植物生态学报 ›› 2024, Vol. 48 ›› Issue (1): 56-67.DOI: 10.17521/cjpe.2022.0343 cstr: 32100.14.cjpe.2022.0343
所属专题: 生物多样性
陈雨婷1, 马松梅1,*()(
), 张丹2, 张林1, 王春成2
收稿日期:
2022-08-24
接受日期:
2023-02-08
出版日期:
2024-01-20
发布日期:
2023-03-01
通讯作者:
(基金资助:
CHEN Yu-Ting1, MA Song-Mei1,*()(
), ZHANG Dan2, ZHANG Lin1, WANG Chun-Cheng2
Received:
2022-08-24
Accepted:
2023-02-08
Online:
2024-01-20
Published:
2023-03-01
Contact:
(Supported by:
摘要:
探究第四纪气候波动和地质事件对古尔班通古特沙漠同域分布的梭梭(Haloxylon ammodendron)和白梭梭(H. persicum)分布、分化和演化的影响, 对了解旱生植物区系的发展与演化具有重要意义。该研究测定新疆自然分布的19个梭梭种群225个个体和12个白梭梭种群106个个体叶绿体DNA间隔区(trnS-trnG和trnV)序列, 整合单倍型网络分析、主坐标分析、分子方差分析、贝叶斯系统发育树、地理加权回归分析揭示种间、种内不同地理种群间的遗传多样性及其环境解释、空间遗传结构, 估算种间谱系分化时间, 分析群体演化历史。主要结果有: (1)共定义了21个叶绿体单倍型, 梭梭和白梭梭聚为独立的支系; (2)接近80%的遗传变异发生于物种间及梭梭种内不同地理种群间, 物种间分化发生于上新世晚期至更新世早期, 这可能受干旱化加剧和沙漠形成、扩展的共同影响; (3)地理加权回归模型结果显示, 环境因子对梭梭和白梭梭遗传多样性的影响存在明显的空间差异性, 气候和土壤因子总体上主导梭梭、白梭梭的遗传多样性格局: 在古尔班通古特沙漠南缘, 气候因子对梭梭和白梭梭均为显著正向作用; 在沙漠西南缘, 气候因子对白梭梭为正向作用, 土壤因子对梭梭为负向作用; 在沙漠东南缘, 土壤因子对梭梭主要为正向作用, 对白梭梭为负向作用; 在阿勒泰地区, 气候因子对梭梭和白梭梭均为正向作用。
陈雨婷, 马松梅, 张丹, 张林, 王春成. 新疆同域分布梭梭和白梭梭多样性格局及其形成机制. 植物生态学报, 2024, 48(1): 56-67. DOI: 10.17521/cjpe.2022.0343
CHEN Yu-Ting, MA Song-Mei, ZHANG Dan, ZHANG Lin, WANG Chun-Cheng. Diversity pattern and formation mechanism of sympatric Haloxylon ammodendron and Haloxylon persicum in Xinjiang, China. Chinese Journal of Plant Ecology, 2024, 48(1): 56-67. DOI: 10.17521/cjpe.2022.0343
采样区域 Region | 种群名称 Population name | 编码 Code | 经纬度 Latitude (N)/ longitude (E) | 采样个数 Sample size | cpDNA | |||
---|---|---|---|---|---|---|---|---|
单倍型组成 Haplotypes | 单倍型多样性 Hd | 核苷酸多样性 π | ||||||
梭梭 H. ammodendron | 225 | 4/12 | 0.734 | 0.000 8 | ||||
DSW (SG) | 博乐火车站旁沙漠 Desert near the Bole Train Station | XBL | 44.93°/82.65° | 7 | 0/2 | 0.457 | 0.007 0 | |
克拉玛依碳汇林基地 Karamay Carbon Sequestration Base | XKM | 44.92°/83.94° | 12 | 1/1 | 0.442 | 0.003 0 | ||
甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | XGH | 44.92°/83.97° | 13 | 0/2 | 0.485 | 0.005 0 | ||
DZS (SG) | 石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | XSY | 44.74°/85.42° | 15 | 0/3 | 0.476 | 0.002 1 | |
石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | XSB | 44.88°/85.25° | 14 | 0/4 | 0.539 | 0.004 0 | ||
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | XSS | 44.71°/85.39° | 15 | 0/3 | 0.133 | 0.004 0 | ||
石河子市南山风景区 Nanshan Scenic Spot of Shihezi City | XSN | 44.73°/85.29° | 13 | 0/1 | - | - | ||
石河子市丰泽镇 Fengze Town of Shihezi City | XSA | 44.60°/85.59° | 14 | 0/1 | - | - | ||
沙湾市四道河子镇 Sidaohezi Town of Shawan City | XSW | 44.74°/85.69° | 8 | 0/2 | 0.429 | 0.004 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | XSC | 45.22°/86.27° | 11 | 0/3 | 0.691 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | XSD | 45.19°/86.35° | 10 | 0/2 | 0.429 | 0.003 0 | ||
