植物生态学报 ›› 2015, Vol. 39 ›› Issue (10): 950-961.DOI: 10.17521/cjpe.2015.0092
刘双娥1,2, 李义勇1,2, 方熊1,2, 黄文娟1, 龙凤玲1,2, 刘菊秀1,*()
出版日期:
2015-10-01
发布日期:
2015-10-24
通讯作者:
刘菊秀
作者简介:
# 共同第一作者
基金资助:
LIU Shuang-E1,2, LI Yi-Yong1,2, FANG Xiong1,2, HUANG Wen-Juan1, LONG Feng-Ling1,2, LIU Ju-Xiu1,*()
Online:
2015-10-01
Published:
2015-10-24
Contact:
Ju-Xiu LIU
About author:
# Co-first authors
摘要:
为阐明南亚热带4个主要树种——海南红豆(Ormosia pinnata)、马占相思(Acacia mangium)、木荷(Schima superba)和马尾松(Pinus massoniana)幼苗生长对不同氮添加量和添加方式的响应差异, 进行了幼苗模拟氮添加实验。实验设置3个氮添加水平(对照: 背景大气氮沉降量5.6 g N·m-2·a-1, 中氮: 15.6 g N·m-2·a-1, 高氮: 20.6 g N·m-2·a-1), 每个水平分两种添加方式(幼苗冠层施氮和土壤表层施氮), 共6个处理: (1)土壤对照(S-CK); (2)土壤中氮(S-MN); (3)土壤高氮(S-HN); (4)冠层对照(C-CK); (5)冠层中氮(C-MN); (6)冠层高氮(C-HN), 每个处理设置6个重复。研究结果表明: 不同氮添加量下, 土壤施氮和冠层施氮对植物幼苗生长的影响不同, 氮添加量、氮添加方式和物种3个因子之间存在显著的交互效应。与对照相比, S-MN增加了马占相思和木荷幼苗的生物量, 降低了马尾松的株高和生物量, 而C-MN仅增加了马占相思的生物量, 对其他3个树种没有影响; S-HN增加了马占相思的生物量, 显著降低了马尾松的基径、株高和生物量(p < 0.01), C-HN增加了马占相思、木荷和马尾松的基径、株高和生物量(p < 0.01)。不同氮添加量和氮添加方式对幼苗生长的影响因物种而异, 所有氮处理下海南红豆和马占相思的生长均明显快于木荷和马尾松; 木荷和马尾松幼苗的生长在两种氮添加方式间差异显著, 冠层施氮比土壤施氮对其幼苗生长的促进作用更大。由此可见: 在氮沉降背景下, 阔叶豆科植物(海南红豆、马占相思)比阔叶非豆科植物(木荷)生长快; 阔叶树种(海南红豆、马占相思和木荷)比针叶树种(马尾松)生长快。在长期氮沉降环境下, 不同物种生长的差异响应有可能导致亚热带森林物种组成发生变化。
刘双娥, 李义勇, 方熊, 黄文娟, 龙凤玲, 刘菊秀. 不同氮添加量和添加方式对南亚热带4个主要树种幼苗生长的影响. 植物生态学报, 2015, 39(10): 950-961. DOI: 10.17521/cjpe.2015.0092
LIU Shuang-E,LI Yi-Yong,FANG Xiong,HUANG Wen-Juan,LONG Feng-Ling,LIU Ju-Xiu. Effects of the level and regime of nitrogen addition on seedling growth of four major tree species in subtropical China. Chinese Journal of Plant Ecology, 2015, 39(10): 950-961. DOI: 10.17521/cjpe.2015.0092
土壤深度 Soil depth (cm) | pH值 pH value | 有效磷 Available phosphorus (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
0-20 | 3.99 ± 0.096 | 0.84 ± 0.072 | 17.39 ± 1.34 | 6.01 ± 0.69 | 22.72 ± 1.20 |
表1 氮添加处理前土壤理化参数背景值(平均值±标准偏差, n = 12)
Table 1 Background values of soil physicochemical properties at beginning of the experiment (mean ± SD, n = 12)
土壤深度 Soil depth (cm) | pH值 pH value | 有效磷 Available phosphorus (mg·kg-1) | 硝态氮 Nitrate nitrogen (mg·kg-1) | 铵态氮 Ammonium nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) |
---|---|---|---|---|---|
0-20 | 3.99 ± 0.096 | 0.84 ± 0.072 | 17.39 ± 1.34 | 6.01 ± 0.69 | 22.72 ± 1.20 |
