植物生态学报 ›› 2017, Vol. 41 ›› Issue (7): 749-760.DOI: 10.17521/cjpe.2016.0288
刘泽彬1, 王彦辉1,*(), 刘宇2, 田奥1, 王亚蕊1, 左海军1
收稿日期:
2016-09-13
接受日期:
2017-02-28
出版日期:
2017-07-10
发布日期:
2017-08-21
通讯作者:
王彦辉
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Ze-Bin LIU1, Yan-Hui WANG1,*(), Yu LIU2, Ao TIAN1, Ya-Rui WANG1, Hai-Jun ZUO1
Received:
2016-09-13
Accepted:
2017-02-28
Online:
2017-07-10
Published:
2017-08-21
Contact:
Yan-Hui WANG
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
受立地环境条件的坡位差异影响, 叶面积指数(LAI)在坡面这个基本空间单元内往往具有很大空间(坡位、坡长)和时间(季节)变化, 因而存在着坡面空间尺度效应及其季节变化, 需对此加以深入研究、准确理解和精细刻画, 从而为准确描述森林的结构、生长和生态水文功能提供科学基础。在六盘山香水河小流域选取了一个34年生华北落叶松(Larix gmelinii var. principis-rupprechtii)人工林典型坡面, 均匀划分为空间连续的16个样地, 于2015年5-10月测定了各样地林冠层LAI, 分析其坡位变化及季节差异, 并以LAI的顺坡滑动平均值在水平坡长增加100 m时的变化值(LAI/100 m)表示坡面尺度效应。研究表明, 林冠层LAI具有明显的坡位变化和尺度效应, 且月份变化明显。在5月份, LAI随离坡顶距离增加(坡位下降)而逐渐减小, 坡面尺度效应是降低0.02/100 m。在6、7和8月份, LAI均从坡顶向下逐渐增大, 在坡中部达最大后又逐渐减小, 坡面尺度效应在离开坡顶的0-244.2 m和244.2-425.1 m范围内分别为升高0.15/100 m、0.16/100 m、0.18/100 m及降低0.09/100 m、0.08/100 m、0.07/100 m; 在9和10月份, LAI均为随离坡顶距离增加而逐渐增大, 坡面尺度效应分别为升高0.03/100 m和0.09/100 m。主要影响因素的季节变化导致了上述冠层LAI的坡位差异和尺度效应的季节变化。在5月份, 主导因素是地形遮挡引起的辐射和温度的坡位差异; 在6-8月份, 主导因素是土壤含水量限制; 在9-10月份, 地形条件(海拔(坡位)、坡度)、气象条件、土壤含水量及土壤水文性质(孔隙度、持水量)等因子共同影响林冠层LAI坡位变化。对生长季各月, 拟合了不同坡位样地林冠层LAI与坡面均值的比值随水平坡长增加的非线性关系, 可藉此由任意坡位样地的LAI测定值估算坡面均值, 以节省野外测定时间和工作量。
刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应. 植物生态学报, 2017, 41(7): 749-760. DOI: 10.17521/cjpe.2016.0288
Ze-Bin LIU, Yan-Hui WANG, Yu LIU, Ao TIAN, Ya-Rui WANG, Hai-Jun ZUO. Spatiotemporal variation and scale effect of canopy leaf area index of larch plantation on a slope of the semi-humid Liupan Mountains, Ningxia, China. Chinese Journal of Plant Ecology, 2017, 41(7): 749-760. DOI: 10.17521/cjpe.2016.0288
样地 Plot | 海拔 Elevation (m) | 坡度 Slope degree (°) | 水平坡长 Horizontal length (m) | 坡位 Slope position | 林分密度 Stand density (ind.·hm-2) | 林冠郁 闭度 Canopy density | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 枝下高 Clear length (m) | 冠幅直径 Canopy diameter (m) | 地上生物量 Aboveground biomass (t•hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2β471.4 | 26.3 | 26.9 | 坡上 Upper | 942 | 0.73 | 20.25 ± 3.46 | 16.71 ± 1.71 | 5.53 ± 1.03 | 3.22 ± 0.60 | 108.59 |