DES (SG) | 昌吉回族自治州芳草湖农场 Fangcaohu Farm in Changji Hui Zu Autonomous Prefecture | XFH | 44.51°/86.83° | 12 | 0/1 | - | - | |
阜康市222团 Fukang City Group 222 | XFK | 44.26°/87.96° | 12 | 0/2 | 0.476 | 0.004 0 | ||
奇台县北沙窝 Beishawo of Qitai County | XQT | 44.62°/88.37° | 8 | 1/2 | 0.607 | 0.008 0 | ||
和硕县马兰 Malan of Heshuo County | XML | 42.17°/87.26° | 11 | 0/1 | - | - | ||
ALT (NG) | 布尔津大桥 Burqin Bridge | XBJ | 47.68°/86.87° | 11 | 1/2 | 0.546 | 0.003 0 | |
布尔津县 Burqin County | XBE | 47.54°/87.15° | 14 | 0/2 | 0.264 | 0.004 0 | ||
北屯-布尔津 Beitun-Burqin | XBB | 47.35°/87.67° | 10 | 1/2 | 0.200 | 0.001 0 | ||
乌伦古湖 Ulungur Lake | XWG | 47.02°/87.35° | 15 | 0/1 | - | - | ||
白梭梭 H. persicum | 106 | 1/9 | 0.749 | 0.001 0 | ||||
DSW | 甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | BGH | 44.92°/83.97° | 12 | 0/3 | 0.530 | 0.003 0 | |
DZS | 石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | BSB | 44.89°/85.25° | 13 | 0/2 | 0.282 | 0.003 5 | |
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | BSS | 44.71°/85.39° | 8 | 0/3 | 0.400 | 0.004 0 | ||
石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | BSY | 44.75°/85.42° | 15 | 0/4 | 0.457 | 0.004 2 | ||
石河子147团北部沙漠 Desert of Northern Shihezi Group 147 | BSM | 44.73°/85.93° | 5 | 0/3 | 0.733 | 0.008 0 | ||
沙湾市柳屯县 Liutun County, Shawan City | BLT | 44.37°/88.57° | 10 | 0/3 | 0.250 | 0.002 0 | ||
古尔班通古特沙漠南缘 Southern edge of Gurbantünggüt Desert | BGN | 45.22°/86.27° | 9 | 1/0 | 0.303 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | BSD | 45.07°/86.41° | 10 | 0/2 | 0.533 | 0.003 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | BSC | 44.98°/86.27° | 10 | 0/2 | - | - | ||
DES | 阜康市 Fukang City | BFK | 44.42°/88.33° | 12 | 0/3 | 0.603 | 0.003 0 | |
奇台县北沙窝 Beishawo of Qitai County | BQT | 44.62°/88.37° | 1 | 0/1 | - | - | ||
ALT | 阿勒泰地区福海县黄金海岸 Gold Coast of Fuhai County, Altay Region | BFH | 47.20°/87.28° | 1 | 0/1 | - | - |
表1 新疆梭梭和白梭梭不同地理种群的遗传多样性
Table 1 Genetic diversity of different geographic populations of Haloxylon ammodendron and H. persicum in Xinjiang, China
采样区域 Region | 种群名称 Population name | 编码 Code | 经纬度 Latitude (N)/ longitude (E) | 采样个数 Sample size | cpDNA | |||
---|---|---|---|---|---|---|---|---|
单倍型组成 Haplotypes | 单倍型多样性 Hd | 核苷酸多样性 π | ||||||
梭梭 H. ammodendron | 225 | 4/12 | 0.734 | 0.000 8 | ||||
DSW (SG) | 博乐火车站旁沙漠 Desert near the Bole Train Station | XBL | 44.93°/82.65° | 7 | 0/2 | 0.457 | 0.007 0 | |
克拉玛依碳汇林基地 Karamay Carbon Sequestration Base | XKM | 44.92°/83.94° | 12 | 1/1 | 0.442 | 0.003 0 | ||
甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | XGH | 44.92°/83.97° | 13 | 0/2 | 0.485 | 0.005 0 | ||
DZS (SG) | 石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | XSY | 44.74°/85.42° | 15 | 0/3 | 0.476 | 0.002 1 | |
石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | XSB | 44.88°/85.25° | 14 | 0/4 | 0.539 | 0.004 0 | ||