物种 Species | 对照 Ambient N addition | 中氮 Medium N addition | 高氮 High N addition | |||||
---|---|---|---|---|---|---|---|---|
土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | |||
海南红豆 Ormosia pinnata | 17.11 ± 1.68 | 14.07 ± 1.40 | 18.28 ± 1.08 | 15.74 ± 1.99 | 17.06 ± 1.25 | 16.67 ± 1.01 | ||
马占相思 Acacia mangium | 17.63 ± 2.17 | 13.87 ± 2.48 | 19.69 ± 0.39a | 13.83 ± 2.74b | 16.65 ± 1.12 | 14.33 ± 3.51 | ||
木荷 Schima superba | 18.14 ± 1.13 | 16.73 ± 1.61 | 19.18 ± 0.80a | 16.03 ± 1.68b | 17.22 ± 0.81 | 15.70 ± 0.60 | ||
马尾松 Pinus massoniana | 17.39 ± 2.49 | 15.52 ± 1.72 | 18.03 ± 1.18 | 17.28 ± 0.33 | 17.60 ± 0.74 | 15.85 ± 0.93 |
附录I 两种氮添加方式下土壤含水量(平均值±标准偏差)
Supplement I Soil water content (%) under two N addition regimes (mean ± SD)
物种 Species | 对照 Ambient N addition | 中氮 Medium N addition | 高氮 High N addition | |||||
---|---|---|---|---|---|---|---|---|
土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | 土壤施氮 SN | 冠层施氮 CN | |||
海南红豆 Ormosia pinnata | 17.11 ± 1.68 | 14.07 ± 1.40 | 18.28 ± 1.08 | 15.74 ± 1.99 | 17.06 ± 1.25 | 16.67 ± 1.01 | ||
马占相思 Acacia mangium | 17.63 ± 2.17 | 13.87 ± 2.48 | 19.69 ± 0.39a | 13.83 ± 2.74b | 16.65 ± 1.12 | 14.33 ± 3.51 | ||
木荷 Schima superba | 18.14 ± 1.13 | 16.73 ± 1.61 | 19.18 ± 0.80a | 16.03 ± 1.68b | 17.22 ± 0.81 | 15.70 ± 0.60 | ||
马尾松 Pinus massoniana | 17.39 ± 2.49 | 15.52 ± 1.72 | 18.03 ± 1.18 | 17.28 ± 0.33 | 17.60 ± 0.74 | 15.85 ± 0.93 |
主要因素及相互作用 Main factors and interactions | 基径 Basal diameter | 株高 Tree height | 生物量 Biomass | 土壤pH Soil pH | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | ||||
处理水平 Level | 6.721 0.002 | 2 | 4.013 0.021 | 2 | 3.608 0.039 | 2 | 70.555 <0.001 | 2 | |||
施氮方式 Regime | 0.906 0.344 | 1 | 0.544 0.463 | 1 | 6.421 0.017 | 2 | 107.545 <0.001 | 1 | |||
物种 Species | 48.661 <0.001 | 3 | 386.887 <0.001 | 3 | 122.901 <0.001 | 3 | 31.299 <0.001 | 3 | |||
水平×施氮方式 Level × regime | 19.591 <0.001 | 2 | 1.799 0.171 | 2 | 12.949 <0.001 | 2 | 7.314 0.002 | 3 | |||
水平×物种 Level × species | 5.293 <0.001 | 6 | 2.088 0.062 | 6 | 12.266 <0.001 | 6 | 1.681 0.146 | 6 | |||
施氮方式×物种 Regime × species | 7.207 <0.001 | 3 | 8.017 <0.001 | 3 | 11.592 <0.001 | 3 | 3.458 0.023 | 3 | |||
水平×施氮方式×物种 Level × regime × species | 9.227 <0.001 | 6 | 1.673 0.136 | 6 | 10.981 <0.001 | 6 | 5.313 <0.001 | 6 | |||