2 | 2β458.1 | 27.2 | 26.7 | 坡上 Upper | 749 | 0.74 | 21.04 ± 3.91 | 17.04 ± 2.12 | 5.77 ± 1.06 | 3.58 ± 0.58 | 105.55 |
3 | 2β444.4 | 24.4 | 27.3 | 坡上 Upper | 854 | 0.72 | 20.34 ± 4.22 | 17.04 ± 2.14 | 5.83 ± 0.94 | 4.31 ± 0.93 | 112.55 |
4 | 2β432.0 | 25.3 | 27.1 | 中上 Upper-middle | 870 | 0.73 | 20.01 ± 5.00 | 17.40 ± 2.73 | 5.93 ± 0.90 | 4.07 ± 0.86 | 116.60 |
5 | 2β421.3 | 22.5 | 27.7 | 中上 Upper-middle | 746 | 0.75 | 19.94 ± 3.65 | 17.54 ± 2.05 | 6.22 ± 0.95 | 3.22 ± 0.58 | 111.88 |
6 | 2β409.8 | 24.5 | 27.3 | 中上 Upper-middle | 831 | 0.68 | 18.46 ± 5.60 | 15.72 ± 3.13 | 5.44 ± 1.19 | 3.53 ± 1.09 | 91.32 |
7 | 2β397.4 | 22.0 | 27.8 | 坡中 Middle | 719 | 0.81 | 21.03 ± 4.56 | 17.94 ± 2.25 | 6.43 ± 1.24 | 3.41 ± 0.98 | 118.19 |
8 | 2β386.1 | 26.8 | 26.8 | 坡中 Middle | 933 | 0.79 | 20.28 ± 5.65 | 17.12 ± 2.77 | 6.18 ± 1.30 | 3.37 ± 1.10 | 127.51 |
9 | 2β372.6 | 27.7 | 26.6 | 坡中 Middle | 815 | 0.73 | 19.78 ± 4.70 | 17.87 ± 2.50 | 6.46 ± 1.13 | 3.29 ± 0.90 | 108.54 |
10 | 2β358.7 | 20.1 | 28.2 | 中下 Lower-middle | 674 | 0.67 | 20.83 ± 4.64 | 18.24 ± 2.27 | 5.82 ± 0.88 | 3.76 ± 1.01 | 99.21 |
11 | 2β348.4 | 17.9 | 28.6 | 中下 Lower-middle | 572 | 0.65 | 20.62 ± 4.68 | 17.75 ± 2.91 | 5.88 ± 1.10 | 3.46 ± 0.78 | 88.44 |
12 | 2β339.2 | 30.0 | 26.0 | 中下 Lower-middle | 770 | 0.70 | 19.69 ± 5.68 | 17.04 ± 3.54 | 5.52 ± 1.03 | 3.23 ± 0.92 | 101.87 |
13 | 2β324.2 | 30.4 | 25.9 | 坡下 Lower | 786 | 0.74 | 19.93 ± 5.08 | 18.07 ± 2.53 | 5.77 ± 1.11 | 2.81 ± 0.83 | 108.20 |
14 | 2β309.0 | 37.4 | 23.8 | 坡下 Lower | 1β035 | 0.75 | 18.07 ± 5.08 | 16.57 ± 2.98 | 5.85 ± 1.25 | 2.93 ± 0.80 | 111.96 |
15 | 2β290.8 | 37.3 | 23.9 | 坡下 Lower | 955 | 0.70 | 18.36 ± 5.43 | 15.97 ± 3.03 | 5.32 ± 0.95 | 3.38 ± 1.03 | 104.81 |
16 | 2β275.6 | 34.9 | 24.6 | 坡脚 Bottom | 907 | 0.72 | 18.72 ± 4.06 | 16.19 ± 2.35 | 6.06 ± 0.93 | 3.33 ± 0.77 | 98.67 |
表1 典型坡面华北落叶松人工林样地基本信息
Table 1 The basis information of Larix gmelinii var. principis-rupprechtii plantation plots on the study slope
样地 Plot | 海拔 Elevation (m) | 坡度 Slope degree (°) | 水平坡长 Horizontal length (m) | 坡位 Slope position | 林分密度 Stand density (ind.·hm-2) | 林冠郁 闭度 Canopy density | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 枝下高 Clear length (m) | 冠幅直径 Canopy diameter (m) | 地上生物量 Aboveground biomass (t•hm-2) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2β471.4 | 26.3 | 26.9 | 坡上 Upper | 942 | 0.73 | 20.25 ± 3.46 | 16.71 ± 1.71 | 5.53 ± 1.03 | 3.22 ± 0.60 | 108.59 |
2 | 2β458.1 | 27.2 | 26.7 | 坡上 Upper | 749 | 0.74 | 21.04 ± 3.91 | 17.04 ± 2.12 | 5.77 ± 1.06 | 3.58 ± 0.58 | 105.55 |
3 | 2β444.4 | 24.4 | 27.3 | 坡上 Upper | 854 | 0.72 | 20.34 ± 4.22 | 17.04 ± 2.14 | 5.83 ± 0.94 | 4.31 ± 0.93 | 112.55 |
4 | 2β432.0 | 25.3 | 27.1 | 中上 Upper-middle | 870 | 0.73 | 20.01 ± 5.00 | 17.40 ± 2.73 | 5.93 ± 0.90 | 4.07 ± 0.86 | 116.60 |
5 | 2β421.3 | 22.5 | 27.7 | 中上 Upper-middle | 746 | 0.75 | 19.94 ± 3.65 | 17.54 ± 2.05 | 6.22 ± 0.95 | 3.22 ± 0.58 | 111.88 |
6 | 2β409.8 | 24.5 | 27.3 | 中上 Upper-middle | 831 | 0.68 | 18.46 ± 5.60 | 15.72 ± 3.13 | 5.44 ± 1.19 | 3.53 ± 1.09 | 91.32 |
7 | 2β397.4 | 22.0 | 27.8 | 坡中 Middle | 719 | 0.81 | 21.03 ± 4.56 | 17.94 ± 2.25 | 6.43 ± 1.24 | 3.41 ± 0.98 | 118.19 |
8 | 2β386.1 | 26.8 | 26.8 | 坡中 Middle | 933 | 0.79 | 20.28 ± 5.65 | 17.12 ± 2.77 | 6.18 ± 1.30 | 3.37 ± 1.10 | 127.51 |
9 | 2β372.6 | 27.7 | 26.6 | 坡中 Middle | 815 | 0.73 | 19.78 ± 4.70 | 17.87 ± 2.50 | 6.46 ± 1.13 | 3.29 ± 0.90 | 108.54 |
10 | 2β358.7 | 20.1 | 28.2 | 中下 Lower-middle | 674 | 0.67 | 20.83 ± 4.64 | 18.24 ± 2.27 | 5.82 ± 0.88 | 3.76 ± 1.01 | 99.21 |
11 | 2β348.4 | 17.9 | 28.6 | 中下 Lower-middle | 572 | 0.65 | 20.62 ± 4.68 | 17.75 ± 2.91 | 5.88 ± 1.10 | 3.46 ± 0.78 | 88.44 |
12 | 2β339.2 | 30.0 | 26.0 | 中下 Lower-middle | 770 | 0.70 | 19.69 ± 5.68 | 17.04 ± 3.54 | 5.52 ± 1.03 | 3.23 ± 0.92 | 101.87 |
13 | 2β324.2 | 30.4 | 25.9 | 坡下 Lower | 786 | 0.74 | 19.93 ± 5.08 | 18.07 ± 2.53 | 5.77 ± 1.11 | 2.81 ± 0.83 | 108.20 |
14 | 2β309.0 | 37.4 | 23.8 | 坡下 Lower | 1β035 | 0.75 | 18.07 ± 5.08 | 16.57 ± 2.98 | 5.85 ± 1.25 | 2.93 ± 0.80 | 111.96 |
15 | 2β290.8 | 37.3 | 23.9 | 坡下 Lower | 955 | 0.70 | 18.36 ± 5.43 | 15.97 ± 3.03 | 5.32 ± 0.95 | 3.38 ± 1.03 | 104.81 |
16 | 2β275.6 | 34.9 | 24.6 | 坡脚 Bottom | 907 | 0.72 | 18.72 ± 4.06 | 16.19 ± 2.35 | 6.06 ± 0.93 | 3.33 ± 0.77 | 98.67 |
图1 华北落叶松样地内林冠层叶面积指数(LAI)测点布设图。
Fig. 1 The distribution of leaf area index (LAI) sampling point in Larix gmelinii var. principis-rupprechtii plantation plots.
图2 华北落叶松坡面样地冠层叶面积指数(LAI)的生长季平均值随离坡顶水平距离的变化。
Fig. 2 The variation of mean canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii during the whole growth season along the horizontal distance of plots from slope top.
图3 生长季内各月华北落叶松样地冠层叶面积指数(LAI)随离坡顶水平距离的变化。
Fig. 3 Variations of monthly canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii during growing season along the horizontal distance of plots from slope top.
图4 生长季内各月华北落叶松林冠层叶面积指数(LAI)与坡面均值的比值随样地离坡顶水平距离的变化。
Fig. 4 Variations of the ratio of plot leaf area index (LAI) to the whole slope average of Larix gmelinii var. principis- rupprechtii during different months along the horizontal distance of plots from slope top.
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -6 × 10-9x3 + 3 × 10-6x2 - 0.0005x + 1.0530 | 0.609 | 0.008 |
6 | y = 3 × 10-10x3 - 4 × 10-6x2 + 0.0015x + 0.9213 | 0.432 | 0.071 |
7 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0027x + 0.8716 | 0.421 | 0.078 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0026x + 0.8722 | 0.401 | 0.094 |
9 | y = -1 × 10-9x3 + 6 × 10-7x2 + 0.0001x + 0.9607 | 0.452 | 0.058 |
10 | y = -1 × 10-8x3 + 7 × 10-6x2 + 0.0009x + 0.5828 | 0.800 | < 0.001 |
表2 生长季内各月华北落叶松样地叶面积指数(LAI)与坡面平均值的比值(y)与离坡顶水平坡长(x)的关系
Table 2 Numerical relationship between the ratio of plot leaf area index (LAI) to the whole slope average (y) and the horizontal length (x) in different months
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -6 × 10-9x3 + 3 × 10-6x2 - 0.0005x + 1.0530 | 0.609 | 0.008 |
6 | y = 3 × 10-10x3 - 4 × 10-6x2 + 0.0015x + 0.9213 | 0.432 | 0.071 |
7 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0027x + 0.8716 | 0.421 | 0.078 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0026x + 0.8722 | 0.401 | 0.094 |
9 | y = -1 × 10-9x3 + 6 × 10-7x2 + 0.0001x + 0.9607 | 0.452 | 0.058 |
10 | y = -1 × 10-8x3 + 7 × 10-6x2 + 0.0009x + 0.5828 | 0.800 | < 0.001 |
图5 不同季节华北落叶松林冠叶面积指数(LAI)滑动平均值随水平坡长增加的变化。
Fig. 5 Variations of the moving average of canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii during different months along the horizontal distance from slope top.
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -1 × 10-9x3 + 4 × 10-8x2 - 5 × 10-5x + 2.9057 | 0.825 | < 0.001 |
6 | y = 1 × 10-9x3 - 5 × 10-6x2 + 0.0025x + 3.2363 | 0.872 | < 0.001 |
7 | y = 6 × 10-9x3 - 9 × 10-6x2 + 0.0034x + 3.3118 | 0.915 | < 0.001 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0042x + 3.2982 | 0.932 | < 0.001 |
9 | y = 2 × 10-9x3 - 1 × 10-6x2 + 0.0005x + 2.7492 | 0.938 | < 0.001 |
10 | y = -7 × 10-9x3 + 5 × 10-6x2 - 9 × 10-5x + 0.6438 | 0.988 | < 0.001 |
表3 生长季各月华北落叶松林冠层叶面积指数(LAI)的坡面滑动平均值(y)随水平坡长(x)增加而变化的数量关系
Table 3 Numerical relationship between the moving average (y) of canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii and the horizontal length (x) in different months
月份 Month | 拟合方程 Fitted equation | R2 | p |
---|---|---|---|
5 | y = -1 × 10-9x3 + 4 × 10-8x2 - 5 × 10-5x + 2.9057 | 0.825 | < 0.001 |
6 | y = 1 × 10-9x3 - 5 × 10-6x2 + 0.0025x + 3.2363 | 0.872 | < 0.001 |
7 | y = 6 × 10-9x3 - 9 × 10-6x2 + 0.0034x + 3.3118 | 0.915 | < 0.001 |
8 | y = 1 × 10-8x3 - 1 × 10-5x2 + 0.0042x + 3.2982 | 0.932 | < 0.001 |
9 | y = 2 × 10-9x3 - 1 × 10-6x2 + 0.0005x + 2.7492 | 0.938 | < 0.001 |
10 | y = -7 × 10-9x3 + 5 × 10-6x2 - 9 × 10-5x + 0.6438 | 0.988 | < 0.001 |
月份 Month | 胸径 Diameter at breast height | 树高 Tree height | 密度 Stand density | 海拔 Elevation | 坡度 Slope degree | 气温 Air temperature | 辐射强度 Radiant intensity | 风速 Wind speed | 土壤水分 Soil moisture | 容重 Bulk density | 持水能力 Water holding capacity | 总孔隙度 Porosity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 0.480 | 0.341 | 0.037 | 0.692** | -0.365 | 0.692** | 0.692** | 0.692** | 0.457 | -0.133 | 0.344 | 0.323 |
6 | 0.234 | 0.296 | 0.109 | 0.366 | -0.163 | -0.366 | 0.366 | 0.366 | 0.530* | -0.078 | 0.237 | 0.247 |
7 | 0.280 | 0.326 | 0.097 | 0.326 | -0.177 | -0.326 | 0.326 | 0.326 | 0.629** | -0.177 | 0.259 | 0.295 |
8 | 0.299 | 0.379 | 0.048 | 0.284 | -0.157 | -0.284 | 0.284 | 0.284 | 0.527* | -0.178 | 0.226 | 0.259 |
9 | -0.325 | 0.069 | 0.356 | -0.668** | 0.622* | 0.668** | -0.668* | -0.668* | -0.093 | 0.378 | -0.601* | -0.611* |
10 | -0.495 | 0.009 | 0.290 | -0.892** | 0.641** | 0.892** | -0.892** | -0.892** | -0.644** | 0.483 | -0.682** | -0.669** |
表4 不同月份华北落叶松林冠层叶面积指数(LAI)与林分特征、地形、立地及微气象因子的相关分析
Table 4 Correlation of canopy leaf area index (LAI) of Larix gmelinii var. principis-rupprechtii with factors of vegetation, landform, exposure and microclimate in different months
月份 Month | 胸径 Diameter at breast height | 树高 Tree height | 密度 Stand density | 海拔 Elevation | 坡度 Slope degree | 气温 Air temperature | 辐射强度 Radiant intensity | 风速 Wind speed | 土壤水分 Soil moisture | 容重 Bulk density | 持水能力 Water holding capacity | 总孔隙度 Porosity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 0.480 | 0.341 | 0.037 | 0.692** | -0.365 | 0.692** | 0.692** | 0.692** | 0.457 | -0.133 | 0.344 | 0.323 |
6 | 0.234 | 0.296 | 0.109 | 0.366 | -0.163 | -0.366 | 0.366 | 0.366 | 0.530* | -0.078 | 0.237 | 0.247 |
7 | 0.280 | 0.326 | 0.097 | 0.326 | -0.177 | -0.326 | 0.326 | 0.326 | 0.629** | -0.177 | 0.259 | 0.295 |
8 | 0.299 | 0.379 | 0.048 | 0.284 | -0.157 | -0.284 | 0.284 | 0.284 | 0.527* | -0.178 | 0.226 | 0.259 |
9 | -0.325 | 0.069 | 0.356 | -0.668** | 0.622* | 0.668** | -0.668* | -0.668* | -0.093 | 0.378 | -0.601* | -0.611* |
10 | -0.495 | 0.009 | 0.290 | -0.892** | 0.641** | 0.892** | -0.892** | -0.892** | -0.644** | 0.483 | -0.682** | -0.669** |
图1 6-8月华北落叶松林冠层叶面积指数(LAI)增加量与0-100 cm土层土壤含水量的关系。
Fig. 1 The relationship between the leaf area index (LAI) increment of Larix gmelinii var. principis-rupprechtii and soil moisture of 0-100 cm layer in June-August.
样地 Plot | 海拔 Elevation (m) | 土壤温度 Soil temperature (℃) | 饱和持水量 Water holding capacity (%) | 总孔隙度 Porosity (%) |
---|---|---|---|---|
1 | 2 471.4 | 8.3 | 65.8 | 59.0 |
9 | 2 372.6 | 8.5 | 66.1 | 58.9 |
16 | 2 275.6 | 9.3 | 61.3 | 56.3 |
表1 1、9和16号样地0-100 cm土层的饱和持水量、总孔隙度和9月平均土壤温度
Table 1 The water holding capacity, total porosity and mean temperature in Sept. 2015 of the 0-100 cm soil layer of plot 1, plot 9 and plot 16
样地 Plot | 海拔 Elevation (m) | 土壤温度 Soil temperature (℃) | 饱和持水量 Water holding capacity (%) | 总孔隙度 Porosity (%) |
---|---|---|---|---|
1 | 2 471.4 | 8.3 | 65.8 | 59.0 |
9 | 2 372.6 | 8.5 | 66.1 | 58.9 |
16 | 2 275.6 | 9.3 | 61.3 | 56.3 |
图2 生长季内各月样地0-100 cm土层土壤水分随离坡顶水平距离的变化。
Fig. 2 Variations of monthly soil moisture in 0-100 cm soil layer during growing season along the horizontal distance of plots from slope top.
[1] | Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010). Forest structure and live aboveground biomass variation along elevational gradient of tropical Atlantic moist forest (Brazil).Forest Ecology and Management, 260, 679-691. |
[2] | Asner GP, Scurlock JMO, Hicke JA (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies.Global Ecology and Biogeography, 12, 191-205. |
[3] | Behera SK, Srivastava P, Pathre UV, Tuli R (2010). An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 plant canopy analyzer.Agricultural and Forest Meteorology, 150, 307-311. |
[4] | Bequet R, Campioli M, Kint V, Muys B, Bogaert J, Ceulemans R (2012). Spatial variability of leaf area index in homogeneous forests relates to local variation in tree characteristics.Forest Science, 58, 633-640. |
[5] | Berterretche M, Hudak AT, Cohen WB, Maiersperger TK, Gower ST, Dungan J (2005). Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest.Remote Sensing of Environment, 96, 49-61. |
[6] | Bulcock HH, Jewitt GPW (2010). Spatial mapping of leaf area index using hyperspectral remote sensing for hydrological applications with a particular focus on canopy interception.Hydrology and Earth System Science, 14, 383-392. |
[7] | Burrows SN, Gower ST, Clayton MK, Mackay DS, Ahl DE, Norman JM, Diak G (2002). Application of geostatistics to characterize leaf area index (LAI) from flux tower to landscape scales using a cyclic sampling design.Ecosystems, 5, 667-679. |
[8] | Cox PM, Betts RA, Bunton CB, Essery PLH, Rowntree PR, Smith J (1999). The impact of new land surface physics on the GCM simulation of climate and climate sensitivity.Climate Dynamics, 15, 183-203. |
[9] | Deng XX, Wang YN, Wang YH, Wang ZC, Xiong W, Yu PT, Zhang T (2016). Slope variation and scale effect of tree height and DBH of Larix principis-rupprechtii plantations along a slope: A case study of Xiangshuihe watershed of Liupan Mountains.Journal of Central South University of Forestry & Technology, 36(5), 121-128. (in Chinese with English abstract)[邓秀秀, 王云霓, 王彦辉, 王忠诚, 熊伟, 于澎涛, 张桐 (2016). 华北落叶松人工林树高和胸径的坡位差异与坡面尺度效应——以六盘山香水河小流域为例. 中南林业科技大学学报, 36(5), 121-128.] |
[10] | Dong MY, Jiang Y, Zhang WT, Yang Y, Yang H (2011). Effect of alpine treeline conditions on the response of the stem radial variation of Picea Meyeri Rebd.Polish Journal of Ecology, 59, 729-739. |
[11] | Han XS, Deng LL, Wang YH, Xiong W, Li ZH, Liu Q, Wang YB, Sun H (2015). Variation of aboveground biomass of Larix principis-rupprechtii plantation along slopes in the Diediegou watershed of Liupan Mountains.Scientia Silvae Sinicae, 51(3), 132-139. (in Chinese with English abstract)[韩新生, 邓莉兰, 王彦辉, 熊伟, 刘振华, 刘千, 王艳兵, 孙浩 (2015). 六盘山叠叠沟华北落叶松人工林地上生物量的坡面变化. 林业科学, 51(3), 132-139.] |
[12] | Granier A, Bréda N, Biron P, Villette S (1999). A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands.Ecological Modelling, 116, 269-283. |
[13] | Granier A, Loustau D, Bréda N (2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index.Annals of Forest Science, 57, 755-765. |
[14] | Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004). Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography.Agricultural and Forest Meteorology, 121, 19-35. |
[15] | Körner C (1999). Alpine Plant Life: Functional and Plant Ecology of High Mountain Ecosystems. Springer-Verlag, New York. |
[16] | Liu YH, Wang YH, Yu PT, Xiong W, Mo F, Wang ZY (2011). Biomass and its allocation of the main vegetation types in Liupan Mountains.Forest Research, 24, 443-452. (in Chinese with English abstract)[刘延惠, 王彦辉, 于澎涛, 熊伟, 莫菲, 王占印 (2011). 六盘山主要植被类型的生物量及其分配. 林业科学研究, 24, 443-452.] |
[17] | Lü YL, Liu SR, Sun PS, Zhang GB, Zhang RP (2007). Seasonal and spatial variations of leaf area index of sub-alpine dark coniferous forest during growing season in western Sichuan.Scientia Silvae Sinicae, 43(8), 1-7. (in Chinese with English abstract)[吕瑜良, 刘世荣, 孙鹏森, 张国斌, 张瑞蒲 (2007). 川西亚高山暗针叶林叶面积指数的季节动态与空间变异特征. 林业科学, 43(8), 1-7.] |
[18] | Maass JM, Vose JM, Swank WT, Martínez-Yrízar A (1995). Seasonal changes of leaf area index (LAI) in a tropical deciduous forest in west Mexico.Forest Ecology and Management, 74, 171-180. |
[19] | Nasahara KN, Muraoka H, Nagai S, Mikami H (2008). Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest.Agricultural and Forest Meteorology, 148, 1136-1146. |
[20] | Qiu Y, Fu BJ, Wang J, Zhang XL, Meng QH (2007). Spatiotemporal variation of soil moisture and its relation to environmental factors.Chinese Journal of Ecology, 26, 100-107. (in Chinese with English abstract)[邱扬, 傅伯杰, 王军, 张希来, 孟庆华 (2007). 土壤水分时空变异及其与环境因子的关系. 生态学杂志, 26, 100-107.] |
[21] | Running SW, Coughlan JC (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes.Ecological Modelling, 42, 347-367. |