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | XSS | 44.71°/85.39° | 15 | 0/3 | 0.133 | 0.004 0 | ||
石河子市南山风景区 Nanshan Scenic Spot of Shihezi City | XSN | 44.73°/85.29° | 13 | 0/1 | - | - | ||
石河子市丰泽镇 Fengze Town of Shihezi City | XSA | 44.60°/85.59° | 14 | 0/1 | - | - | ||
沙湾市四道河子镇 Sidaohezi Town of Shawan City | XSW | 44.74°/85.69° | 8 | 0/2 | 0.429 | 0.004 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | XSC | 45.22°/86.27° | 11 | 0/3 | 0.691 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | XSD | 45.19°/86.35° | 10 | 0/2 | 0.429 | 0.003 0 | ||
DES (SG) | 昌吉回族自治州芳草湖农场 Fangcaohu Farm in Changji Hui Zu Autonomous Prefecture | XFH | 44.51°/86.83° | 12 | 0/1 | - | - | |
阜康市222团 Fukang City Group 222 | XFK | 44.26°/87.96° | 12 | 0/2 | 0.476 | 0.004 0 | ||
奇台县北沙窝 Beishawo of Qitai County | XQT | 44.62°/88.37° | 8 | 1/2 | 0.607 | 0.008 0 | ||
和硕县马兰 Malan of Heshuo County | XML | 42.17°/87.26° | 11 | 0/1 | - | - | ||
ALT (NG) | 布尔津大桥 Burqin Bridge | XBJ | 47.68°/86.87° | 11 | 1/2 | 0.546 | 0.003 0 | |
布尔津县 Burqin County | XBE | 47.54°/87.15° | 14 | 0/2 | 0.264 | 0.004 0 | ||
北屯-布尔津 Beitun-Burqin | XBB | 47.35°/87.67° | 10 | 1/2 | 0.200 | 0.001 0 | ||
乌伦古湖 Ulungur Lake | XWG | 47.02°/87.35° | 15 | 0/1 | - | - | ||
白梭梭 H. persicum | 106 | 1/9 | 0.749 | 0.001 0 | ||||
DSW | 甘家湖梭梭自然保护区 Ganjiahu Saxoul Nature Reserve | BGH | 44.92°/83.97° | 12 | 0/3 | 0.530 | 0.003 0 | |
DZS | 石河子135团沙门子镇 Shamenzi Town of Shihezi Group 135 | BSB | 44.89°/85.25° | 13 | 0/2 | 0.282 | 0.003 5 | |
石河子134团安吉海镇 Anjihai Town of Shihezi Group 134 | BSS | 44.71°/85.39° | 8 | 0/3 | 0.400 | 0.004 0 | ||
石河子134团下野地镇 Xiayedi Town of Shihezi Group 134 | BSY | 44.75°/85.42° | 15 | 0/4 | 0.457 | 0.004 2 | ||
石河子147团北部沙漠 Desert of Northern Shihezi Group 147 | BSM | 44.73°/85.93° | 5 | 0/3 | 0.733 | 0.008 0 | ||
沙湾市柳屯县 Liutun County, Shawan City | BLT | 44.37°/88.57° | 10 | 0/3 | 0.250 | 0.002 0 | ||
古尔班通古特沙漠南缘 Southern edge of Gurbantünggüt Desert | BGN | 45.22°/86.27° | 9 | 1/0 | 0.303 | 0.002 0 | ||
石河子150团 Shihezi Group 150 | BSD | 45.07°/86.41° | 10 | 0/2 | 0.533 | 0.003 0 | ||
石河子149团莫索湾垦区 Mosuowan Reclamation Area of Shihezi Group 149 | BSC | 44.98°/86.27° | 10 | 0/2 | - | - | ||
DES | 阜康市 Fukang City | BFK | 44.42°/88.33° | 12 | 0/3 | 0.603 | 0.003 0 | |
奇台县北沙窝 Beishawo of Qitai County | BQT | 44.62°/88.37° | 1 | 0/1 | - | - | ||
ALT | 阿勒泰地区福海县黄金海岸 Gold Coast of Fuhai County, Altay Region | BFH | 47.20°/87.28° | 1 | 0/1 | - | - |
图1 新疆梭梭和白梭梭31个地理种群和21个叶绿体DNA单倍型(H1-H21)的地理分布。DEM, 数字高程模型。单倍型间数字为突变数。种群编码同表1。
Fig. 1 Sampling locality and geographic distribution of 21 chloroplast DNA haplotypes (labelled as H1-H21) identified from 31 populations of Haloxylon ammodendron and H. persicum in Xinjiang, China. DEM, digital elevation model. Number between haplotypes is mutation steps. Population code see Table 1.