误差 Error | 95 | 95 | 103 | 48 |
表2 氮添加量和氮添加方式对4种树种幼苗生长的影响(三因素方差分析)
Table 2 Effects of N addition level and regime on seedling growth in four major tree species (three-way ANOVA)
主要因素及相互作用 Main factors and interactions | 基径 Basal diameter | 株高 Tree height | 生物量 Biomass | 土壤pH Soil pH | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | F and p values | d.f. | ||||
处理水平 Level | 6.721 0.002 | 2 | 4.013 0.021 | 2 | 3.608 0.039 | 2 | 70.555 <0.001 | 2 | |||
施氮方式 Regime | 0.906 0.344 | 1 | 0.544 0.463 | 1 | 6.421 0.017 | 2 | 107.545 <0.001 | 1 | |||
物种 Species | 48.661 <0.001 | 3 | 386.887 <0.001 | 3 | 122.901 <0.001 | 3 | 31.299 <0.001 | 3 | |||
水平×施氮方式 Level × regime | 19.591 <0.001 | 2 | 1.799 0.171 | 2 | 12.949 <0.001 | 2 | 7.314 0.002 | 3 | |||
水平×物种 Level × species | 5.293 <0.001 | 6 | 2.088 0.062 | 6 | 12.266 <0.001 | 6 | 1.681 0.146 | 6 | |||
施氮方式×物种 Regime × species | 7.207 <0.001 | 3 | 8.017 <0.001 | 3 | 11.592 <0.001 | 3 | 3.458 0.023 | 3 | |||
水平×施氮方式×物种 Level × regime × species | 9.227 <0.001 | 6 | 1.673 0.136 | 6 | 10.981 <0.001 | 6 | 5.313 <0.001 | 6 | |||
误差 Error | 95 | 95 | 103 | 48 |
图1 不同氮添加量和氮添加方式对幼苗基径的影响(平均值±标准偏差)。不同小写字母(a, b)和大写字母(A, B)分别表示土壤氮添加和冠层氮添加下低氮、中氮、高氮处理间差异显著(p < 0.05); *表示两种施氮方式间有差异(Duncan多重比较; * p < 0.05, ** p < 0.01)。CK, 对照处理; HN, 高氮处理; MN, 中氮处理。CN, 冠层氮添加; SN, 土壤氮添加。AM, 马占相思; OP, 海南红豆; PM, 马尾松; SS, 木荷。
Fig. 1 Effects of N addition level and regime on tree basal diameter in four tree species (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant difference between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
图2 不同氮添加量和氮添加方式对幼苗株高的影响(平均值±标准偏差)。不同小写字母(a, b)和大写字母(A, B)分别表示土壤氮添加和冠层氮添加下低氮、中氮、高氮处理间差异显著(p < 0.05); *表示两种施氮方式间有差异(Duncan多重比较; * p < 0.05, ** p < 0.01)。CK, 对照处理; HN, 高氮处理; MN, 中氮处理。CN, 冠层氮添加; SN, 土壤氮添加。AM, 马占相思; OP, 海南红豆; PM, 马尾松; SS, 木荷。
Fig. 2 Effects of N addition level and regime on tree height in four tree species (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
图3 不同氮添加量和氮添加方式对幼苗生物量的影响(平均值±标准偏差)。不同小写字母(a, b)和大写字母(A, B)分别表示土壤氮添加和冠层氮添加下低氮、中氮、高氮处理间差异显著(p < 0.05); *表示两种施氮方式间有差异(Duncan多重比较; * p < 0.05, ** p < 0.01)。CK, 对照处理; HN, 高氮处理; MN, 中氮处理。CN, 冠层氮添加; SN, 土壤氮添加。AM, 马占相思; OP, 海南红豆; PM, 马尾松; SS, 木荷。
Fig. 3 Effects of N addition level and regime on biomass in four tree species (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
