植物生态学报 ›› 2008, Vol. 32 ›› Issue (1): 88-94.DOI: 10.3773/j.issn.1005-264x.2008.01.010
马泽清1,2(), 刘琪王景1,*(
), 徐雯佳1,2, 李轩然1,2, 刘迎春1,2
收稿日期:
2006-11-01
接受日期:
2007-09-13
出版日期:
2008-11-01
发布日期:
2008-01-30
通讯作者:
马泽清,刘琪王景
作者简介:
* E-mail: liuqijing@gmail.com;本研究野外工作承蒙陈永瑞副研究员和林耀明硏究员大力协助,土壤调査与分析得到邹敬东的大力帮助,在此一并致谢
基金资助:
MA Ze-Qing1,2(), LIU Qi-Jing1,*(
), XU Wen-Jia1,2, LI Xuan-Ran1,2, LIU Ying-Chun1,2
Received:
2006-11-01
Accepted:
2007-09-13
Online:
2008-11-01
Published:
2008-01-30
Contact:
MA Ze-Qing,LIU Qi-Jing
About author:
* E-mail: mazeqing@gmail.com摘要:
根据野外调查和实验分析研究了江西省千烟洲人工针叶林下狗脊蕨(Woodwardia japonica)群落的生物量、细根生物量、净初级生产力(Net primary productivity, NPP)、比叶面积(Specific leaf area, SLA)和叶面积指数(Leaf area index, LAI)等。通过叶片参数和地上生物量的相关关系建立了狗脊蕨单株地上生物量估算模型,分别为W1=0.021H1.545(R2=0.790)和W1=2.518(D2H)0.616(R2=0.894;H为株高,D为地径)。人工针叶林下灌草层地上生物量为367.8 g·m-2(52~932 g·m-2),凋落物为1 631 g·m-2(672~2 763 g·m-2),分别占乔木层地上生物量的4.7%(1.55%~13.2%)和20.7%(7.6%~32.1%)。狗脊蕨群落地上生物量和NPP分别为266.6 g·m-2和88.67 g·m-2·a-1,其中狗脊蕨种群占73.7%;地下生物量为212.6 g·m-2。狗脊蕨的SLA和叶干物质含量(Leaves day mutter content, LDMC)分别为144.0 cm2·g-1和31.99%,二者之间呈显著负相关;最佳叶面积估算模型为S=21.922 6-0.152L2+0.000 9L3(9.0≤L(叶片长度)≤23.5;1.4≤W(叶片宽度)≤5.9)。狗脊蕨种群的LAI为1.8。土壤含水量对狗脊蕨生物量有显著影响。群落生物量与土壤有机质和全氮含量正相关。
马泽清, 刘琪王景, 徐雯佳, 李轩然, 刘迎春. 江西千烟洲人工针叶林下狗脊蕨群落生物量. 植物生态学报, 2008, 32(1): 88-94. DOI: 10.3773/j.issn.1005-264x.2008.01.010
MA Ze-Qing, LIU Qi-Jing, XU Wen-Jia, LI Xuan-Ran, LIU Ying-Chun. A PRELIMINARY STUDY ON BIOMASS OF WOODWARDIA JAPONICA COMMUNITY UNDER A CONIFEROUS PLANTATION IN SUBTROPICAL CHINA. Chinese Journal of Plant Ecology, 2008, 32(1): 88-94. DOI: 10.3773/j.issn.1005-264x.2008.01.010
林型 Forest type | 湿地松林 Pinus elliottii forest | 马尾松林 P.massoniana forest | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
坡向 Aspect | SUN | SHA | SHA | SUN | SHA | SHA | SHA | |
坡度 Slope | <15° | <13° | <13° | <3° | <5° | <3° | <15° | |
郁闭度 Canopy density | 0.90 | 0.85 | 0.90 | 0.85 | 0.92 | 0.80 | 0.95 |
表1 狗脊蕨样地概况
Table 1 Site conditions of Woodwardia japonica community
林型 Forest type | 湿地松林 Pinus elliottii forest | 马尾松林 P.massoniana forest | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
坡向 Aspect | SUN | SHA | SHA | SUN | SHA | SHA | SHA | |
坡度 Slope | <15° | <13° | <13° | <3° | <5° | <3° | <15° | |
郁闭度 Canopy density | 0.90 | 0.85 | 0.90 | 0.85 | 0.92 | 0.80 | 0.95 |
生物学指标 Biologic items | 最小值 Min | 最大值 Max | 平均值 Mean | 标准差 Standard error | 观测数 Number |
---|---|---|---|---|---|
地上生物量 Aboveground biomass (g) | 0.6 | 14.5 | 5.2 | 3.33 | 70 |
地径Diameter (mm) | 1.67 | 7.38 | 4.39 | 1.21 | 70 |
高度Height (cm) | 16 | 131 | 67.7 | 24.6 | 70 |
冠幅Crown width size (cm) | 15 | 49 | 29.4 | 7.63 | 70 |
叶柄长 Petiole length (cm) | 13 | 59 | 33 | 11.53 | 70 |
表2 狗脊蕨植株主要参数
Table 2 General variables for Woodwardia japonica individual
生物学指标 Biologic items | 最小值 Min | 最大值 Max | 平均值 Mean | 标准差 Standard error | 观测数 Number |
---|---|---|---|---|---|
地上生物量 Aboveground biomass (g) | 0.6 | 14.5 | 5.2 | 3.33 | 70 |
地径Diameter (mm) | 1.67 | 7.38 | 4.39 | 1.21 | 70 |
高度Height (cm) | 16 | 131 | 67.7 | 24.6 | 70 |
冠幅Crown width size (cm) | 15 | 49 | 29.4 | 7.63 | 70 |
叶柄长 Petiole length (cm) | 13 | 59 | 33 | 11.53 | 70 |
D | H | C | H1 | D2H | B | |
---|---|---|---|---|---|---|
D | 1.00 | 0.77 | 0.67 | 0.68 | 0.90 | 0.83 |
H | 1.00 | 0.77 | 0.89 | 0.89 | 0.86 | |
C | 1.00 | 0.66 | 0.72 | 0.82 | ||
H1 | 1.00 | 0.81 | 0.73 | |||
D2H | 1.00 | 0.92 | ||||
B | 1.00 |
表3 狗脊蕨各变量相关性分析表
Table 3 Correlation matrix for Woodwardia japonica
D | H | C | H1 | D2H | B | |
---|---|---|---|---|---|---|
D | 1.00 | 0.77 | 0.67 | 0.68 | 0.90 | 0.83 |
H | 1.00 | 0.77 | 0.89 | 0.89 | 0.86 | |
C | 1.00 | 0.66 | 0.72 | 0.82 | ||
H1 | 1.00 | 0.81 | 0.73 | |||
D2H | 1.00 | 0.92 | ||||
B | 1.00 |
模型 Model | R2 | F | p |
---|---|---|---|
W1=-17.465+2.824D+0.201H+ 0.407C-0.139H1 | 0.865 | 103.82 | <0.001 |
W1=-18.351+2.809D+0.14H+0.42C | 0.859 | 134.20 | <0.001 |
W1=-13.751+3.33D+0.221H | 0.818 | 150.24 | <0.001 |
W1=-14.387+0.225H+0.51C | 0.811 | 144.22 | <0.001 |
W1=-13.836+6.75C | 0.692 | 152.86 | <0.001 |
W1=-7.646+0.347D | 0.748 | 201.75 | <0.001 |
W1=-15.55+1.068H | 0.683 | 146.56 | <0.001 |
W1=4.112+0.732(D2H) | 0.844 | 367.23 | <0.001 |
W1=2.518(D2H)0.676 | 0.894 | 574.49 | <0.001 |
W1=3.156+0.869(D2H)+-0.003(D2H)2 | 0.847 | 185.55 | <0.001 |
W1=0.715D2.011 | 0.816 | 301.23 | <0.001 |
W1=1.391×1.659D | 0.794 | 262.30 | <0.001 |
W1=1.391e0.506D | 0.794 | 262.30 | <0.001 |
W1=e(0.33+0.506D) | 0.794 | 262.30 | <0.001 |
W1=0.021H1.545 | 0.790 | 256.39 | <0.001 |
W1=e(4.233+(-6.71)/D) | 0.773 | 231.20 | <0.001 |
表4 狗脊蕨生物量模型总表
Table 4 Biomass model of Woodwardia japonica
模型 Model | R2 | F | p |
---|---|---|---|
W1=-17.465+2.824D+0.201H+ 0.407C-0.139H1 | 0.865 | 103.82 | <0.001 |
W1=-18.351+2.809D+0.14H+0.42C | 0.859 | 134.20 | <0.001 |
W1=-13.751+3.33D+0.221H | 0.818 | 150.24 | <0.001 |
W1=-14.387+0.225H+0.51C | 0.811 | 144.22 | <0.001 |
W1=-13.836+6.75C | 0.692 | 152.86 | <0.001 |
W1=-7.646+0.347D | 0.748 | 201.75 | <0.001 |
W1=-15.55+1.068H | 0.683 | 146.56 | <0.001 |
W1=4.112+0.732(D2H) | 0.844 | 367.23 | <0.001 |
W1=2.518(D2H)0.676 | 0.894 | 574.49 | <0.001 |
W1=3.156+0.869(D2H)+-0.003(D2H)2 | 0.847 | 185.55 | <0.001 |
W1=0.715D2.011 | 0.816 | 301.23 | <0.001 |
W1=1.391×1.659D | 0.794 | 262.30 | <0.001 |
W1=1.391e0.506D | 0.794 | 262.30 | <0.001 |
W1=e(0.33+0.506D) | 0.794 | 262.30 | <0.001 |
W1=0.021H1.545 | 0.790 | 256.39 | <0.001 |
W1=e(4.233+(-6.71)/D) | 0.773 | 231.20 | <0.001 |
回归方程 Model | R2 | F | p |
---|---|---|---|
S=-40.394 9+4.712 5L | 0.780 | 134.75 | <0.001 |
S=21.531 1+5.486 4W | 0.109 | 4.63 | 0.038 |
S=-44.867 9+4.551 3L+2.105 2W | 0.795 | 71.81 | <0.001 |
S=59.134 4-7.914 1L+0.377 8L2 | 0.859 | 113.04 | <0.001 |
S=21.922 6-0.152L2+0.000 9L3 | 0.867 | 120.44 | <0.001 |
S=3.929 4×1.136 2L | 0.809 | 160.77 | <0.001 |
S=39.294e0.127 6L | 0.809 | 160.77 | <0.001 |
表5 狗脊蕨鲜叶面积回归模型
Table 5 Leaf area models of Woodwardia japonica
回归方程 Model | R2 | F | p |
---|---|---|---|
S=-40.394 9+4.712 5L | 0.780 | 134.75 | <0.001 |
S=21.531 1+5.486 4W | 0.109 | 4.63 | 0.038 |
S=-44.867 9+4.551 3L+2.105 2W | 0.795 | 71.81 | <0.001 |
S=59.134 4-7.914 1L+0.377 8L2 | 0.859 | 113.04 | <0.001 |
S=21.922 6-0.152L2+0.000 9L3 | 0.867 | 120.44 | <0.001 |
S=3.929 4×1.136 2L | 0.809 | 160.77 | <0.001 |
S=39.294e0.127 6L | 0.809 | 160.77 | <0.001 |
样方号 Plot number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 平均Mean | |
---|---|---|---|---|---|---|---|---|---|
地上总生物量 Total aboveground biomass (g·m-2) | 209.7 | 169.8 | 434.0 | 298.0 | 407.0 | 135.9 | 212.1 | 266.6 | |
狗脊蕨 Woodwardia japonica | 地上生物量 Aboveground biomass (g·m-2) | 169.4 | 126.2 | 286.4 | 223.5 | 318.7 | 88.9 | 162.8 | 196.6 |
叶生物量Leaf biomass (g·m-2) | 106.9 | 79.7 | 180.9 | 141.1 | 201.2 | 56.1 | 102.8 | 124.1 | |
叶面积指数 LAI | 1.54 | 1.15 | 2.60 | 2.03 | 2.90 | 0.81 | 1.48 | 1.80 | |
凋落物累积量Accumulated litter (g·m-2) | 2 111 | 2 418.5 | 2 249.7 | 2 169.3 | 1 752.5 | 672.7 | 1 138.4 | 1 787.4 | |
根生物量 Root biomass | 乔木 Tree (g·m-2) | 378.8 | 218.6 | — | — | — | 310.5 | 282.9 | 297.7 |
草本Herbage (g·m-2) | 217.4 | 170.5 | — | — | — | 200.1 | 262.4 | 212.6 | |
细根生物量 Fine root biomass (g·m-2) | 0~10 cm | 201.3 | 132.2 | — | — | — | 223.9 | 195.8 | 188.3 |
10~20 cm | 84.6 | 42.5 | — | — | — | 41.2 | 49.4 | 54.4 | |
20~30 cm | 19.8 | 29.4 | — | — | — | 14.7 | 35 | 24.7 |
表6 狗脊蕨群落生物量与叶面积指数分析
Table 6 Biomass and leaf area index (LAI) of Woodwardia japonica community
样方号 Plot number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 平均Mean | |
---|---|---|---|---|---|---|---|---|---|
地上总生物量 Total aboveground biomass (g·m-2) | 209.7 | 169.8 | 434.0 | 298.0 | 407.0 | 135.9 | 212.1 | 266.6 | |
狗脊蕨 Woodwardia japonica | 地上生物量 Aboveground biomass (g·m-2) | 169.4 | 126.2 | 286.4 | 223.5 | 318.7 | 88.9 | 162.8 | 196.6 |
叶生物量Leaf biomass (g·m-2) | 106.9 | 79.7 | 180.9 | 141.1 | 201.2 | 56.1 | 102.8 | 124.1 | |
叶面积指数 LAI | 1.54 | 1.15 | 2.60 | 2.03 | 2.90 | 0.81 | 1.48 | 1.80 | |
凋落物累积量Accumulated litter (g·m-2) | 2 111 | 2 418.5 | 2 249.7 | 2 169.3 | 1 752.5 | 672.7 | 1 138.4 | 1 787.4 | |
根生物量 Root biomass | 乔木 Tree (g·m-2) | 378.8 | 218.6 | — | — | — | 310.5 | 282.9 | 297.7 |
草本Herbage (g·m-2) | 217.4 | 170.5 | — | — | — | 200.1 | 262.4 | 212.6 | |
细根生物量 Fine root biomass (g·m-2) | 0~10 cm | 201.3 | 132.2 | — | — | — | 223.9 | 195.8 | 188.3 |
10~20 cm | 84.6 | 42.5 | — | — | — | 41.2 | 49.4 | 54.4 | |
20~30 cm | 19.8 | 29.4 | — | — | — | 14.7 | 35 | 24.7 |
样方 Plots | 1 | 2 | 6 | 7 | 平均 Mean |
---|---|---|---|---|---|
pH值 pH value | 4.83 | 4.79 | 4.86 | 4.61 | 4.77 |
有机质 Soil organic matter (%) | 1.169 | 0.972 | 0.862 | 1.260 | 1.07 |
全氮含量Total nitrogen contents (%) | 0.064 | 0.055 | 0.044 | 0.070 | 0.06 |
