植物生态学报 ›› 2017, Vol. 41 ›› Issue (1): 126-135.DOI: 10.17521/cjpe.2016.0031
所属专题: 中国灌丛生态系统碳储量的研究; 生态化学计量; 青藏高原植物生态学:生态系统生态学
贺合亮1,2, 阳小成2, 李丹丹1, 尹春英1, 黎云祥3, 周国英4, 张林5, 刘庆1,*()
收稿日期:
2016-01-17
接受日期:
2016-09-21
出版日期:
2017-01-10
发布日期:
2017-01-23
通讯作者:
刘庆
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
He-Liang HE1,2, Xiao-Cheng YANG2, Dan-Dan LI1, Chun-Ying YIN1, Yun-Xiang LI3, Guo-Ying ZHOU4, Lin ZHANG5, Qing LIU1,*()
Received:
2016-01-17
Accepted:
2016-09-21
Online:
2017-01-10
Published:
2017-01-23
Contact:
Qing LIU
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
为了探究青藏高原东部窄叶鲜卑花(Sibiraea angustata)灌木不同器官碳(C)、氮(N)、磷(P)含量的分配格局及其生态化学计量特征, 该文采用分层随机抽样方法布设样地, 选择16个窄叶鲜卑花灌丛样地, 分别采集窄叶鲜卑花灌木根、茎、叶、当年枝和果等植物器官样品, 并分析样品C、N、P含量及其计量比。结果表明: C、N、P在不同器官中的含量分别表现为茎>当年枝>果>根>叶; 叶>果>当年枝>茎>根; 果>叶>当年枝>根>茎。窄叶鲜卑花各器官中C含量相对稳定, N、P含量变异系数较大, 在根部的变异系数最大。在不同器官中N:P的范围为7.12-12.41, 其值变化不大, N:P变异系数的最小值在当年枝中, 说明N:P在当年枝中的内稳性较高。在该灌木植物体中C与N之间、C与P之间呈极显著的负相关关系, C对N、P具有稀释作用; N与P呈极显著正相关关系, N与P间具有较好的耦合协同性。分析发现: 窄叶鲜卑花不同器官C、N、P化学计量特征在一定程度上符合内稳态理论和生长速率理论, 其元素分配与器官所执行的功能密切相关; 同时指出在物种水平上应当谨慎使用生态化学计量比来判断养分的限制情况。
贺合亮, 阳小成, 李丹丹, 尹春英, 黎云祥, 周国英, 张林, 刘庆. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征. 植物生态学报, 2017, 41(1): 126-135. DOI: 10.17521/cjpe.2016.0031
He-Liang HE, Xiao-Cheng YANG, Dan-Dan LI, Chun-Ying YIN, Yun-Xiang LI, Guo-Ying ZHOU, Lin ZHANG, Qing LIU. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2017, 41(1): 126-135. DOI: 10.17521/cjpe.2016.0031
样地编号 Plot ID | 调查地区 Location | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 灌木层高度 Height of shrub layer (m) | 灌木层盖度 Coverage of shrub layer (%) | 坡度 Slope aspect (°) | 坡位 Slope position |
---|---|---|---|---|---|---|---|---|
1 | 四川理塘 Litang, Sichuan | 29.88° | 100.33° | 3 980 | 1.10 | 80 | 10 | 中部 Middle part |
2 | 四川理塘 Litang, Sichuan | 30.08° | 100.35° | 4 064 | 0.80 | 60 | 10 | 下部 Lower part |
3 | 四川色达 Sêrtar, Sichuan | 31.85° | 100.73° | 3 535 | 0.40 | 70 | 21 | 中下部 Mid-lower part |
4 | 四川炉霍 Luhuo, Sichuan | 31.62° | 100.23° | 3 847 | 0.70 | 70 | 20 | 中部 Middle part |
5 | 四川甘孜 Garzê, Sichuan | 31.45° | 99.97° | 4 212 | 0.85 | 75 | 19 | 中下部 Mid-lower part |
6 | 四川道孚 Dawu, Sichuan | 30.88° | 101.23° | 3 332 | 1.20 | 40 | 14 | 中下部 Mid-lower part |
7 | 四川小金 Xiaojin, Sichuan | 31.70° | 102.32° | 4 034 | 2.20 | 70 | 15 | 中上部 Mid-upper part |
8 | 四川马尔康 Maerkang, Sichuan | 31.90° | 102.65° | 3 709 | 3.10 | 70 | 20 | 中部 Middle part |
9 | 四川阿坝 Aba, Sichuan | 32.72° | 102.01° | 3 813 | 1.20 | 60 | 15 | 中部 Middle part |
10 | 四川壤塘 Xiangtang, Sichuan | 32.30° | 101.07° | 3 909 | 1.10 | 70 | 15 | 中部 Middle part |
11 | 四川金川 Jinchuan, Sichuan | 31.53° | 101.68° | 3 748 | 2.20 | 50 | 5 | 下部 Lower part |
12 | 四川松潘 Songpan, Sichuan | 33.02° | 102.95° | 3 344 | 1.05 | 80 | 0 | 中上部 Mid-upper part |
13 | 青海久治 Jiuzhi, Qinghai | 33.27° | 100.62° | 3 738 | 0.90 | 70 | 28 | 下部 Lower part |
14 | 青海玉树 Yushu, Qinghai | 33.03° | 96.87° | 4 053 | 1.20 | 65 | 39 | 中下部 Mid-lower part |
15 | 青海囊谦 Nangqên, Qinghai | 31.88° | 96.88° | 4 034 | 1.05 | 45 | 35 | 中下部 Mid-lower part |
16 | 西藏洛隆 Lhorong, Xizang | 30.73° | 96.08° | 4 198 | 0.70 | 32 | 10 | 下部 Lower part |
表1 窄叶鲜卑花灌丛样地基本信息
Table 1 Basic information of Sibiraea angustata dominated shrub sites
样地编号 Plot ID | 调查地区 Location | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 灌木层高度 Height of shrub layer (m) | 灌木层盖度 Coverage of shrub layer (%) | 坡度 Slope aspect (°) | 坡位 Slope position |
---|---|---|---|---|---|---|---|---|
1 | 四川理塘 Litang, Sichuan | 29.88° | 100.33° | 3 980 | 1.10 | 80 | 10 | 中部 Middle part |
2 | 四川理塘 Litang, Sichuan | 30.08° | 100.35° | 4 064 | 0.80 | 60 | 10 | 下部 Lower part |
3 | 四川色达 Sêrtar, Sichuan | 31.85° | 100.73° | 3 535 | 0.40 | 70 | 21 | 中下部 Mid-lower part |
4 | 四川炉霍 Luhuo, Sichuan | 31.62° | 100.23° | 3 847 | 0.70 | 70 | 20 | 中部 Middle part |
5 | 四川甘孜 Garzê, Sichuan | 31.45° | 99.97° | 4 212 | 0.85 | 75 | 19 | 中下部 Mid-lower part |
6 | 四川道孚 Dawu, Sichuan | 30.88° | 101.23° | 3 332 | 1.20 | 40 | 14 | 中下部 Mid-lower part |
7 | 四川小金 Xiaojin, Sichuan | 31.70° | 102.32° | 4 034 | 2.20 | 70 | 15 | 中上部 Mid-upper part |
8 | 四川马尔康 Maerkang, Sichuan | 31.90° | 102.65° | 3 709 | 3.10 | 70 | 20 | 中部 Middle part |
9 | 四川阿坝 Aba, Sichuan | 32.72° | 102.01° | 3 813 | 1.20 | 60 | 15 | 中部 Middle part |
10 | 四川壤塘 Xiangtang, Sichuan | 32.30° | 101.07° | 3 909 | 1.10 | 70 | 15 | 中部 Middle part |
11 | 四川金川 Jinchuan, Sichuan | 31.53° | 101.68° | 3 748 | 2.20 | 50 | 5 | 下部 Lower part |
12 | 四川松潘 Songpan, Sichuan | 33.02° | 102.95° | 3 344 | 1.05 | 80 | 0 | 中上部 Mid-upper part |
13 | 青海久治 Jiuzhi, Qinghai | 33.27° | 100.62° | 3 738 | 0.90 | 70 | 28 | 下部 Lower part |
14 | 青海玉树 Yushu, Qinghai | 33.03° | 96.87° | 4 053 | 1.20 | 65 | 39 | 中下部 Mid-lower part |
15 | 青海囊谦 Nangqên, Qinghai | 31.88° | 96.88° | 4 034 | 1.05 | 45 | 35 | 中下部 Mid-lower part |
16 | 西藏洛隆 Lhorong, Xizang | 30.73° | 96.08° | 4 198 | 0.70 | 32 | 10 | 下部 Lower part |
元素指标 Element | 不同器官 Different organ | n | MIN (g·kg-1) | MAX (g·kg-1) | M (g·kg-1) | SD (g·kg-1) | CV (%) |
---|---|---|---|---|---|---|---|
C | 叶 Leaf | 31 | 451.16 | 487.92 | 466.33a | 9.58 | 2.05 |
果 Fruit | 16 | 443.82 | 494.54 | 480.35ab | 21.33 | 4.44 | |
当年枝 Twig | 22 | 471.58 | 496.38 | 483.37b | 8.28 | 1.71 | |
茎 Shoot | 30 | 475.34 | 520.68 | 495.07b | 10.29 | 2.08 | |
根 Root | 29 | 407.51 | 500.62 | 468.47a | 19.46 | 4.15 | |
N | 叶 Leaf | 31 | 14.14 | 32.84 | 22.27c | 4.65 | 20.88 |
果 Fruit | 16 | 17.08 | 23.25 | 19.74c | 2.86 | 14.49 | |
当年枝 Twig | 22 | 5.16 | 11.02 | 7.98b | 2.03 | 25.44 | |
茎 Shoot | 30 | 2.95 | 6.77 | 4.54a | 0.97 | 21.37 | |
根 Root | 29 | 2.69 | 6.91 | 4.00a | 1.02 | 25.50 | |
P | 叶 Leaf | 31 | 1.07 | 4.10 | 1.92c | 0.65 | 33.85 |
果 Fruit | 16 | 2.37 | 3.33 | 2.85d | 0.40 | 15.09 | |
当年枝 Twig | 22 | 0.83 | 1.16 | 0.96b | 0.11 | 11.46 | |
茎 Shoot | 30 | 0.22 | 0.78 | 0.45a | 0.16 | 35.56 | |
根 Root | 29 | 0.23 | 1.14 | 0.52a | 0.24 | 46.15 |
表2 窄叶鲜卑花不同器官碳(C)、氮(N)、磷(P)含量特征
Table 2 Content of carbon (C), nitrogen (N) and phosphorus (P) of Sibiraea angustata shrub in different organs
元素指标 Element | 不同器官 Different organ | n | MIN (g·kg-1) | MAX (g·kg-1) | M (g·kg-1) | SD (g·kg-1) | CV (%) |
---|---|---|---|---|---|---|---|
C | 叶 Leaf | 31 | 451.16 | 487.92 | 466.33a | 9.58 | 2.05 |
果 Fruit | 16 | 443.82 | 494.54 | 480.35ab | 21.33 | 4.44 | |
当年枝 Twig | 22 | 471.58 | 496.38 | 483.37b | 8.28 | 1.71 | |
茎 Shoot | 30 | 475.34 | 520.68 | 495.07b | 10.29 | 2.08 | |
根 Root | 29 | 407.51 | 500.62 | 468.47a | 19.46 | 4.15 | |
N | 叶 Leaf | 31 | 14.14 | 32.84 | 22.27c | 4.65 | 20.88 |
果 Fruit | 16 | 17.08 | 23.25 | 19.74c | 2.86 | 14.49 | |
当年枝 Twig | 22 | 5.16 | 11.02 | 7.98b | 2.03 | 25.44 | |
茎 Shoot | 30 | 2.95 | 6.77 | 4.54a | 0.97 | 21.37 | |
根 Root | 29 | 2.69 | 6.91 | 4.00a | 1.02 | 25.50 | |
P | 叶 Leaf | 31 | 1.07 | 4.10 | 1.92c | 0.65 | 33.85 |
果 Fruit | 16 | 2.37 | 3.33 | 2.85d | 0.40 | 15.09 | |
当年枝 Twig | 22 | 0.83 | 1.16 | 0.96b | 0.11 | 11.46 | |
茎 Shoot | 30 | 0.22 | 0.78 | 0.45a | 0.16 | 35.56 | |
根 Root | 29 | 0.23 | 1.14 | 0.52a | 0.24 | 46.15 |
元素比值 Element ratio | 不同器官 Different organ | n | MIN | MAX | M | SD | CV (%) |
---|---|---|---|---|---|---|---|
C:N | 叶 Leaf | 31 | 13.74 | 32.99 | 21.89a | 4.90 | 22.38 |
果 Fruit | 16 | 19.84 | 28.75 | 24.82a | 4.26 | 17.16 | |
当年枝 Twig | 22 | 44.14 | 96.18 | 64.16b | 16.83 | 26.23 | |
茎 Shoot | 30 | 71.70 | 167.96 | 113.72c | 23.02 | 20.24 | |
根 Root | 29 | 63.72 | 174.63 | 123.92c | 28.78 | 23.22 | |
N:P | 叶 Leaf | 31 | 4.15 | 16.91 | 12.41c | 3.11 | 25.06 |
果 Fruit | 16 | 5.28 | 9.42 | 7.12a | 1.93 | 27.11 | |
当年枝 Twig | 22 | 5.87 | 9.88 | 8.21a | 1.42 | 17.30 | |
茎 Shoot | 30 | 5.96 | 17.32 | 10.80b | 2.80 | 25.93 | |
根 Root | 29 | 2.86 | 14.97 | 8.74a | 3.11 | 35.58 | |
C:P | 叶 Leaf | 31 | 112.11 | 454.22 | 266.18b | 82.09 | 30.84 |
果 Fruit | 16 | 147.97 | 186.92 | 170.30a | 17.54 | 10.30 | |
当年枝 Twig | 22 | 418.12 | 570.63 | 507.29c | 51.77 | 10.21 | |
茎 Shoot | 30 | 629.05 | 2 219.58 | 1 235.46d | 437.02 | 35.37 | |
根 Root | 29 | 421.11 | 2 089.60 | 1 070.28d | 439.16 | 41.03 |
表3 窄叶鲜卑花不同器官碳(C)、氮(N)、磷(P)比值特征