图4 不同氮添加量和氮添加方式下对幼苗各部位(粗根、细根、茎和叶)生物量积累的影响(平均值±标准差)。不同小写字母(a, b)和大写字母(A, B)分别表示土壤氮添加和冠层氮添加下低氮、中氮、高氮处理间差异显著(p < 0.05); *表示两种施氮方式间有差异(Duncan多重比较; * p < 0.05, ** p < 0.01)。CK, 对照处理; HN, 高氮处理; MN, 中氮处理。CN, 冠层氮添加; SN, 土壤氮添加。AM, 马占相思; OP, 海南红豆; PM, 马尾松; SS, 木荷。
Fig. 4 Effects of N addition level and regime on biomass accumulation in leaves, stem and coarse-roots and fine-roots (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
物种 Species | 冠层施N N addition on canopy | 土壤施N N addition in soil | |||||
---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | ||
海南红豆 Ormosia pinnata | 0.275 ± 0.029 | 0.307 ± 0.003 | 0.315 ± 0.067 | 0.453 ± 0.103a | 0.332 ± 0.018ab | 0.253 ± 0.009b | |
马占相思 Acacia mangium | 0.251 ± 0.071 | 0.222 ± 0.039 | 0.317 ± 0.059 | 0.262 ± 0.059 | 0.235 ± 0.005 | 0.391 ± 0.175 | |
木荷 Schima superba | 0.514 ± 0.128 | 0.489 ± 0.021 | 0.754 ± 0.241 | 0.575 ± 0.055 | 0.544 ± 0.124 | 0.608 ± 0.008 | |
马尾松 Pinus massoniana | 0.336 ± 0.119 | 0.277 ± 0.021 | 0.223 ± 0.070 | 0.170 ± 0.035b | 0.299 ± 0.075ab | 0.343 ± 0.003a |
表3 不同氮添加量和氮添加方式下幼苗的根冠比(平均值±标准偏差)
Table 3 Root-shoot ratios under different nitrogen (N) treatments (mean ± SD)
物种 Species | 冠层施N N addition on canopy | 土壤施N N addition in soil | |||||
---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | ||
海南红豆 Ormosia pinnata | 0.275 ± 0.029 | 0.307 ± 0.003 | 0.315 ± 0.067 | 0.453 ± 0.103a | 0.332 ± 0.018ab | 0.253 ± 0.009b | |
马占相思 Acacia mangium | 0.251 ± 0.071 | 0.222 ± 0.039 | 0.317 ± 0.059 | 0.262 ± 0.059 | 0.235 ± 0.005 | 0.391 ± 0.175 | |
木荷 Schima superba | 0.514 ± 0.128 | 0.489 ± 0.021 | 0.754 ± 0.241 | 0.575 ± 0.055 | 0.544 ± 0.124 | 0.608 ± 0.008 | |
马尾松 Pinus massoniana | 0.336 ± 0.119 | 0.277 ± 0.021 | 0.223 ± 0.070 | 0.170 ± 0.035b | 0.299 ± 0.075ab | 0.343 ± 0.003a |
土壤施N N addition in soil | 冠层施N N addition on canopy | |||||||
---|---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | |||
豆科与非豆科相比 Legumes versus non-legumes | 基径 Base diameter | 18.450 0.001 | 36.161 <0.001 | 5.461 0.038 | 5.747 0.03 | 15.424 0.002 | 3.38 0.087 | |
株高 Tree height | 46.039 <0.001 | 32.859 <0.001 | 8.979 0.011 | 16.937 0.001 | 9.629 0.008 | 9.111 0.009 | ||
生物量 Biomass | 9.126 0.029 | 21.174 0.006 | 30.829 0.002 | 0.932 0.379 | 11.908 0.026 | 6.263 0.046 | ||
