植物生态学报 ›› 2013, Vol. 37 ›› Issue (10): 901-911.DOI: 10.3724/SP.J.1258.2013.00093
• 研究论文 • 下一篇
王云霓,熊伟(),王彦辉,于澎涛,曹恭祥,徐丽宏,左海军,贺亮亮
收稿日期:
2013-04-10
接受日期:
2013-06-28
出版日期:
2013-04-10
发布日期:
2013-09-29
通讯作者:
熊伟
基金资助:
WANG Yun-Ni,XIONG Wei(),WANG Yan-Hui,YU Peng-Tao,CAO Gong-Xiang,XU Li-Hong,ZUO Hai-Jun,HE Liang-Liang
Received:
2013-04-10
Accepted:
2013-06-28
Online:
2013-04-10
Published:
2013-09-29
Contact:
XIONG Wei
摘要:
为揭示我国西北山地温带针叶林降水利用效率(RUE)的年际变化及其对气象因子响应的差异性, 在宁夏六盘山研究了华山松(Pinus armandii)天然林、华北落叶松(Larix principis-rupprechtii)和油松(Pinus tabulaeformis)人工林的RUE及其与气象因子间的关系。结果表明: 3种针叶林RUE及其年际变化存在种间差异。生产力高的林分(两种人工林)具有更高的RUE, 华北落叶松林年平均生产力和RUE分别为6.72 t·hm -2·a -1和1.12 g·m -2·mm -1, 是华山松林的2.53倍和2.49倍; 油松林分别为5.76 t·hm -2·a -1和0.97 g·m -2·mm -1, 也远高于华山松林。在林龄小于32年时, 3种林分RUE总体表现出随林龄而增加的趋势, 但存在着种间差异, 其中两种人工林增速更快; 华山松林在林龄为32-45年时, RUE呈波动变化, 之后呈下降趋势。RUE的年际变化趋势与林分生产力相似, 即在生产力较高的年份RUE也较高。气象因子对RUE的影响有明显的“滞后效应”和种间差异。RUE受年降水量及其年内分配格局的影响。随年降水量增加, 华山松林RUE逐渐减小, 而华北落叶松和油松林RUE均先升高后降低; 在干旱年份3种针叶林RUE趋向于相近的值(不一定是最大值), 而在湿润年份趋向于相同的最小值; 除受当年春季(4月)或秋季(9-11月)的降水量影响外, 3种针叶林的RUE还受上一年夏秋(8-9月)的降水量影响。3种针叶林的RUE都极显著地受到上年6月、当年3与6月气温的影响; 此外, 华山松林RUE与当年2月气温负相关, 两人工林均受到当年4、5月气温的显著促进作用。
王云霓,熊伟,王彦辉,于澎涛,曹恭祥,徐丽宏,左海军,贺亮亮. 宁夏六盘山3种针叶林降水利用效率的年际变化及其对气象因子的响应. 植物生态学报, 2013, 37(10): 901-911. DOI: 10.3724/SP.J.1258.2013.00093
WANG Yun-Ni,XIONG Wei,WANG Yan-Hui,YU Peng-Tao,CAO Gong-Xiang,XU Li-Hong,ZUO Hai-Jun,HE Liang-Liang. Interannual variation of rain-use efficiency of three coniferous forests and their response to meteorological factors in Liupan Mountains of Ningxia. Chinese Journal of Plant Ecology, 2013, 37(10): 901-911. DOI: 10.3724/SP.J.1258.2013.00093
植被类型 Vegetation type | 海拔Elevation (m) | 坡位Slope position | 坡度Slope gradient | 乔木层 Tree layer | 草本层 Herbaceous layer | 土壤厚度 Soil thickness (cm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
郁闭度Canopy density | 平均胸径Mean DBH (cm) | 平均树高Mean tree height (m) | 密度 Density (株·hm-2) | 优势种 Dominant species | 盖度 Coverage (%) | ||||||
华山松林 Pinus armandii forest | 2 260 | 中 Middle | 34 | 0.75 | 15.8 | 8.7 | 1 617 | 鬼灯檠 Rodgersia podophylla | 9 | <60 | |
华北落叶松林 Larix principis- rupprechtii forest | 2 174 | 下 Down | 31 | 0.83 | 16.9 | 15.3 | 1 653 | 蕨 Pteridium aquilinum | 49 | >120 | |
油松林 Pinus tabulaeformis forest | 2 157 | 下 Down | 6 | 0.78 | 17.9 | 9.9 | 1 492 | 东方草莓 Fragaria orientalis | 42 | 80-100 |
表1 不同森林植被的基本情况
Table 1 Basic vegetation characteristics of different forests
植被类型 Vegetation type | 海拔Elevation (m) | 坡位Slope position | 坡度Slope gradient | 乔木层 Tree layer | 草本层 Herbaceous layer | 土壤厚度 Soil thickness (cm) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