梭梭 H. ammodendron | 白梭梭 H. persicum |
---|---|
最干月降水量 Bio14 | 等温性 Bio3 |
最湿季平均气温 Bio8 | 最暖季平均气温 Bio10 |
最干季降水量 Bio17 | 降水季节性变异系数 Bio15 |
土壤堆积密度 BD | 最湿月降水量 Bio13 |
最暖季降水量 Bio18 | 最湿季平均气温 Bio8 |
土壤热容量 TC | 土壤有机碳含量 SOC |
土壤有机碳含量 SOC | 平均气温日较差 Bio2 |
土壤氮含量 TND | 剖面有效水量 PAWC |
年平均气温 Bio1 | 土壤堆积密度 BD |
最干季平均气温 Bio9 | 最冷季平均气温 Bio11 |
最冷月最低气温 Bio6 | 土壤氮含量 TND |
表2 影响梭梭和白梭梭遗传多样性的关键环境变量
Table 2 Key environmental variables affecting genetic diversity of Haloxylon ammodendron and H. persicum
梭梭 H. ammodendron | 白梭梭 H. persicum |
---|---|
最干月降水量 Bio14 | 等温性 Bio3 |
最湿季平均气温 Bio8 | 最暖季平均气温 Bio10 |
最干季降水量 Bio17 | 降水季节性变异系数 Bio15 |
土壤堆积密度 BD | 最湿月降水量 Bio13 |
最暖季降水量 Bio18 | 最湿季平均气温 Bio8 |
土壤热容量 TC | 土壤有机碳含量 SOC |
土壤有机碳含量 SOC | 平均气温日较差 Bio2 |
土壤氮含量 TND | 剖面有效水量 PAWC |
年平均气温 Bio1 | 土壤堆积密度 BD |
最干季平均气温 Bio9 | 最冷季平均气温 Bio11 |
最冷月最低气温 Bio6 | 土壤氮含量 TND |
图2 基于梭梭、白梭梭单倍型多样性的地理加权回归模型各变量的标准化回归系数的空间分布。种群编码同表1, 环境变量编码同表2。
Fig. 2 Spatial distribution of standardized regression coefficients of Geographical Weighted Regression model variables based on haplotype diversity of Haloxylon ammodendron and H. persicum. Population codes see Table 1, environmental variables codes see Table 2.
物种 Species | 总遗传多样性 Total genetic diversity (HT) | 种群内平均遗传多样性 Average genetic diversity within populations (HS) | 群体分化值 Population differentiation values (GST) | 群体分化值 Population differentiation values (NST) |
---|---|---|---|---|
梭梭 H. ammodendron | 0.869 (0.086) | 0.094 (0.094) | 0.892 (0.107) | 0.901 (0.096) |
白梭梭 H. persicum | 0.862 (0.040) | 0.155 (0.082) | 0.820 (0.099) | 0.832 (0.100) |
表3 梭梭和白梭梭遗传多样性和遗传分化系数
Table 3 Genetic diversity and coefficient of genetic differentiation for Haloxylon ammodendron and H. persicum
物种 Species | 总遗传多样性 Total genetic diversity (HT) | 种群内平均遗传多样性 Average genetic diversity within populations (HS) | 群体分化值 Population differentiation values (GST) | 群体分化值 Population differentiation values (NST) |
---|---|---|---|---|
梭梭 H. ammodendron | 0.869 (0.086) | 0.094 (0.094) | 0.892 (0.107) | 0.901 (0.096) |
白梭梭 H. persicum | 0.862 (0.040) | 0.155 (0.082) | 0.820 (0.099) | 0.832 (0.100) |
物种 Species | 变异来源 Source of variation | 自由度 df | 平方和 Sum of squares | 变异组成 Variance components | 变异所占比例 Percentage of variation (%) | 固定指数 Fixation index |
---|---|---|---|---|---|---|
梭梭 H. ammodendron | 种群间 Among populations | 18 | 15.38 | 0.66 | 76.08 | FST = 0.76 |
种群内 Within populations | 207 | 3.33 | 0.21 | 23.92 | ||
合计 Total | 225 | 18.71 | 0.87 | |||
南北组间 Among groups | 5 | 16.60 | 0.82 | 79.50 | FCT = 0.80 | |
南北组内种群间 Among populations within groups | 2 | 0.44 | 0.004 5 | 0.45 | FSC = 0.02 | |