阔叶与针叶相比 Broadleaf versus conifers | 基径 Basal diameter | 0.679 0.338 | 1.262 0.276 | 24.355 <0.001 | 23.799 <0.001 | 32.911 <0.001 | 1.297 0.269 | |
株高 Tree height | 2.516 0.129 | 6.264 0.022 | 7.065 0.018 | 11.620 0.003 | 17.643 <0.001 | 10.767 0.004 | ||
生物量 Biomass | 0.110 0.750 | 10.299 0.013 | 8.170 0.017 | 16.323 0.004 | 33.324 0.001 | 1.11 0.323 |
表4 不同树种幼苗生长对氮添加方式和氮添加量响应差异(Duncan多重比较)
Table 4 Differential responses of seedling growth to N addition regime and level among different tree seedlings (Duncan multiple range test)
土壤施N N addition in soil | 冠层施N N addition on canopy | |||||||
---|---|---|---|---|---|---|---|---|
CK | MN | HN | CK | MN | HN | |||
豆科与非豆科相比 Legumes versus non-legumes | 基径 Base diameter | 18.450 0.001 | 36.161 <0.001 | 5.461 0.038 | 5.747 0.03 | 15.424 0.002 | 3.38 0.087 | |
株高 Tree height | 46.039 <0.001 | 32.859 <0.001 | 8.979 0.011 | 16.937 0.001 | 9.629 0.008 | 9.111 0.009 | ||
生物量 Biomass | 9.126 0.029 | 21.174 0.006 | 30.829 0.002 | 0.932 0.379 | 11.908 0.026 | 6.263 0.046 | ||
阔叶与针叶相比 Broadleaf versus conifers | 基径 Basal diameter | 0.679 0.338 | 1.262 0.276 | 24.355 <0.001 | 23.799 <0.001 | 32.911 <0.001 | 1.297 0.269 | |
株高 Tree height | 2.516 0.129 | 6.264 0.022 | 7.065 0.018 | 11.620 0.003 | 17.643 <0.001 | 10.767 0.004 | ||
生物量 Biomass | 0.110 0.750 | 10.299 0.013 | 8.170 0.017 | 16.323 0.004 | 33.324 0.001 | 1.11 0.323 |
图5 不同氮添加量和氮添加方式对土壤pH值的影响(平均值±标准偏差)。不同小写字母(a, b)和大写字母(A, B)分别表示土壤氮添加和冠层氮添加下低氮、中氮、高氮处理间差异显著(p < 0.05); *表示两种施氮方式间有差异(Duncan多重比较; * p < 0.05, ** p < 0.01)。CK, 对照处理; HN, 高氮处理; MN, 中氮处理。CN, 冠层氮添加; SN, 土壤氮添加。AM, 马占相思; OP, 海南红豆; PM, 马尾松; SS, 木荷。
Fig. 5 Effects of N addition level and regime on soil pH value (mean ± SD). Different lowercase letters (a, b) and capital letters (A, B) above the error bars indicate significant differences among N addition levels in soil and on canopy, respectively, in each species (p < 0.05); * above the error bars indicate significant differences between two N addition regimes (Duncan multiple range test; * p < 0.05, ** p < 0.01). CK, ambient N addition; HN, high N addition; MN, medium N addition. CN, N addition on canopy; SN, N addition in soil. AM, Acacia mangium; OP, Ormosia pinnata; PM, Pinus massoniana; SS, Schima superba.