碱解氮Alkaline hydrolyzing nitrogen (mg·kg-1) | 54.5 | 58.5 | 61.8 | 70.4 | 61.31 |
有效磷Available phosphorus (mg·kg-1) | 0.76 | 1.34 | 0.38 | 1.24 | 0.93 |
速效钾Available potassium (mg·kg-1) | 24.40 | 31.78 | 43.58 | 31.09 | 32.71 |
缓效钾Slowly available potassium(mg·kg-1) | 201.31 | 186.67 | 261.27 | 186.09 | 208.84 |
表7 狗脊蕨群落(0~40 cm)土壤养分分析
Table 7 Soil (depth 0-40 cm) nutrients in Woodwardia japonica community
样方 Plots | 1 | 2 | 6 | 7 | 平均 Mean |
---|---|---|---|---|---|
pH值 pH value | 4.83 | 4.79 | 4.86 | 4.61 | 4.77 |
有机质 Soil organic matter (%) | 1.169 | 0.972 | 0.862 | 1.260 | 1.07 |
全氮含量Total nitrogen contents (%) | 0.064 | 0.055 | 0.044 | 0.070 | 0.06 |
碱解氮Alkaline hydrolyzing nitrogen (mg·kg-1) | 54.5 | 58.5 | 61.8 | 70.4 | 61.31 |
有效磷Available phosphorus (mg·kg-1) | 0.76 | 1.34 | 0.38 | 1.24 | 0.93 |
速效钾Available potassium (mg·kg-1) | 24.40 | 31.78 | 43.58 | 31.09 | 32.71 |
缓效钾Slowly available potassium(mg·kg-1) | 201.31 | 186.67 | 261.27 | 186.09 | 208.84 |
[1] | Chapin FS Ⅲ, Matson P, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York, 1-436. |
[2] | Chen XL (陈遐林), Ma QY (马钦彦) (2002). Studies on the biomass and productivity of typical shrubs in Taiyue Mountain, Shanxi Province. Forest Research (林业科学研究), 15, 300-309. (in Chinese with English abstract) |
[3] | Feng ZW (冯宗炜) (1982). Determination of biomass of Pinus massoniana stand in Huitong County, Hunan. Scientia Silvae Sinicae (林业科学), 18, 127-134. (in Chinese with English abstract) |
[4] | He YL (何艺玲), Fu MY (傅懋毅) (2002). Review of studies on understorey of plantations. Forest Research (林业科学研究), 15, 727-733. (in Chinese with English abstract) |
[5] | Institute of Botany, Chinese Academy of Sciences (中国科学院植物研究所) (1987). China's Higher Plant Illustrated Handbook Ⅰ (中国高等植物图鉴第一册). Science Press, Beijing, 218-219. (in Chinese) |
[6] | Li XR (李轩然), Liu QJ (刘琪王景), Cai Z (蔡哲), Ma ZQ (马泽清) (2007). Specific leaf area and leaf area index of conifer plantations in Qianyanzhou station of subtropical China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 93-101. (in Chinese with English abstract) |
[7] | Li YL (李玉霖), Cui JY (崔建垣), Su YZ (苏永忠) (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica (生态学报), 25, 304-311. (in Chinese with English abstract) |
[8] | Liu GH (刘国华), Zhang JY (张洁瑜) (2003). Distribution regulation of aboveground biomass of three main shrub typesin the dry valley of Minjiang River. Journal of Mountain Research (山地学报), 21, 24-32. (in Chinese with English abstract) |
[9] | Liu QJ (刘琪王景), Hu LL (胡理乐), Li XR (李轩然) (2005). Plant diversity in Qianyanzhou after 20 years of small watershed treatment. Acta Phytoecologica Sinica (植物生态学报), 29, 766-774. (in Chinese with English abstract) |
[10] | Research Group Evergreen Broad-Leaved Forest in Jiangxi (江西省常绿阔叶林研究课题组) (1996). Jiangxi evergreen broad-leaved forest aboveground biomass research. Jiangxi Forestry (江西林业科技), (2), 1-4. (in Chinese) |
[11] | Scientific Investigation Team of Chinese Academy of Sciences for Southern Mountainous Areas, Management Office of Natural Resources in Ji’an Prefecture of Jiangxi Province (中国科学院南方山区综合科学考察队) (1989). Management and Development of Red Hilly Area—Experimental Study in Qianyanzhou (红壤丘陵综合开发治理——千烟洲综合开发治理试验研究). Science Press, Beijing, 1-23. (in Chinese) |
[12] | Wright IJ, Westoby M, Reich PB (2002). Convergence towards higher leaf mass per area in dry and nutrient poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543. |
[13] | Xu H (胥辉) (1997). Review of forest biomass model. Forest Resource Management (林业资源管理), (5), 33-36. (in Chinese) |
[14] | Xu H (胥辉), Wen SJ (文仕军) (2000). Studies on the Eucalyptus camaldulensis biomass in Xerothemic Valley. Journal of Southwest Forestry College (西南林学院学报), 20, 191-195. (in Chinese with English abstract) |
[15] | Yan WD (闫文德), Tian DL (田大伦), Jiao XM (焦秀梅) (2003). A study on biomass dynamics and distribution of undervegetation in the secondary generation of Chinese fir plantation in Huitong. Forest Research (林业科学研究), 16, 323-327. (in Chinese with English abstract) |
[16] | Yang CD (杨承栋), Jiao RZ (焦如珍) (1995). Developing undergrowth vegetation is an important way to recover soil fertility of Chinese fir plantation. Scientia Silvae Sinicae (林业科学), 31, 267-283. (in Chinese with English abstract) |
[17] | Yang FT (杨风亭), Liu JY (刘纪远), Zhuang DF (庄大方), Hu YF (胡云锋) (2004). The preliminarily study on the ecological environment effects of land-use change in red earth hilly area in Southeast China. Progress in Geography (地理科学进展), 23(5), 43-55. (in Chinese with English abstract) |
[18] | Yang YS (杨玉盛), Chen GS (陈光水), Lin P (林鹏), Huang RZ (黄荣珍), Chen YX (陈银秀), He ZM (何宗明) (2003). Fine root distribution, seasonal pattern and production in a native forest and monoculture plantations in subtropical China. Acta Ecologica Sinica (生态学报), 23, 1719-1732. (in Chinese with English abstract) |
[19] | Zhang HQ (张红旗), Chen YR (陈永瑞), Niu D (牛栋) (2004). Retrieving effective leaf area index of conifer forests using landsat TM images in red soil hilly region. Acta Agriculturae Universitis Jiangxiensis (江西农业大学学报), 26, 159-163. (in Chinese with English abstract) |
[20] | Zhang L (张林), Luo TX (罗天祥) (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica (植物生态学报), 28, 844-852. (in Chinese with English abstract) |
[21] | Zhang XQ (张小全), Wu KH (吴可红) (2001). Fine-root production and turnover for forest ecosystem. Scientia Silvae Sinicae (林业科学), 37(3), 126-138. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[11] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[12] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[13] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[14] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
[15] | 袁春阳, 李济宏, 韩鑫, 洪宗文, 刘宣, 杜婷, 游成铭, 李晗, 谭波, 徐振锋. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19