[22] | Staelens J, de Schrijver A, Verheyen K, Verhoest NEC (2006). Spatial variability and temporal stability of throughfall water under a dominant beech (Fagus sylvatica L.) tree in relationship to canopy cover.Journal of Hydrology, 330, 651-662. |
[23] | State Forest Administration (2000). Forestry Industry Standard Analytical Method of Forest Soil. Standards Press of China, Beijing. (in Chinese)[国家林业局 (2000). 中华人民共和国林业行业标准——森林土壤分析方法. 中国标准出版社, 北京.] |
[24] | Tong HQ, Wang YJ, Wang YH, Yu PT, Xiong W, Xu LH, Zhou Y (2011). The Spatio-temporal variation of LAI of the Larix principis-rupprechtii plantation ecosystems at Diediegou of Liupan Mountains of northwest China.Forest Research, 24(1), 13-20. (in Chinese with English abstract)[童鸿强, 王玉杰, 王彦辉, 于澎涛, 熊伟, 徐丽宏, 周杨 (2011). 六盘山叠叠沟华北落叶松人工林叶面积指数的时空变化特征. 林业科学研究, 24(1), 13-20.] |
[25] | Wang YN, Deng XX, Wang YH, Cao GX, Yu PT, Xiong W, Xu LH (2016). The slope scale effect of canopy LAI of Larix principis-rupprechtii plantation at the south side of Liupan Mountains.Acta Ecologica Sinica, 36, 3564-3571. (in Chinese with English abstract)[王云霓, 邓秀秀, 王彦辉, 曹恭祥, 于澎涛, 熊伟, 徐丽宏 (2016). 六盘山南坡华北落叶松人工林冠层LAI的坡面尺度效应. 生态学报, 36, 3564-3571.] |
[26] | Yao DD, Lei XD, Yu L, Lu J, Fu LY, Yu RG (2015). Spatial heterogeneity of leaf area index of mixed spruce-fir-deciduous stands in northeast China.Acta Ecologica Sinica, 35, 71-79. (in Chinese with English abstract)[姚丹丹, 雷相东, 余黎, 卢军, 符立勇, 俞锐刚 (2015). 云冷杉针阔混交林叶面积指数的空间异质性. 生态学报, 35, 71-79.] |
[1] | 郑周涛 张扬建. 1982–2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[2] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[3] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[4] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[5] | 李品, 木勒德尔•吐尔汗拜, 田地, 冯兆忠. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态[J]. 植物生态学报, 2019, 43(6): 532-542. |
[6] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[7] | 程汉亭, 李勤奋, 刘景坤, 严廷良, 张俏燕, 王进闯. 橡胶林下益智光合特性的季节动态变化[J]. 植物生态学报, 2018, 42(5): 585-594. |
[8] | 许飞, 王传宽. 4种温带针叶树种树干CO2释放通量的季节动态及其驱动因子[J]. 植物生态学报, 2017, 41(4): 396-408. |
[9] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[10] | 周明, 刘志理, 金光泽. 利用3种校正方案提高间接法测定兴安落叶松人工林叶面积指数的精度[J]. 植物生态学报, 2016, 40(6): 574-584. |
[11] | 辜翔, 张仕吉, 项文化, 李雷达, 刘兆丹, 孙伟军, 方晰. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10): 1064-1076. |
[12] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[13] | 刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843-856. |
[14] | 穆少杰, 周可新, 齐杨, 陈奕兆, 方颖, 朱超. 内蒙古植被降水利用效率的时空格局及其驱动因素[J]. 植物生态学报, 2014, 38(1): 1-16. |
[15] | 杨秀云, 韩有志, 武小钢. 华北落叶松林细根生物量对土壤水分、氮营养空间异质性改变的响应[J]. 植物生态学报, 2012, 36(9): 965-972. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19