | 2 | |
槲栎+小叶朴 Quercus aliena + Celtis bungeana | 1 389 | 27 | 西 West | 2 | |
槲栎 Quercus aliena | 1 528 | 31 | 西南 Southwest | 2 | |
落叶常绿混交林 Deciduous- evergreen forest | 云南鼠刺+圆果化香树 Quercus aliena + Platycarya longipes | 1 457 | 28 | 东南 Southeast | 3 |
云南鼠刺+窄叶石栎 Quercus aliena + Lithocarpus confines | 1 436 | 30 | 北 North | 2 | |
窄叶石栎+短萼海桐 Lithocarpus confines + Pittosporum brevicalyx | 1 387 | 32 | 西北 Northwest | 3 | |
窄叶石栎+猴樟+刺楸 Lithocarpus confines + Cinnamomum bodinieri + Kalopanax septemlobus | 1 356 | 27 | 南 South | 3 |
植物功能性状 Plant functional trait | 单位 Unit | 定义与功能含义 Definition and functional implication |
---|---|---|
比叶面积 Specific leaf area (SLA) | cm2·g-1 | 新鲜叶片的面积与叶片干重之比, 代表植物体投入单位质量的干物质所获得的捕光面积。比叶面积较高的物种生长速率较高, 养分利用效率较低, “防御性”投入较少, 叶片寿命较短( Fresh leaf area divided by its oven-dry mass, it’s a measure of the allocation of biomass to light harvesting. Species with higher values tend to correspond with relatively low investment in leaf defense and shorter lifespan ( |
叶面积 Leaf area (LA) | cm2 | 叶面积指示的是叶片与外界接触面积的大小, 影响到植物体与外界环境的气体、能量等交换的平衡, 干旱而开阔的地区的植物一般具有较小的叶片( Leaf area is the area leave interact with environment. It’s related to the balance of gas and energy exchange, with small leaves often observed in drier and more exposed conditions ( |
最大高度 Maximum height (MH) | m | 在Westoby提出的植物功能性状四维空间中, 最大高度单独成为一个主导维度(leading dimension), 最大高度跟植物的种子散布距离等多个策略有关, 主要反映了植物对光、空间等资源的竞争能力( Maximum height is a leading dimension in Westoby’s trait spaces. It’s associated with the seed disperse and other strategies, and mainly reflect the competitive capacity for light, space and other resources ( |
表2 植物功能性状及其功能含义
Table 2 Definition and implication of plant functional traits
植物功能性状 Plant functional trait | 单位 Unit | 定义与功能含义 Definition and functional implication |
---|---|---|
比叶面积 Specific leaf area (SLA) | cm2·g-1 | 新鲜叶片的面积与叶片干重之比, 代表植物体投入单位质量的干物质所获得的捕光面积。比叶面积较高的物种生长速率较高, 养分利用效率较低, “防御性”投入较少, 叶片寿命较短( Fresh leaf area divided by its oven-dry mass, it’s a measure of the allocation of biomass to light harvesting. Species with higher values tend to correspond with relatively low investment in leaf defense and shorter lifespan ( |
叶面积 Leaf area (LA) | cm2 | 叶面积指示的是叶片与外界接触面积的大小, 影响到植物体与外界环境的气体、能量等交换的平衡, 干旱而开阔的地区的植物一般具有较小的叶片( Leaf area is the area leave interact with environment. It’s related to the balance of gas and energy exchange, with small leaves often observed in drier and more exposed conditions ( |
最大高度 Maximum height (MH) | m | 在Westoby提出的植物功能性状四维空间中, 最大高度单独成为一个主导维度(leading dimension), 最大高度跟植物的种子散布距离等多个策略有关, 主要反映了植物对光、空间等资源的竞争能力( Maximum height is a leading dimension in Westoby’s trait spaces. It’s associated with the seed disperse and other strategies, and mainly reflect the competitive capacity for light, space and other resources ( |
图1 物种功能性状(ti)与样方平均性状(pj)散点图(以比叶面积为例)。图中三角形和方块分别代表鹅耳枥和女贞。每个实心符号对应的横坐标代表该物种功能性状的β组分βi, 纵坐标是物种的性状值ti, 这二者的差值即实心符号到X = Y的距离(因为αi = ti - βi)就是物种功能性状的α组分αi。
Fig. 1 Scatterplot of species trait values (ti) vs. plot means trait values (pj) for SLA. Triangles and squares represent the Carpinus turczaninowii and Ligustrum lucidum respectively. The abscissa values of the solid symbols are the among- community variation components (βi, on abscissa), while the ordinate values of the solid symbols are their trait values. The difference between βi and ti, or the distance from the X = Y line is αi (because αi = ti - βi).
演替阶段 Succession stage | 群落平均性状值 Plot mean trait values (mean ± SD) | ||
---|---|---|---|
叶面积 LA (cm2) | 比叶面积 SLA (cm2·g-1) | 最大高度 MH (m) | |
灌丛 Shrub (n = 8) | 7.74 ± 1.91 | 171.64 ± 15.33 | 2.56 ± 0.40 |
落叶阔叶林 Deciduous broad-leaved forest (n = 8) | 11.70 ± 4.70 | 166.56 ± 30.76 | 4.07 ± 1.25 |
常绿落叶阔叶混交林 Deciduous-evergreen forest (n = 10) | 18.33 ± 2.26 | 150.65 ± 17.58 | 6.61 ± 0.36 |
表3 群落平均性状值
Table 3 Plot mean trait values
演替阶段 Succession stage | 群落平均性状值 Plot mean trait values (mean ± SD) | ||
---|---|---|---|
叶面积 LA (cm2) | 比叶面积 SLA (cm2·g-1) | 最大高度 MH (m) | |
灌丛 Shrub (n = 8) | 7.74 ± 1.91 | 171.64 ± 15.33 | 2.56 ± 0.40 |
落叶阔叶林 Deciduous broad-leaved forest (n = 8) | 11.70 ± 4.70 | 166.56 ± 30.76 | 4.07 ± 1.25 |
常绿落叶阔叶混交林 Deciduous-evergreen forest (n = 10) | 18.33 ± 2.26 | 150.65 ± 17.58 | 6.61 ± 0.36 |
演替阶段 Succession stage | 功能性状 Functional traits | 性状参数 Functional trait parameters (mean ± SD, CV) | ||
---|---|---|---|---|
物种性状值 ti | β组分 βi | α组分 αi | ||
灌丛 Shrub | 叶面积 LA (cm2) | 4.78 ± 2.38 (0.50) | 9.60 ± 1.92 (0.2) | -4.84 ± 2.68 (0.55) |
比叶面积 SLA (cm2·g-1) | 188.4 ± 15.33 (0.08) | 166.58 ± 5.99 (0.04) | 21.73 ± 14.15 (0.65) | |
最大高度 MH (m) | 2.47 ± 0.51 (0.21) | 3.09 ± 0.60 (0.19) | -0.62 ± 0.31 (0.5) | |
落叶阔叶林 Deciduous broad-leaved forest | 叶面积 LA (cm2) | 16.54 ± 20.45 (1.24) | 14.39 ± 2.00 (0.14) | 2.11 ± 20.2 (9.57) |
比叶面积 SLA (cm2·g-1) | 224.88 ± 66.33 (0.29) | 163.91 ± 5.34 (0.03) | 61.07 ± 62.91 (1.03) | |
最大高度 MH (m) | 6.28 ± 3.40 (0.54) | 4.91 ± 0.65 (0.13) | 0.43 ± 4.11 (9.56) | |
落叶-常绿混交林 Deciduous-evergreen forest | 叶面积 LA (cm2) | 18.99 ± 4.9 (0.26) | 15.79 ± 1.72 (0.11) | 3.06 ± 4.33 (1.42) |