[1] | Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921-934. |
[2] | Bauer GA, Bazzaz FA, Minocha R, Long S, Magill A, Aber J, Berntson GM (2004). Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in the NE United States. Forest Ecology and Management, 196, 173-186. |
[3] | Bobbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717-738. |
[4] | Boyce RL, Friedland AJ, Chamberlain CP, Poulson SR (1996). Direct canopy nitrogen uptake from 15N-labeled wet deposition by mature red spruce. Canadian Journal of Forest Research, 26, 1539-1547. |
[5] | Duan HL, Liu JX, Deng Q, Chen XM, Zhang DQ (2009). Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: A mesocosm study. Chinese Journal of Plant Ecology, 33, 570-579. (in Chinese with English abstract) |
[段洪浪, 刘菊秀, 邓琦, 陈小梅, 张德强 (2009). CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响. 植物生态学报, 33, 570-579.] | |
[6] | Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006). Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature, 439, 68-71. |
[7] | Flüiickiger W, Braun S (1998). Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution, 102, 69-76. |
[8] | Galloway JN, Cowling EB (2002). Reactive nitrogen and the world: 200 years of change. AMBIO, 31, 64-71. |
[9] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226. |
[10] | George E, Seith B (1998). Long-term effects of a high nitrogen supply to soil on the growth and nutritional status of young Norway spruces trees. Environmental Pollution, 102, 301-306. |
[11] | Gruber N, Galloway JN (2008). An earth-system perspective of the global nitrogen cycle. Nature, 451, 293-296. |
[12] | Gundersen P, Emmett BA, Kjøgnaas OJ, Koopmans CJ, Tietema A (1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest Ecology and Management, 101, 37-55. |
[13] | Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006). Leaching of nitrate from temperate forests effects of air pollution and forest management. Environmental Reviews, 14, 1-57. |
[14] | Houlton BZ, Wang YP, Vitousek PM, Field CB (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327-330. |
[15] | Li DJ, Mo JM, Fang YT, Cai XA, Xu GL (2004). Effects of simulated nitrogen deposition on growth and photosynthesis of Schima superba, Castanopsis chinensis and Cryptocarya concinna seedlings. Acta Ecologica Sinica, 24, 876-882. (in Chinese with English abstract) |
[李德军, 莫江明, 方运霆, 蔡锡安, 徐国良 (2004). 模拟氮沉降对三种南亚热带树苗生长和光合作用的影响. 生态学报, 24, 876-882.] | |
[16] | Li DJ, Mo JM, Fang YT, Li ZA (2005). Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica, 29, 543-549. (in Chinese with English abstract) |
[李德军, 莫江明, 方运霆, 李志安 (2005). 模拟氮沉降对南亚热带两种乔木幼苗生物量及其分配的影响. 植物生态学报, 29, 543-549.] | |
[17] | Li DJ, Mo JM, Fang YT, Peng SL, Gundersen P (2003). Impact of nitrogen deposition on forest plants. Acta Ecologica Sinica, 23, 1891-1900. (in Chinese with English abstract) |
[李德军, 莫江明, 方运霆, 彭少麟, Gundersen P (2003). 氮沉降对森林植物的影响. 生态学报, 23, 1891-1900.] | |
[18] | Liu JX, Zhang DQ, Zhou GY, Faivre-Vuillin BF, Deng Q, Wang CL (2008). CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences, 5, 1783-1795. |
[19] | Liu JX, Zhou GY, Xu ZH, Duan HL, Li YL, Zhang DQ (2011). Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China. Journal of Soils and Sediments, 11, 1155-1164. |
[20] | Lu XK, Mao QG, Gilliam FS, Luo YQ, Mo JM (2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801. |
[21] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28. |
[22] | Matson PA, McdDowell WH, Townsend AR, Vitousek PM (1999). The globalization of N deposition: Ecosystem consequences in tropical environments. Biogeochemistry, 46, 67-83. |