Table 3 The ratio of carbon (C), nitrogen (N) and phosphorus (P) of Sibiraea angustata shrub in different organs
元素比值 Element ratio | 不同器官 Different organ | n | MIN | MAX | M | SD | CV (%) |
---|---|---|---|---|---|---|---|
C:N | 叶 Leaf | 31 | 13.74 | 32.99 | 21.89a | 4.90 | 22.38 |
果 Fruit | 16 | 19.84 | 28.75 | 24.82a | 4.26 | 17.16 | |
当年枝 Twig | 22 | 44.14 | 96.18 | 64.16b | 16.83 | 26.23 | |
茎 Shoot | 30 | 71.70 | 167.96 | 113.72c | 23.02 | 20.24 | |
根 Root | 29 | 63.72 | 174.63 | 123.92c | 28.78 | 23.22 | |
N:P | 叶 Leaf | 31 | 4.15 | 16.91 | 12.41c | 3.11 | 25.06 |
果 Fruit | 16 | 5.28 | 9.42 | 7.12a | 1.93 | 27.11 | |
当年枝 Twig | 22 | 5.87 | 9.88 | 8.21a | 1.42 | 17.30 | |
茎 Shoot | 30 | 5.96 | 17.32 | 10.80b | 2.80 | 25.93 | |
根 Root | 29 | 2.86 | 14.97 | 8.74a | 3.11 | 35.58 | |
C:P | 叶 Leaf | 31 | 112.11 | 454.22 | 266.18b | 82.09 | 30.84 |
果 Fruit | 16 | 147.97 | 186.92 | 170.30a | 17.54 | 10.30 | |
当年枝 Twig | 22 | 418.12 | 570.63 | 507.29c | 51.77 | 10.21 | |
茎 Shoot | 30 | 629.05 | 2 219.58 | 1 235.46d | 437.02 | 35.37 | |
根 Root | 29 | 421.11 | 2 089.60 | 1 070.28d | 439.16 | 41.03 |
项目 Item | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
C | 1 | |||||
N | -0.407** | 1 | ||||
P | -0.342** | 0.814** | 1 | |||
C:N | 0.374** | -0.901** | -0.802** | 1 | ||
C:P | 0.432** | -0.746** | -0.796** | 0.833** | 1 | |
N:P | -0.001 | 0.366** | -0.118 | -0.276** | 0.213* | 1 |
表4 碳(C)、氮(N)、磷(P)含量及其比值之间的相关系数(Pearson检验)
Table 4 The correlation coefficient among carbon (C), nitrogen (N), phosphorus (P) content and their ratios (Pearson test)
项目 Item | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
C | 1 | |||||
N | -0.407** | 1 | ||||
P | -0.342** | 0.814** | 1 | |||
C:N | 0.374** | -0.901** | -0.802** | 1 | ||
C:P | 0.432** | -0.746** | -0.796** | 0.833** | 1 | |
N:P | -0.001 | 0.366** | -0.118 | -0.276** | 0.213* | 1 |
[1] | Abliz A, Lü GH, Zhang XN, Gong YM (2015). Carbon, nitrogen and phosphorus stoichiometry of photosynthetic organs across Ebinur Lake Wetland Natural Reserve of Xinjiang, Northwest China.Chinese Journal of Ecology, 34, 2123-2130. (in Chinese with English abstract)[阿布里孜·阿不都热合曼, 吕光辉, 张雪妮, 公延明 (2015). 新疆艾比湖流域植物光合器官碳、氮、磷生态化学计量特征. 生态学杂志, 34, 2123-2130.] |
[2] | An Z, Niu DC, Wen HY, Yang Y, Zhang HR, Fu H (2011). Effects of N addition on nutrient resorption efficiency and C:N:P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China. Chinese Journal of Plant Ecology, 35, 801-807. (in Chinese with English abstract)[安卓, 牛得草, 文海燕, 杨益, 张洪荣, 傅华 (2011). 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C:N:P化学计量特征的影响. 植物生态学报, 35, 801-807.] |
[3] | Bin ZJ, Wang JJ, Zhang WP, Xu DH, Cheng XH, Li KJ, Cao DH (2014). Effects of N addition on ecological stoichiometric characteristics in six dominant plant species of alpine meadow on the Qinghai-Xizang Plateau, China.Chinese Journal of Plant Ecology, 38, 231-237. (in Chinese with English abstract)[宾振钧, 王静静, 张文鹏, 徐当会, 程雪寒, 李柯杰, 曹德昊 (2014). 氮肥添加对青藏高原高寒草甸6个群落优势种生态化学计量学特征的影响. 植物生态学报, 38, 231-237.] |
[4] | Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Iterland S, Kilham SS, Mcauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580. |
[5] | Editorial Committee of Flora of China, Chinese Academy of Sciences (1974). Flora of China (Volume 36). Science Press, Beijing. 70-71. (in Chinese)[中国科学院中国植物志编辑委员会 (1974). 中国植物志(第三十六卷). 科学出版社, 北京. 70-71.] |
[6] | Freudenberg K, Neish AC (1968). Constitution and Biosynthesis of Lignin. Springer-Verlag, Berlin. 199. |
[7] | Guo BH, Liu GL, Fan SH, Du MY, Su WH (2014). Distribution patterns and stoichiometry characteristics of C, N, P in Phyllostachys edulis forests of different productivity levels. Scientia Silvae Sinicae, 50(6), 1-9. (in Chinese with English abstract)[郭宝华, 刘广路, 范少辉, 杜满义, 苏文会 (2014). 不同生产力水平毛竹林碳氮磷的分布格局和计量特征. 林业科学, 50(6), 1-9.] |
[8] | Han WX, Fang JY, Guo D, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
[9] | He JS, Wang L, Dan FBF, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
[10] | Huang WJ, Zhou GY, Liu JX, Zhang DQ, Xu ZH, Liu SZ (2012). Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems.Environmental Pollution, 168, 113-120. |
[11] | He HL, Yang XC, Wang D, Sun YY, Yin CY, Li T, Li YX, Zhou GY, Zhang L, Liu Q (2015). Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus ofSibiraea angustata shrub in eastern Qinghai-Tibetan Plateau. Chinese Journal of Applied and Environmental Biology, 21, 1128-1135. (in Chinese with English abstract)[贺合亮, 阳小成, 王东, 孙誉育, 尹春英, 李婷, 黎云祥, 周国英, 张林, 刘庆 (2015). 青藏高原东部窄叶鲜卑花灌丛土壤C、N、P生态化学计量学特征. 应用与环境生物学报, 21, 1128-1135.] |
[12] | He JS, Han XG (2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems.Chinese Journal of Plant Ecology, 34, 2-6. (in Chinese)[贺金生, 韩兴国(2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.] |
[13] | Hu YS, Yao XY, Liu YH (2014). N and P stoichiometric traits of plant and soil in different forest succession stages in Changbai Mountains.Chinese Journal of Applied Ecology, 25, 632-638. (in Chinese with English abstract)[胡耀升, 么旭阳, 刘艳红 (2014). 长白山森林不同演替阶段植物与土壤氮磷的化学计量特征. 应用生态学报, 25, 632-638.] |
[14] | Li DF, Yu SL, Wang GX, Fang WW (2015). Environmental heterogeneity and mechanism of stoichiometry properties of vegetative organs in dominant shrub communities across the Loess Plateau.Chinese Journal of Plant Ecology, 39, 453-465. (in Chinese with English abstract)[李单凤, 于顺利, 王国勋, 方伟伟 (2015). 黄土高原优势灌丛营养器官化学计量特征的环境分异和机制. 植物生态学报, 39, 453-465.] |
[15] | Li HS (2002). Modern Plant Physiology. Higher Education Press, Beijing, 96-100. (in Chinese)[李合生 (2002). 现代植物生理学. 高等教育出版社, 北京. 96-100.] |
[16] | Li J, Yin CY, Zhou XB, Wei YH, Qiao G, Liu Q (2014). Ef- fects of nitrogen addition on soil respiration of Sibiraea angustata shrub in the eastern margin of Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 34, 5558-5569. (in Chin- ese with English abstract)[李娇, 尹春英, 周晓波, 魏宇航, 高巧, 刘庆 (2014). 施氮对青藏高原东缘窄叶鲜卑花灌丛土壤呼吸的影响. 生态学报, 34, 5558-5569.] |
[17] | Li Z, Han L, Liu YH, An SQ, Leng X (2012). C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China. Chinese Journal of Plant Ecology, 36, 1054-1061. (in Chinese with English abstract)[李征, 韩琳, 刘玉虹, 安树青, 冷欣 (2012). 滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征. 植物生态学报, 36, 1054-1061.] |
[18] | Liu C, Wang Y, Wang N, Wang GX (2012). Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: A review.Chinese Journal of Plant Ecology, 36, 1205-1216. (in Chinese with English abstract)[刘超, 王洋, 王楠, 王根轩 (2012). 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 36, 1205-1216.] |
[19] | Ma HH, Hou L, Dou YX, Zhang SX, Yang AD, Tian RX (2014). Stoichiometric characteristics of nitrogen and phosphorous in leaves of dominant shrub species in pine-oak mixed forest in the Qinling Mountains.Journal of Northeast Forestry University, 42(11), 35-38. (in Chinese with English abstract)[马红红, 侯琳, 窦艳星, 张硕新, 杨安定, 田瑞选 (2014). 秦岭松栎混交林优势灌木叶片N、P化学计量特征. 东北林业大学学报, 42(11), 35-38.] |
[20] | Ma LS, Chen YN, Zhang XR, Yang JJ, An SS (2014). Characteristics of leaf ecological stoichiometry ofRobinia pseudoacacia in Loess Plateau. Research of Soil and Water Conservation, 21(3), 57-61. (in Chinese with English abstract)[马露莎, 陈亚南, 张向茹, 杨佳佳, 安韶山 (2014). 黄土高原刺槐叶片生态化学计量学特征. 水土保持研究, 21(3), 57-61.] |
[21] | Minden V, Kleyer M (2014). Internal and external regulation of plant organ stoichiometry.Plant Biology, 16, 897-907. |
[22] | Moore TR, Trofymow JA, Prescott CE, Titus BD (2011). Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests.Plant and Soil, 339, 163-175. |
[23] | Niklas KJ, Cobb ED (2005). N, P, and C stoichiometry ofEraanthis hyemalis(Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 92, 1256-1263. |
[24] | Niu DC, Li Q, Jiang SG, Chang PJ, Fu H (2013). Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau.Chinese Journal of Plant Ecology, 37, 317-325. (in Chinese with English abstract)[牛得草, 李茜, 江世高, 常佩静, 傅华 (2013). 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报, 37, 317-325.] |
[25] | Qu FZ, Yu JB, Du SY, Li YZ, Lü XF, Ning K, Wu HF, Meng L (2014). Influences of anthropogenic cultivation on C, N and P stoichiometry of reed-dominated coastal wetlands in the Yellow River Delta.Geoderma, 236, 227-232. |
[26] | Ren SJ, Yu GR, Tao B, Wang SQ (2007). Leaf nitrogen and phosphorus stoichiometry across 643 terrestrial plant spe- cies in NSTEC.Environmental Science, 28, 2665-2673. (in Chinese with English abstract)[任书杰, 于贵瑞, 陶波, 王绍强 (2007). 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究. 环境科学, 28, 2665-2673.] |
[27] | Song ZL, Liu HY, Zhao FJ, Xu CY (2014). Ecological stoichiometry of N:P:Si in Chinese grasslands.Plant and Soil, 380, 165-179. |
[28] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. 1-20. |
[29] | Vitousek PM (1998). Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha.Ecosystems, 1, 401-407. |
[30] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships.New Phytologist, 166, 485-496. |
[31] | Wang K, Wu HY, Lu H, Xu DY, Li N (2013). Leaf stoichiometric properties of garden tree species in Fuxin city.Arid Zone Research, 30, 236-241. (in Chinese with English abstract)[王凯, 吴祥云, 卢慧, 徐东洋, 李娜 (2013). 阜新市主要园林树种叶片生态化学计量特征. 干旱区研究, 30, 236-241.] |
[32] | Wang ZW, Xu XH, Chen XT, Yu SS, Liu HD, Lin LG, Li B (2014). Chemical constituents from the aerial part of Sibi- raea angustata. Journal of Chinese Medicinal Materials, 37, 57-60. (in Chinese with English abstract)[王章伟, 徐向红, 陈笑天, 庾石山, 刘宏栋, 林利光, 李斌 (2014). 窄叶鲜卑花地上部分化学成分研究. 中药材, 37, 57-60.] |
[33] | Wu N (1998). The community types and biomass of Sibiraea angustata scrub and their relationship with environmental factors in northwestern Sichuan. Acta Botanica Sinica, 40, 860-870. (in Chinese with English abstract)[吴宁 (1998). 川西北窄叶鲜卑花灌丛的类型和生物量及其与环境因子的关系. 植物学报, 40, 860-870.] |
[34] | Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China.Chinese Journal of Plant Ecology, 34, 23-28. (in Chinese with English abstract)[吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.] |
[35] | Xia CX, Yu D, Wang Z, Xie D (2014). Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China.Ecological Engineering, 70, 406-413. |
[36] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region, Zhejiang Province, eastern China.Chinese Journal of Plant Ecology, 34, 48-57. (in Chinese with English abstract)[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.] |
[37] | Yan K, Fu DG, He F, Duan CQ (2011). Leaf nutrient stoichiometry of plants in the phosphorus-enriched soils of the Lake Dianchi watershed China.Chinese Journal of Plant Ecology, 35, 353-361. (in Chinese with English abstract)[阎凯, 付登高, 何峰, 段昌群 (2011). 滇池流域富磷区不同土壤磷水平下植物叶片的养分化学计量特征. 植物生态学报, 35, 353-361.] |
[38] | Yang M, Wang QQ, Yuan DG, Li QQ, Zeng J, Luo Q, Lan XM, Tang J (2015). C, N, P stoichiometry traits of different flue-cured tobacco organs at different growth stages.Chinese Journal of Eco-Agriculture, 23, 686-693. (in Chinese with English abstract)[杨梅, 王昌全, 袁大刚, 李启权, 曾建, 罗茜, 兰兴梅, 唐杰 (2015). 不同生长期烤烟各器官C、N、P生态化学计量学特征. 中国生态农业学报, 23, 686-693.] |