郁闭度Canopy density | 平均胸径Mean DBH (cm) | 平均树高Mean tree height (m) | 密度 Density (株·hm-2) | 优势种 Dominant species | 盖度 Coverage (%) | ||||||
华山松林 Pinus armandii forest | 2 260 | 中 Middle | 34 | 0.75 | 15.8 | 8.7 | 1 617 | 鬼灯檠 Rodgersia podophylla | 9 | <60 | |
华北落叶松林 Larix principis- rupprechtii forest | 2 174 | 下 Down | 31 | 0.83 | 16.9 | 15.3 | 1 653 | 蕨 Pteridium aquilinum | 49 | >120 | |
油松林 Pinus tabulaeformis forest | 2 157 | 下 Down | 6 | 0.78 | 17.9 | 9.9 | 1 492 | 东方草莓 Fragaria orientalis | 42 | 80-100 |
树种 Tree species | 生物量模型 Biomass model | 备注 Note |
---|---|---|
华北落叶松 Larix principis-rupprechtii | lnWn地上 = 2.2235lnDn - 1.9634 | 基于香水河20棵解析木数据 Based on data of 20 analytic trees |
lnWn根 = 2.0885lnDn - 3.4782 | Luo et al. (2009) | |
华山松 Pinus armandii | lnWn = 2.4119lnDn - 2.2962 | |
油松 Pinus tabulaeformis | lnWn = 2.5444lnDn - 2.5075 |
表2 不同树种的单株树木生物量与直径的回归关系
Table 2 Regression relationships between the individual tree biomass and diameter of different tree species
树种 Tree species | 生物量模型 Biomass model | 备注 Note |
---|---|---|
华北落叶松 Larix principis-rupprechtii | lnWn地上 = 2.2235lnDn - 1.9634 | 基于香水河20棵解析木数据 Based on data of 20 analytic trees |
lnWn根 = 2.0885lnDn - 3.4782 | Luo et al. (2009) | |
华山松 Pinus armandii | lnWn = 2.4119lnDn - 2.2962 | |
油松 Pinus tabulaeformis | lnWn = 2.5444lnDn - 2.5075 |
月份 | 降水量 Precipitation | 气温 Air temperature | 空气湿度 Air humidity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Month | 华山松林 PAF | 华北落叶 松林 LPF | 油松林 PTF | 华山松林 PAF | 华北落叶 松林 LPF | 油松林 PTF | 华山松林 PAF | 华北落叶 松林 LPF | 油松林 PTF | ||
-6 | -0.06 | 0.11 | -0.03 | -0.42* | 0.48* | 0.46* | 0.16 | -0.26 | -0.42 | ||
-7 | 0.09 | -0.05 | -0.01 | -0.21 | 0.21 | 0.26 | 0.02 | -0.07 | -0.15 | ||
-8 | 0.29* | -0.21 | -0.16 | -0.14 | 0.18 | 0.26 | 0.11 | 0.13 | 0.05 | ||
-9 | -0.17 | 0.47* | 0.52* | -0.13 | -0.10 | -0.06 | -0.04 | 0.28 | 0.21 | ||
-10 | -0.13 | 0.25 | 0.15 | -0.07 | 0.08 | 0.17 | -0.14 | 0.24 | 0.06 | ||
-11 | -0.27 | -0.27 | -0.06 | -0.08 | 0.20 | 0.22 | -0.15 | 0.23 | 0.31 | ||
-12 | -0.13 | -0.06 | -0.26 | 0.14 | -0.13 | -0.15 | -0.19 | 0.07 | -0.06 | ||
1 | 0.10 | 0.02 | -0.15 | 0.02 | 0.13 | 0.16 | 0.07 | -0.03 | -0.28 | ||
2 | 0.19 | -0.08 | -0.15 | -0.28* | 0.23 | 0.41 | 0.25 | -0.22 | -0.40 | ||
3 | 0.19 | -0.28 | -0.05 | -0.37** | 0.71** | 0.62** | 0.40** | -0.60** | -0.39 | ||
4 | -0.11 | -0.43* | -0.51* | -0.21 | 0.45* | 0.59** | 0.20 | -0.54* | -0.58** | ||
5 | 0.13 | -0.09 | -0.07 | -0.23 | 0.46* | 0.45* | 0.20 | -0.22 | -0.22 | ||
6 | -0.01 | -0.08 | -0.14 | -0.40** | 0.63** | 0.63** | 0.25 | -0.38 | -0.41 | ||
7 | -0.11 | -0.15 | -0.20 | -0.21 | 0.39 | 0.32 | -0.15 | -0.15 | -0.17 | ||
8 | -0.14 | -0.28 | -0.39 | -0.10 | 0.19 | 0.30 | -0.13 | -0.06 | -0.10 | ||
9 | -0.51** | 0.51* | 0.20 | -0.03 | -0.13 | -0.08 | -0.43** | 0.30 | 0.05 | ||
10 | -0.43** | -0.23 | -0.17 | 0.05 | 0.40 | 0.26 | -0.49** | -0.01 | -0.22 | ||
11 | -0.34* | -0.22 | -0.25 | -0.01 | 0.20 | 0.27 | -0.29* | 0.02 | -0.14 | ||
12 | 0.09 | -0.06 | -0.08 | 0 | -0.18 | -0.17 | 0 | -0.07 | 0.03 |
表3 3种针叶林的降水利用效率与气象因子间的相关系数
Table 3 Correlation coefficients between rain-use efficiency of three coniferous forests and the meteorological factors
月份 | 降水量 Precipitation | 气温 Air temperature | 空气湿度 Air humidity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Month | 华山松林 PAF | 华北落叶 松林 LPF | 油松林 PTF | 华山松林 PAF | 华北落叶 松林 LPF | 油松林 PTF | 华山松林 PAF | 华北落叶 松林 LPF | 油松林 PTF | ||
-6 | -0.06 | 0.11 | -0.03 | -0.42* | 0.48* | 0.46* | 0.16 | -0.26 | -0.42 | ||
-7 | 0.09 | -0.05 | -0.01 | -0.21 | 0.21 | 0.26 | 0.02 | -0.07 | -0.15 | ||
-8 | 0.29* | -0.21 | -0.16 | -0.14 | 0.18 | 0.26 | 0.11 | 0.13 | 0.05 | ||
-9 | -0.17 | 0.47* | 0.52* | -0.13 | -0.10 | -0.06 | -0.04 | 0.28 | 0.21 | ||
-10 | -0.13 | 0.25 | 0.15 | -0.07 | 0.08 | 0.17 | -0.14 | 0.24 | 0.06 | ||
-11 | -0.27 | -0.27 | -0.06 | -0.08 | 0.20 | 0.22 | -0.15 | 0.23 | 0.31 | ||
-12 | -0.13 | -0.06 | -0.26 | 0.14 | -0.13 | -0.15 | -0.19 | 0.07 | -0.06 | ||
1 | 0.10 | 0.02 | -0.15 | 0.02 | 0.13 | 0.16 | 0.07 | -0.03 | -0.28 | ||
2 | 0.19 | -0.08 | -0.15 | -0.28* | 0.23 | 0.41 | 0.25 | -0.22 | -0.40 | ||
3 | 0.19 | -0.28 | -0.05 | -0.37** | 0.71** | 0.62** | 0.40** | -0.60** | -0.39 | ||
4 | -0.11 | -0.43* | -0.51* | -0.21 | 0.45* | 0.59** | 0.20 | -0.54* | -0.58** | ||
5 | 0.13 | -0.09 | -0.07 | -0.23 | 0.46* | 0.45* | 0.20 | -0.22 | -0.22 | ||
6 | -0.01 | -0.08 | -0.14 | -0.40** | 0.63** | 0.63** | 0.25 | -0.38 | -0.41 | ||
7 | -0.11 | -0.15 | -0.20 | -0.21 | 0.39 | 0.32 | -0.15 | -0.15 | -0.17 | ||
8 | -0.14 | -0.28 | -0.39 | -0.10 | 0.19 | 0.30 | -0.13 | -0.06 | -0.10 | ||
9 | -0.51** | 0.51* | 0.20 | -0.03 | -0.13 | -0.08 | -0.43** | 0.30 | 0.05 | ||
10 | -0.43** | -0.23 | -0.17 | 0.05 | 0.40 | 0.26 | -0.49** | -0.01 | -0.22 | ||
11 | -0.34* | -0.22 | -0.25 | -0.01 | 0.20 | 0.27 | -0.29* | 0.02 | -0.14 | ||
12 | 0.09 | -0.06 | -0.08 | 0 | -0.18 | -0.17 | 0 | -0.07 | 0.03 |
[1] | Austin AT(2002). Differential effects of precipitation on production and decomposition along a rainfall gradient in Hawaii. Ecology, 83, 328-338. |
[2] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG(2008). Primary production and rain use efficiency across a precipitaion gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL |
[3] |
Battipaglia G, Saurer M, Cherubini P, Siegwolf RTW, Cotrufo MF(2009). Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative( Picea abies L. Karst.) species co-occurring at a dry site in Southern Italy. Forest Ecology and Management, 257, 820-828.
DOI URL |
[4] |
Binkley D, Stape JL, Ryan MG(2004). Thinking about efficiency of resource use in forests. Forest Ecology and Management, 193, 5-16.
DOI URL |
[5] |
Boisvenue C, Running SW(2006). Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Global Change Biology, 12, 862-882.
DOI URL |
[6] |
Bontemps JD, Hervé JC, Dhôte JF(2010). Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. Forest Ecology and Management, 259, 1455-1463.
DOI URL |
[7] | Cheng TR, Ma QY, Feng ZK, Luo X (2007). Research on forest biomass in Xiaolong Mountains, Gansu Province. Journal of Beijing Forestry University, 29(1), 31-36. (in Chinese with English abstract) |
[ 程堂仁, 马钦彦, 冯仲科, 罗旭 (2007). 甘肃小陇山森林生物量研究. 北京林业大学学报, 29(1), 31-36.] | |
[8] |
Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J(1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL |
[9] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO(2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
DOI URL |
[10] |
Gao YZ, Chen Q, Lin S, Giese M, Brueck H(2011). Resource manipulation effects on net primary production, biomass allocation and rain use efficiency of two semiarid grassland sites in Inner Mongolia, China. Oecologia, 165, 855-864.
DOI URL |
[11] |
Goldblum D, Rigg LS(2005). Tree growth response to climate change at the deciduous-boreal forest ecotone, Ontario, Canada. Canadian Journal of Forest Research, 35, 2709-2718.
DOI URL |
[12] |
Gyenge J, Fern Ndez MAE, Sarasola M, Schlichter T(2008). Testing a hypothesis of the relationship between productivity and water use efficiency in Patagonian forests with native and exotic species. Forest Ecology and Management, 255, 3281-3287.
DOI URL |
[13] | Hasenauer H, Nemani RR, Schadauer K, Running SW(1999). Forest growth response to changing climate between 1961 and 1990 in Austria. Forest Ecology and Mangement, 122, 209-219. |
[14] |
Hu ZM, Yu GR, Fan HP, Zhong HP, Wang SQ, Li SG(2010). Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19, 842-851.