[23] | Mo JM, Brown S, Xue JH, Fang YT, Li ZA (2006). Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant and Soil, 282, 135-151. |
[24] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412. |
[25] | Morris DM, Gordon AG, Gordon AM (2003). Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario. Canadian Journal of Forest Research, 33, 1046-1060. |
[26] | Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15, 453-461. |
[27] | Nohrstedt HÖ (2001). Response of coniferous forest ecosystems on mineral soils to nutrient additions: A review of Swedish experiences. Scandinavian Journal of Forest Research, 16, 555-573. |
[28] | Pang L, Zhang Y, Zhou ZC, Feng ZP, Chu DY (2014). Effects of simulated nitrogen deposition on Masson pine root exudates of different pedigrees and phosphorus efficiency in Pinus massoniana families under low phosphorus stress. Chinese Journal of Plant Ecology, 38, 27-35. (in Chinese with English abstract) |
[庞丽, 张一, 周志春, 丰忠平, 储德裕 (2014). 模拟氮沉降对低磷胁迫下马尾松不同家系根系分泌和磷效率的影响. 植物生态学报, 38, 27-35.] | |
[29] | Persson H, Ahlström K, Clemensson-Lindell A (1998). Nitrogen addition and removal at Gårdsjön—effects on fine-root growth and fine-root chemistry. Forest Ecology and Management, 101, 199-206. |
[30] | Ren R, Mi FJ, Bai NB (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University, 26(2), 90-95. (in Chinese with English abstract) |
[任仁, 米丰杰, 白乃宾 (2000). 中国降水化学数据的化学计量学分析. 北京工业大学学报, 26(2), 90-95.] | |
[31] | Robbink R, Hornung M, Roelofs JGM (1998). The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717-738. |
[32] | Sievering H, Femandez I, Lee J, Hom J, Rustad L (2000). Forest canopy uptake of atmospheric nitrogen deposition at eastern U. S. conifer sites: Carbon storage implications. Global Biogeochemical Cycles, 14, 1153-1159. |
[33] | Sievering H, Tomaszewski T, Torizzo J (2007). Canopy uptake of atmospheric N deposition at a conifer forest: Part I― Canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus B, 59, 483-492. |
[34] | Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392. |
[35] | Tomaszewski T, Boyce RL, Sievering H (2003). Canopy uptake of atmospheric nitrogen and new growth nitrogen requirement at a Colorado subalpine forest. Canadian Journal of Forest Research, 33, 2221-2227. |
[36] | Wilson EJ (1992). Foliar uptake and release of inorganic nitrogen compounds in Pinus sylvestris L. and Picea abies (L.) Karst. New Phytologist, 120, 407-416. |
[37] | Xia JY, Wan SQ (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439. |
[38] | Zhao L, Zhou GY, Zhang DQ, Duan HL, Liu JX (2011). Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities. Chinese Journal of Applied Ecology, 22, 1949- 1954. (in Chinese with English abstract) |
[赵亮, 周国逸, 张德强, 段洪浪, 刘菊秀 (2011). CO2浓度升高和氮沉降对南亚热带主要乡土树种及群落生物量的影响. 应用生态学报, 22, 1949-1954.] | |
[39] | Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. AMBIO, 31, 79-87. |
[40] | Zhu FF, Yoh M, Gilliam FS, Yoh M, Lu XK, Mo JM (2013). Nutrient limitation in three lowland tropical forests in southern china receiving high nitrogen deposition: Insights from fine root responses to nutrient additions. PLoS ONE, 8, e82661. |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[8] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 张金燕, 寸竹, 双升普, 洪杰, 孟珍贵, 陈军文. 阴生植物三七稳态和动态光合特性对氮水平的响应[J]. 植物生态学报, 2023, 47(3): 331-347. |
[11] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[12] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[13] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[14] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[15] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19