[39] | Yao L, Ju Y (2009). Effects of Sibiraea augustata on digestive system. Chinese Journal Integrated Traditional Western Medicine Digestion, 17, 376-378. (in Chinese with English abstract)[姚莉, 鞠洋 (2009). 窄叶鲜卑花促消化作用的实验研究. 中国中西医结合消化杂志, 17, 376-378.] |
[40] | Zeng DH, Chen GS (2005). Ecological stoichiometry: A science to explore the complexity of living systems.Acta Phytoecologica Sinica, 29, 141-153. (in Chinese with English abstract)[曾德慧, 陈广生 (2005). 生态化学计量学:复杂生命系统奥秘的探索. 植物生态学报, 29, 141-153.] |
[41] | Zeng DP, Jiang LL, Zeng CS, Wang WQ, Wang C (2013). Reviews on the ecological stoichiometry characteristics and its applications.Acta Ecologica Sinica, 33, 5484-5492. (in Chinese with English abstract)[曾冬萍, 蒋利玲, 曾从盛, 王维奇, 王纯 (2013). 生态化学计量学特征及其应用研究进展. 生态学报, 33, 5484-5492.] |
[42] | Zhang FH, He F, He YP, Fan H, Jiang TL (2008). The influencing factors and protection of biodiversity in western Sichuan. Journal of Sichuan Forestry Science and |
[43] | Technology, 29(6), 46-51. (in Chinese with English abstract)[张发会, 何飞, 何亚平, 樊华, 降廷伦 (2008). 川西生物多样性的影响因素及其保护对策. 四川林业科技, 29(6), 46-51.] |
[44] | Zhang K, He MZ, Li XR, Tan HJ, Gao YH, Li G, Han GJ, Wu YY (2014). Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert.Acta Ecologica Sinica, 34, 6538-6547. (in Chinese with English abstract)[张珂, 何明珠, 李新荣, 谭会娟, 高艳红, 李刚, 韩国君, 吴杨杨 (2014). 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征. 生态学报, 34, 6538-6547.] |
[45] | Zhang ZS, Song XL, Lu XG, Xue ZS (2013). Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: Influences of vegetation coverage, plant communities, geomorphology, and seawalls.Journal of Soils Sediments, 13, 1043-1051. |
[46] | Zhang XS (1978). The plateau zonality of vegetation in Xizang.Acta Botanica Sinica, 20, 140-149. (in Chinese with English abstract)[张新时 (1978). 西藏植被的高原地带性. 植物学报, 20, 140-149.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[5] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[6] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[7] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[8] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[9] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[10] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[11] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[12] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[13] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[14] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[15] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19