比叶面积 SLA (cm2·g-1) | 121.86 ± 34.95 (0.29) | 155.29 ± 2.60 (0.02) | -33.43 ± 33.41 (1) | |
最大高度 MH (m) | 9.96 ± 4.29 (0.43) | 5.86 ± 0.47 (0.08) | 4.09 ± 4.22 (1.03) |
表4 各演替阶段优势物种性状参数值
Table 4 Traits parameters of the dominant species of three stages
演替阶段 Succession stage | 功能性状 Functional traits | 性状参数 Functional trait parameters (mean ± SD, CV) | ||
---|---|---|---|---|
物种性状值 ti | β组分 βi | α组分 αi | ||
灌丛 Shrub | 叶面积 LA (cm2) | 4.78 ± 2.38 (0.50) | 9.60 ± 1.92 (0.2) | -4.84 ± 2.68 (0.55) |
比叶面积 SLA (cm2·g-1) | 188.4 ± 15.33 (0.08) | 166.58 ± 5.99 (0.04) | 21.73 ± 14.15 (0.65) | |
最大高度 MH (m) | 2.47 ± 0.51 (0.21) | 3.09 ± 0.60 (0.19) | -0.62 ± 0.31 (0.5) | |
落叶阔叶林 Deciduous broad-leaved forest | 叶面积 LA (cm2) | 16.54 ± 20.45 (1.24) | 14.39 ± 2.00 (0.14) | 2.11 ± 20.2 (9.57) |
比叶面积 SLA (cm2·g-1) | 224.88 ± 66.33 (0.29) | 163.91 ± 5.34 (0.03) | 61.07 ± 62.91 (1.03) | |
最大高度 MH (m) | 6.28 ± 3.40 (0.54) | 4.91 ± 0.65 (0.13) | 0.43 ± 4.11 (9.56) | |
落叶-常绿混交林 Deciduous-evergreen forest | 叶面积 LA (cm2) | 18.99 ± 4.9 (0.26) | 15.79 ± 1.72 (0.11) | 3.06 ± 4.33 (1.42) |
比叶面积 SLA (cm2·g-1) | 121.86 ± 34.95 (0.29) | 155.29 ± 2.60 (0.02) | -33.43 ± 33.41 (1) | |
最大高度 MH (m) | 9.96 ± 4.29 (0.43) | 5.86 ± 0.47 (0.08) | 4.09 ± 4.22 (1.03) |
图2 最大高度(MH)、叶面积(LA)及比叶面积(SLA)的物种性状值(A), β组分(B), α组分(C), 样方平均性状值(D)的散点图及Pearson相关系数(r)。*, p < 0.05; **, p < 0.01。
Fig. 2 Scatter plots of maximum height (MH), leaf area (LA), specific leaf area (SLA) for species trait values (A), beta components (B), alpha components (C), plot mean trait values (D) and Pearson correlation coefficients (r). *, p < 0.05; **, p < 0.01.