种群内 Within populations | 11 | 3.33 | 0.21 | 20.05 | FST = 0.79 | |
合计 Total | 18 | 10.21 | 0.56 | |||
白梭梭 H. persicum | 种群间 Among populations | 12 | 6.75 | 0.69 | 80.65 | FST = 0.81 |
种群内 Among populations | 94 | 1.33 | 0.17 | 19.35 | ||
合计 Total | 106 | 8.08 | 0.86 |
表4 梭梭和白梭梭的分子方差分析
Table 4 Analysis of molecular variance for Haloxylon ammodendron and H. persicum
物种 Species | 变异来源 Source of variation | 自由度 df | 平方和 Sum of squares | 变异组成 Variance components | 变异所占比例 Percentage of variation (%) | 固定指数 Fixation index |
---|---|---|---|---|---|---|
梭梭 H. ammodendron | 种群间 Among populations | 18 | 15.38 | 0.66 | 76.08 | FST = 0.76 |
种群内 Within populations | 207 | 3.33 | 0.21 | 23.92 | ||
合计 Total | 225 | 18.71 | 0.87 | |||
南北组间 Among groups | 5 | 16.60 | 0.82 | 79.50 | FCT = 0.80 | |
南北组内种群间 Among populations within groups | 2 | 0.44 | 0.004 5 | 0.45 | FSC = 0.02 | |
种群内 Within populations | 11 | 3.33 | 0.21 | 20.05 | FST = 0.79 | |
合计 Total | 18 | 10.21 | 0.56 | |||
白梭梭 H. persicum | 种群间 Among populations | 12 | 6.75 | 0.69 | 80.65 | FST = 0.81 |
种群内 Among populations | 94 | 1.33 | 0.17 | 19.35 | ||
合计 Total | 106 | 8.08 | 0.86 |
图3 梭梭和白梭梭基于种群水平的前3个坐标的主坐标分析(PCoA)。
Fig. 3 Plots of the first three axes of the principal coordinates analysis (PCoA) at the population level for Haloxylon ammodendron and H. persicum.
图4 梭梭和白梭梭的贝叶斯系统发育关系和分化时间估算。分支点右边的值表示分化时间的平均间隔(以百万年为单位)。H1-H21, 21个叶绿体DNA单倍型。
Fig. 4 Bayesian phylogenetic relationship and divergence time estimates for Haloxylon ammodendron and H. persicum. The values on the right of the nodes represent mean intervals of divergence time (in millions of years). H1-H21, 21 chloroplast DNA haplotypes.
离差平方和 SSD | 粗糙指数 Hrag | 错配分布Mismatch distribution | Fu’s Fs | Tajima’s D | |
---|---|---|---|---|---|
梭梭 H. ammodendron | 0.094* | 0.273* | 单峰 Unimodal | -0.205 | 0.564 |
白梭梭 H. persicum | 0.152* | 0.288* | 单峰 Unimodal | 1.259 | 1.264 |
表5 梭梭和白梭梭中性检验结果和错配分布分析
Table 5 Results of neutrality tests and mismatch distribution analysis of Haloxylon ammodendron and H. persicum
离差平方和 SSD | 粗糙指数 Hrag | 错配分布Mismatch distribution | Fu’s Fs | Tajima’s D | |
---|---|---|---|---|---|
梭梭 H. ammodendron | 0.094* | 0.273* | 单峰 Unimodal | -0.205 | 0.564 |
白梭梭 H. persicum | 0.152* | 0.288* | 单峰 Unimodal | 1.259 | 1.264 |
[1] |
Abbott RJ, Comes HP (2004). Evolution in the Arctic: a phylogeographic analysis of the circumarctic plant, Saxifraga oppositifolia (purple saxifrage). New Phytologist, 161, 211-224.
DOI URL |
[2] |
Bandelt HJ, Forster P, Röhl A (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
DOI PMID |
[3] | de Macedo PM, de Melo Teixeira M, Barker BM, Zancopé-Oliveira RM, