植物生态学报 ›› 2010, Vol. 34 ›› Issue (1): 7-16.DOI: 10.3773/j.issn.1005-264x.2010.01.003
所属专题: 植物功能性状
收稿日期:
2008-05-05
接受日期:
2008-07-23
出版日期:
2010-05-05
发布日期:
2010-01-01
通讯作者:
贺金生
作者简介:
* E-mail: jshe@pku.edu.cn
ZHOU Peng1, GENG Yan1, MA Wen-Hong2, HE Jin-Sheng1,*()
Received:
2008-05-05
Accepted:
2008-07-23
Online:
2010-05-05
Published:
2010-01-01
Contact:
HE Jin-Sheng
摘要:
理解植物各器官间功能性状的关联, 有助于确定控制功能性状的内在机制以及性状间的比例关系。基于内蒙古温带草地19个地点、42种优势草本植物的野外观测, 分析了叶片、茎、生殖器官、细根和粗根间功能性状(N、P含量、N:P、比叶面积、比根长以及叶片和细根的组织密度)的关联。主要结果如下: 在种群和物种水平上, 各器官的N和P含量都显著正相关, 比叶面积与叶片N、P含量和组织密度在种群水平上显著负相关, 而在物种水平上没有显著的相关关系; 而比根长仅在种群水平上与细根的组织密度显著负相关。N、P含量以及N:P在各器官之间一致呈显著正相关, 而比叶面积和比根长没有显著的相关关系。叶片和细根的组织密度在种群水平上显著负相关, 而在物种水平上没有显著的相关关系。非禾草比禾草相应器官(除茎外)的N、P含量高, 但二者茎的N、P含量没有显著的差异; 豆科植物比非豆科植物相应器官的N含量高, 而P含量没有显著的差异。
周鹏, 耿燕, 马文红, 贺金生. 温带草地主要优势植物不同器官间功能性状的关联. 植物生态学报, 2010, 34(1): 7-16. DOI: 10.3773/j.issn.1005-264x.2010.01.003
ZHOU Peng, GENG Yan, MA Wen-Hong, HE Jin-Sheng. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China. Chinese Journal of Plant Ecology, 2010, 34(1): 7-16. DOI: 10.3773/j.issn.1005-264x.2010.01.003
地点 Site | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 草地类型 Grassland type |
---|---|---|---|---|
1 | 120.20 | 49.35 | 669 | 草甸草原 Meadow steppe |
2 | 119.99 | 49.89 | 730 | 草甸草原 Meadow steppe |
3 | 119.56 | 46.58 | 1 213 | 草甸草原 Meadow steppe |
4 | 118.66 | 46.53 | 997 | 草甸草原 Meadow steppe |
5 | 118.66 | 45.75 | 879 | 典型草原 Typical steppe |
6 | 118.18 | 46.15 | 970 | 典型草原 Typical steppe |
7 | 118.11 | 44.36 | 1 136 | 草甸草原 Meadow steppe |
8 | 117.36 | 44.51 | 1 062 | 典型草原 Typical steppe |
9 | 117.13 | 45.32 | 865 | 典型草原 Typical steppe |
10 | 116.82 | 43.51 | 1 433 | 草甸草原 Meadow steppe |
11 | 116.74 | 43.60 | 1 213 | 典型草原 Typical steppe |
12 | 116.74 | 43.60 | 1 217 | 典型草原 Typical steppe |
13 | 116.28 | 44.07 | 1 075 | 典型草原 Typical steppe |
14 | 113.40 | 43.81 | 1 003 | 荒漠草原 Desert steppe |
15 | 112.73 | 42.95 | 1 037 | 荒漠草原 Desert steppe |
16 | 112.59 | 42.84 | 1 087 | 荒漠草原 Desert steppe |
17 | 112.23 | 43.31 | 1 018 | 荒漠草原 Desert steppe |
18 | 111.99 | 43.61 | 943 | 荒漠草原 Desert steppe |
19 | 111.82 | 41.76 | 1 435 | 荒漠草原 Desert steppe |
表1 研究区概况
Table 1 Study site descriptions
地点 Site | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 草地类型 Grassland type |
---|---|---|---|---|
1 | 120.20 | 49.35 | 669 | 草甸草原 Meadow steppe |
2 | 119.99 | 49.89 | 730 | 草甸草原 Meadow steppe |
3 | 119.56 | 46.58 | 1 213 | 草甸草原 Meadow steppe |
4 | 118.66 | 46.53 | 997 | 草甸草原 Meadow steppe |
5 | 118.66 | 45.75 | 879 | 典型草原 Typical steppe |
6 | 118.18 | 46.15 | 970 | 典型草原 Typical steppe |
7 | 118.11 | 44.36 | 1 136 | 草甸草原 Meadow steppe |
8 | 117.36 | 44.51 | 1 062 | 典型草原 Typical steppe |
9 | 117.13 | 45.32 | 865 | 典型草原 Typical steppe |
10 | 116.82 | 43.51 | 1 433 | 草甸草原 Meadow steppe |
11 | 116.74 | 43.60 | 1 213 | 典型草原 Typical steppe |
12 | 116.74 | 43.60 | 1 217 | 典型草原 Typical steppe |
13 | 116.28 | 44.07 | 1 075 | 典型草原 Typical steppe |
14 | 113.40 | 43.81 | 1 003 | 荒漠草原 Desert steppe |
15 | 112.73 | 42.95 | 1 037 | 荒漠草原 Desert steppe |
16 | 112.59 | 42.84 | 1 087 | 荒漠草原 Desert steppe |
17 | 112.23 | 43.31 | 1 018 | 荒漠草原 Desert steppe |
18 | 111.99 | 43.61 | 943 | 荒漠草原 Desert steppe |
19 | 111.82 | 41.76 | 1 435 | 荒漠草原 Desert steppe |
图1 内蒙古温带草地不同功能群和草地类型植物叶片(Le)、茎(St)、生殖器官(Re)、细根(Fr)和粗根(Cr)平均N含量(A)、P含量(B)、N:P (C)、比叶面积和比根长(D)以及叶片和细根的组织密度(E)的比较。用单因素双差分析(Tukey post hoc)检验不同功能群和草地类型之间的差异; 显著性差异(p < 0.05)用不同字母标记。误差棒为标准误差。
Fig. 1 Comparisons of leaf (Le), stem (St), reproductive structure (Re), fine root (Fr) and coarse root (Cr), mean N concentrations (A), P concentrations (B), N: P ratios (C), specific leaf area, specific root length (D) and tissue density of leaves and fine roots (E) among different function groups and vegetation types in Inner Mongolia grassland. Differences between each group were tested using a One-Way ANOVA with a Tukey post hoc test of significance; significant differences at p < 0.05 are indicated by different letters. Errors bars are standard errors. SLA, specific leaf area; SRL, specific root length.
种群水平 Population level | 物种水平 Interspecific level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | N: P | SLA/SRL | N | P | N: P | SLA/SRL | |||
叶片 | P | 0.79 | P | 0.81 | ||||||
Leaf | N : P | 0.19 | - 0.46 | N: P | 0.31 | - 0.30 | ||||
SLA | - 0.21 | - 0.30 | 0.19 | SLA | - 0.22 | - 0.26 | 0.07 | |||
TD | - 0.21 | - 0.24 | 0.08 | - 0.37 | TD | - 0.08 | - 0.23 | 0.26 | - 0.35 | |
茎 | P | 0.73 | P | 0.77 | ||||||
Stem | N : P | 0.50 | - 0.23 | N: P | 0.59 | - 0.06 | ||||
生殖器官 | P | 0.87 | P | 0.83 | ||||||
Reproductive structure | N: P | 0.24 | - 0.27 | N: P | 0.43 | - 0.15 | ||||
细根 | P | 0.69 | P | 0.69 | ||||||
Fine root | N: P | 0.60 | - 0.14 | N: P | 0.65 | - 0.01 | ||||
SRL | - 0.03 | - 0.07 | - 0.04 | SRL | - 0.14 | - 0.04 | - 0.20 | |||
TD | - 0.35 | - 0.13 | - 0.41 | - 0.29 | TD | - 0.41 | - 0.18 | - 0.42 | - 0.14 | |
粗根 | P | 0.46 | P | 0.49 | ||||||
Coarse root | N: P | 0.58 | - 0.43 | N: P | 0.64 | - 0.35 |
表2 内蒙古温带草地不同器官内功能性状的相关系数
Table 2 Pearson correlation coefficients for functional traits within different organs in Inner Monglolia grassland
种群水平 Population level | 物种水平 Interspecific level | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | P | N: P | SLA/SRL | N | P | N: P | SLA/SRL | |||
叶片 | P | 0.79 | P | 0.81 | ||||||
Leaf | N : P | 0.19 | - 0.46 | N: P | 0.31 | - 0.30 | ||||
SLA | - 0.21 | - 0.30 | 0.19 | SLA | - 0.22 | - 0.26 | 0.07 | |||
TD | - 0.21 | - 0.24 | 0.08 | - 0.37 | TD | - 0.08 | - 0.23 | 0.26 | - 0.35 | |
茎 | P | 0.73 | P | 0.77 | ||||||
Stem | N : P | 0.50 | - 0.23 | N: P | 0.59 | - 0.06 | ||||
生殖器官 | P | 0.87 | P | 0.83 | ||||||
Reproductive structure | N: P | 0.24 | - 0.27 | N: P | 0.43 | - 0.15 | ||||
细根 | P | 0.69 | P | 0.69 | ||||||
Fine root | N: P | 0.60 | - 0.14 | N: P | 0.65 | - 0.01 | ||||
SRL | - 0.03 | - 0.07 | - 0.04 | SRL | - 0.14 | - 0.04 | - 0.20 | |||
TD | - 0.35 | - 0.13 | - 0.41 | - 0.29 | TD | - 0.41 | - 0.18 | - 0.42 | - 0.14 | |
粗根 | P | 0.46 | P | 0.49 | ||||||
Coarse root | N: P | 0.58 | - 0.43 | N: P | 0.64 | - 0.35 |
图2 内蒙古温带草地所有植物比叶面积(SLA)和叶片的N含量(A, E)、P含量(B, F)、N:P (C, G)、组织密度(D, H)在两个水平上的相关关系(II类线性回归)。A-D, 种群水平; E-H, 物种水平, 用物种平均值。
Fig. 2 Relationships between specific leaf area (SLA) and leaf N concentrations (A, E), P concentrations (B, F), N: P ratios (C, G), tissue density (D, H) at two levels across all species in Inner Mongolia grassland (type II linear regression). A-D, population level; E-H, interspecific level, using species means.
图3 内蒙古温带草地所有植物比根长(SRL)和细根的N含量(A, E)、P含量(B, F)、N:P (C, G)、组织密度(D, H)在两个水平上的相关关系(II类线性回归)。A-H同图2。
Fig. 3 Relationships between specific root length (SRL) and fine root N concentrations (A, E), P concentrations (B, F), N: P ratios (C, G), tissue density (D, H) at two levels across all species in Inner Mongolia grassland (type II linear regression). A-H see Fig. 2.
种群水平 Population level | 物种水平 Interspecific level | ||||||||
---|---|---|---|---|---|---|---|---|---|
叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | 叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | ||
N | |||||||||
茎 Stem | 0.75 | 0.82 | |||||||
生殖器官 Re | 0.80 | 0.62 | 0.81 | 0.62 | |||||
细根 Fine root | 0.65 | 0.41 | 0.53 | 0.72 | 0.49 | 0.55 | |||
粗根 Coarse root | 0.58 | 0.54 | 0.38 | 0.70 | 0.58 | 0.51 | 0.35 | 0.72 | |
P | |||||||||
茎 Stem | 0.67 | 0.73 | |||||||
生殖器官 Re | 0.80 | 0.57 | 0.66 | 0.40 | |||||
细根 Fine root | 0.58 | 0.32 | 0.47 | 0.50 | 0.24 | 0.36 | |||
粗根 Coarse root | 0.58 | 0.45 | 0.55 | 0.75 | 0.51 | 0.31 | 0.36 | 0.69 | |
N: P | |||||||||
茎 Stem | 0.69 | 0.74 | |||||||
生殖器官 Re | 0.75 | 0.73 | 0.82 | 0.70 | |||||
细根 Fine root | 0.42 | 0.55 | 0.53 | 0.48 | 0.54 | 0.60 | |||
粗根 Coarse root | 0.46 | 0.71 | 0.54 | 0.64 | 0.54 | 0.70 | 0.52 | 0.74 |
表3 内蒙古温带草地N、P含量和N:P在不同器官间的相关系数
Table 3 Pearson correlation coefficients for N and P concentrations and N:P ratios among different organs in Inner Monglolia grassland
种群水平 Population level | 物种水平 Interspecific level | ||||||||
---|---|---|---|---|---|---|---|---|---|
叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | 叶片 Leaf | 茎 Stem | 生殖器官 Re | 细根 Fine root | ||
N | |||||||||
茎 Stem | 0.75 | 0.82 | |||||||
生殖器官 Re | 0.80 | 0.62 | 0.81 | 0.62 | |||||
细根 Fine root | 0.65 | 0.41 | 0.53 | 0.72 | 0.49 | 0.55 | |||
粗根 Coarse root | 0.58 | 0.54 | 0.38 | 0.70 | 0.58 | 0.51 | 0.35 | 0.72 | |
P | |||||||||
茎 Stem | 0.67 | 0.73 | |||||||
生殖器官 Re | 0.80 | 0.57 | 0.66 | 0.40 | |||||
细根 Fine root | 0.58 | 0.32 | 0.47 | 0.50 | 0.24 | 0.36 | |||
粗根 Coarse root | 0.58 | 0.45 | 0.55 | 0.75 | 0.51 | 0.31 | 0.36 | 0.69 | |
N: P | |||||||||
茎 Stem | 0.69 | 0.74 | |||||||
生殖器官 Re | 0.75 | 0.73 | 0.82 | 0.70 | |||||
细根 Fine root | 0.42 | 0.55 | 0.53 | 0.48 | 0.54 | 0.60 | |||
粗根 Coarse root | 0.46 | 0.71 | 0.54 | 0.64 | 0.54 | 0.70 | 0.52 | 0.74 |
图4 内蒙古温带草地所有植物比叶面积和比根长(SRL) (A, C)、叶片和细根的组织密度(B, D)在两个水平上的相关关系(II类线性回归)。A, B, 种群水平; C, D, 物种水平。
Fig. 4 Relationships between specific leaf area and specific root length (SRL) (A, C), tissue density (B, D) of leaves and fine roots, at two levels across all species in Inner Mongolia grassland (type II linear regression). A, B, Population level; C, D, Interspecific level, using species means.
[1] |
Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples ( Acer). American Naturalist, 152, 767-791.
DOI URL |
[2] | Aerts R, Chapin FS III (2000). The mineral nutrition of wild plants revisited: a reevaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[3] |
Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2004). Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany, 55, 321-336.
DOI URL PMID |
[4] |
Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[5] |
Chapin FS III, Schulze ED, Mooney HA (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21, 423-447.
DOI URL |
[6] |
Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS III (2001). The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos, 93, 274-285.
DOI URL |
[7] |
Craine JM, Lee WG (2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
DOI URL PMID |
[8] |
Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005). Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology, 86, 12-19.
DOI URL |
[9] |
Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147, 33-42.
DOI URL |
[10] | Eviner VT, Chapin FS III (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology, Evolution and Systematics, 34, 455-485. |
[11] |
Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots. Ecology, 81, 275-280.
DOI URL |
[12] |
Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457.
URL PMID |
[13] |
Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5, 37-61.
DOI URL |
[14] |
Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[15] |
Han WY, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[16] |
He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006a). A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL |
[17] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006b). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grasslands of China. Oecologia, 149, 115-122.
DOI URL PMID |
[18] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen : phosphorus stoichiometry across Chinese grassland Biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[19] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area and nutrient contents. Proceedings of the National Academy of Science of the United States of America, 94, 7362-7366.
DOI URL |
[20] |
Kay AD, Ashton IW, Gorokhova E, Kerkhoff AJ, Liess A, Litchman E (2005). Toward a stoichiometric framework for evolutionary biology. Oikos, 109, 6-17.
DOI URL |
[21] |
Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. American Naturalist, 168, E103-E122.
DOI URL |
[22] | Kuo S (1996). Phosphorus. In: Bigham JM ed. Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, Wis. 869-919. |
[23] |
Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12.
DOI URL |
[24] |
Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18, 665-670.
DOI URL PMID |
[25] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[26] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[27] |
Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998). Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Functional Ecology, 12, 395-405.
DOI URL |
[28] |
Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengston W, Lee TD (2001). Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 150, 435-448.
DOI URL |
[29] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
URL PMID |
[30] |
Ryan MG (1991). Effects of climate change on plant respiration. Ecological Applications, 1, 157-167.
URL PMID |
[31] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ. |
[32] |
Tilman D, Knops J, Wedin D (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[33] |
Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D (2005). Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493-508.
DOI URL |
[34] |
Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora. New Phytologist, 136, 679-689.
DOI URL |
[35] |
Wahl S, Ryser P (2000). Root tissue structure is linked to ecological strategies of grasses. New Phytologist, 148, 459-471.
DOI URL |
[36] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[37] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee WJ, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[38] | Wright IJ, Westoby M (2004). The economics of leaves: plants build leaves as investments that vary in cost, revenue and lifespan. Australasian Science, 25, 34-37. |
[39] | Zhang L (张林), Luo TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Journal of Plant Ecology (Chinese version) (植物生态学报), 28, 844-852. (in Chinese with English abstract) |
[40] | Zeng DH (曾德慧), Chen GS (陈广生) (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Journal of Plant Ecology (Chinese version) (植物生态学报), 29, 1007-1019. (in Chinese with English abstract) |
[1] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[2] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[3] | 张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收[J]. 植物生态学报, 2021, 45(7): 738-748. |
[4] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[5] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[6] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
[7] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[8] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
[9] | 周红艳, 吴琴, 陈明月, 匡伟, 常玲玲, 胡启武. 鄱阳湖沙山单叶蔓荆不同器官碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(4): 461-470. |
[10] | 贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1): 126-135. |
[11] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[12] | 黄海侠,杨晓东,孙宝伟,张志浩,阎恩荣. 浙江天童常绿植物当年生与往年生叶片性状的变异与关联[J]. 植物生态学报, 2013, 37(10): 912-921. |
[13] | 胡梦瑶, 张林, 罗天祥, 沈维. 西藏紫花针茅叶功能性状沿降水梯度的变化[J]. 植物生态学报, 2012, 36(2): 136-143. |
[14] | 路兴慧, 丁易, 臧润国, 邹正冲, 黄卢标. 海南岛热带低地雨林老龄林木本植物幼苗的功能性状分析[J]. 植物生态学报, 2011, 35(12): 1300-1309. |
[15] | 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明. 黔中喀斯特山区植物功能性状的变异与关联[J]. 植物生态学报, 2011, 35(10): 1000-1008. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19