[1] | Ackerly DD, Cornwell WK (2007). A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145. |
[2] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI URL |
[3] | Cornelisson J, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, Reich P, Steege H, Morgan H, van der Heijden M (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[4] | Cornwell WK, Ackerly DD (2009). Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
[5] | Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11, 1065-1071. |
[6] | Cortez J, Garnier E, Pérez-Harguindeguy N, Debussche M, Gillon D (2007). Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant and Soil, 296, 19-34. |
[7] | Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478. |
[8] | Díaz, S Cabido M (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution, 16, 646-655. |
[9] | Ding SY (丁圣彦), Lu XL (卢训令), Li HM (李昊民) (2005). A comparison of light environmental characteristics for evergreen broad-leaved forest communities from different successional stages in Tiantong National Forest Park. Acta Ecological Sinica (生态学报), 25, 2862-2867. (in Chinese with English abstract) |
[10] | Fonseca CR, Overton JM, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977. |
[11] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
[12] | Grubb P (1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3-31. |
[13] | Hu ZL (胡忠良), Pan GX (潘根兴), Li LQ (李恋卿), Du YX (杜有新), Wang XZ (王新洲) (2009). Changes in pools and heterogeneity of soil organic carbon, nitrogen and phosphorus under different vegetation types in Karst mountainous area of central Guizhou Province, China. Acta Ecologica Sinica (生态学报), 29, 4187-4195. (in Chinese with English abstract) |
[14] | Jiang YL (姜运力), Wang J (王进), Ding FJ (丁访军), Yao XH (姚小华), Zhang XS (张显松), Chu YW (褚永维) (2006). Study on the plant community in the Karst Rocky Desertification Areas in Puding County of Guizhou Province. Guizhou Forestry Science and Technology (贵州林业科技), 34(1), 55-59. (in Chinese with English abstract) |
[15] | Kraft NJB, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. |
[16] | Li QK (李庆康), Ma KP (马克平) (2002). Advances in plant succession ecophysiology. Acta Phytoecologica Sinica (植物生态学报), 26(Suppl.), 9-19. (in Chinese with English abstract) |
[17] | Lindborg R, Eriksson O (2005). Functional response to land use change in grasslands: comparing species and trait data. Ecoscience, 12, 183-191. |
[18] | Liu CC (刘长成), Wei YF (魏雅芬), Liu YG (刘玉国), Guo K (郭柯) (2009). Biomass of canopy and shrub layers of Karst forests in Puding, Guizhou, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 698-705. (in Chinese with English abstract) |
[19] | McGill BJ, Enquist BJ, Weiher E, Westoby M (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178-185. |
[20] | Moles AT, Warton DI, Warman L, Find all citations by this author (default).Or filter your current search Swenson NG, Laffan SW Find all citations by this author (default).Or filter your current search, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009). Global patterns in plant height. Journal of Ecology, 97, 923-932. |
[21] | Odum EP (1969). The strategy of ecosystem development. Science, 164, 262-270. |
[22] | Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010). Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 98, 1074-1083. |
[23] | Shipley B (1995). Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology, 9, 312-319. |
[24] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL |
[25] |
Sutherland S (2004). What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia, 141, 24-39.
DOI URL |
[26] |
Violle C, Jiang L (2009). Towards a trait-based quantification of species niche. Journal of Plant Ecology, 2, 87-93.
DOI URL |
[27] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[28] |
Walker TW, Syers JK (1976). The fate of phosphorus during pedogenesis. Geoderma, 15, 1-19.
DOI URL |
[29] |
Wang GH (2007). Leaf trait co-variation, response and effect in a chronosequence. Journal of Vegetation Science, 18, 563-570.
DOI URL |
[30] |
Wardle DA, Bardgett RD, Walker LR, Peltzer DA, Lagerström A (2008). The response of plant diversity to ecosystem retrogression: evidence from contrasting long-term chronosequences. Oikos, 117, 93-103.
DOI URL |
[31] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[32] |
Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 21, 261-268.
DOI URL |
[33] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller- Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL |
[34] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[35] | Wu TG (吴统贵), Wu M (吴明), Xiao JH (萧江华) (2008). Ecophysiology of dominant plant species during succession in Hangzhou Bay Wetlands. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 1683-1688. (in Chinese with English abstract) |
[36] | Ye D (叶铎), Wen YG (温远光), Deng RY (邓荣艳), Liang HW (梁宏温), Zhu HG (朱宏光), Huang M (黄棉) (2009). Dynamic in changes of plant population niche in succession series of evergreen broad-leaved forest in Daming Mountain of Guangxi. Chinese Journal of Ecology (生态学杂志), 28, 417-213. (in Chinese with English abstract) |
[1] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[2] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[3] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[4] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[5] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[6] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[7] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[8] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[9] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[10] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
[11] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[12] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[13] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[14] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[15] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19