DOI URL |
[15] |
Hui DF, Wang J, Le X, Shen WJ, Ren H(2012). Influences of biotic and abiotic factors on the relationship between tree productivity and biomass in China. Forest Ecology and Management, 264, 72-80.
DOI URL |
[16] |
Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Sch- winning S, Small EE, Williams DG(2004). Convergence across biomes to a common rain-use efficiency. Nature, 429, 651-654.
DOI URL |
[17] | IPCC ( 2007). Climate Change 2007: the Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[18] |
Keeling HC, Phillips OL(2007). The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 16, 618-631.
DOI URL |
[19] |
Kharin VV, Zwiers FW, Zhang X, Hegerl GC(2007). Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Journal of Climate, 20, 1419-1443.
DOI URL |
[20] |
Knapp AK, Smith MD(2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
DOI URL |
[21] |
Kume A, Satomura T, Tsuboi N, Chiwa M, Hanba YT, Nakane K, Horikoshi T, Sakugawa H(2002). Effects of understory vegetation on the ecophysiological characteristics of an overstory pine, Pinus densiflora. Forest Ecology and Management, 176, 195-203.
DOI URL |
[22] | Lance TV, Rod KH, Matthew JR(2009). Primary productivity and precipitation-use efficiency in mixed-grass prairie: a comparison of Northern and Southern US sites. Rangeiand Ecology and Management, 62, 230-239. |
[23] |
Lauenroth WK, Burke IC, Paruelo JM(2000). Patterns of production and precipitation-use efficiency of winter wheat and native grasslands in the Central Great Plains of the United States. Ecosystems, 3, 344-351.
DOI URL |
[24] | Le Houerou HN(1984). Rain use efficiency: a unifying concept in arid-land ecology. Journal of Arid Environments, 7, 213-247. |
[25] |
Le Houerou HN, Bingham RL, Skerbek W(1988). Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. Journal of Arid Environments, 15, 1-18.
DOI URL |
[26] | Liepert B, Romanou A(2005). Global dimming and brightening and the water cycle. Bulletion of the American Meteorology Society, 86, 622-623. |
[27] |
Loader N, Switsur V, Field E(1995). High-resolution stable isotope analysis of tree rings: implications of “microden- droclimatology” for palaeoenvironmental research. The Holocene, 5, 457-460.
DOI URL |
[28] | Lu L, Li X, Huang CL, Veroustraete F (2007). Analysis of the spatio-temporal characteristics of water use efficiency of vegetation in west China. Journal of Glaciology and Geocryology, 29, 777-784. (in Chinese with English abstract) |
[ 卢玲, 李新, 黄春林, Veroustraete F. (2007). 中国西部植被水分利用效率的时空特征分析. 冰川冻土, 29, 777-784.] | |
[29] | Luo YJ, Zhang XQ, Wang XK, Zhu JH, Zhang ZJ, Sun GS, Gao F (2009). Biornass and its distribution patterns of Larix principis-rupprechtii plantations in northern China. Journal of Beijing Forestry University, 31(1), 13-18. (in Chinese with English abstract) |
[ 罗云建, 张小全, 王效科, 朱建华, 张治军, 孙贵生, 高峰 (2009). 华北落叶松人工林生物量及其分配模式. 北京林业大学学报, 31(1), 13-18.] | |
[30] |
Michell LT, Scottl C, Rodrigo V, Jennifer EJ, Renee FB, Donald ON, Michael TF(2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan desert grassland. Global Change Biology, 17, 1505-1515.
DOI URL |
[31] |
Miyamoto Y, Griesbauer HP, Green DS(2010). Growth responses of three coexisting conifer species to climate across wide geographic and climate ranges in Yukon and British Columbia. Forest Ecology and Management, 259, 514-523.
DOI URL |
[32] |
Nagel LM, O’Hara KL(2002). Diurnal fluctuations of gas exchange and water potential in different stand structures of Pinus ponderosa. Trees, 16, 281-290.
DOI URL |
[33] |
Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS(2008). Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia, 154, 625-635.
DOI URL |
[34] |
Ponton S, Flanagan LB, Alstad KP, Johnson B, Morgenstern K, Kljun N, Black TA, Barr A(2006). Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12, 294-310.
DOI URL |
[35] |
Qi Q, Wang TM, Kou XJ, Ge JP (2009). Temporal and spatial changes of vegetation cover and the relationship with precipitation in Jinghe watershed of China. Chinese Journal of Plant Ecology, 33, 246-253. (in Chinese with English abstract)
DOI URL |
[ 齐清, 王天明, 寇晓军, 葛剑平 (2009). 泾河流域植被覆盖时空演变及其与降水的关系. 植物生态学报, 33, 246-253.]
DOI URL |
|
[36] |
Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM(2006). Temperature influences carbon accumulation in moist tropical forests. Ecology, 87, 76-87.
DOI URL |
[37] | Reynolds JF, Stafford SDM (2002). Global Desertification: Do Humans Cause Deserts? Berlin, Germany: Dahlem University Press, 1-21. |
[38] | Teng L, Peng SL, Hou AM, Xie ZY (2001). Effect of air temperature change on the productivity of Pinus massoniana population in Dinghushan. Journal of Tropical and Subtropical Botany, 9, 284-288. (in Chinese with English abstract) |
[ 滕菱, 彭少麟, 侯爱敏, 谢中誉 (2001). 长期气温波动对鼎湖山马尾松种群生产力的影响. 热带亚热带植物学报, 9, 284-288.] | |
[39] | Wang BT, He KN, Shi CQ, Zhang FE, Zhang GC (2004). Water-Saving and Drought Resistance on the Afforestation. China Forestry Publishing House, Beijing. (in Chinese) |
[ 王百田, 贺康宁, 史常青, 张府娥, 张光灿 (2004). 节水抗旱造林. 中国林业出版社, 北京.] | |
[40] | Wang Y, Jiang ZH, Peng ZH, Liu XE (2010). Water use efficiency and its correlation with environmental factors in a popular ecosystem in bottomland of Yangtze River. Acta Ecologica Sinica, 30, 2933-2939. (in Chinese with English abstract) |
[ 王妍, 江泽慧, 彭镇华, 刘杏娥 (2010). 长江滩地杨树林生态系统水分利用效率及影响因子. 生态学报, 30, 2933-2939.] | |
[41] | Wang YX, Lu ZH, Su HX, Sang WG (2007). Response analysis between tree-ring widths and climatic factors along different regions in Tianshan Mountains northwestern China. Journal of China University of Mining & Technology, 36, 251-256. (in Chinese with English abstract) |
[ 王云霞, 陆兆华, 苏宏新, 桑卫国 (2007). 天山云杉树木年轮宽度对气候因子变化的响应. 中国矿业大学学报, 36, 251-256.] | |
[42] | Wang ZY, Ding YH, He JH, Yu J (2004). An updating analysis of the climate change in China in recent 50 years. Acta Meteorologica Sinica, 62, 230-236. (in Chinese with English abstract) |
[ 王遵娅, 丁一汇, 何金海, 虞俊 (2004). 近50年来中国气候变化特征的再分析. 气象学报, 62, 230-236.] | |
[43] |
Webb W, Szarek S, Lauenroth W, Kinerson R, Smith M(1978). Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology, 59, 1239-1247.
DOI URL |
[44] | Yang YH, Fang JY, Fay PA, Bell JE, Ji CJ(2010). Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters, 37, L15702, doi: 10.1029/2010GL043920. |
[45] | Zhang GG, Li XD, Kang YM, Han GD, Hong M, Sakurai K(2012). Spatiotemporal variability of net primary production over the past half century in Inner Mongolia grassland of China. Journal of Food, Agriculture and Environment, 10, 1168-1173. |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[8] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[9] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[10] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[11] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[12] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[13] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[14] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[15] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19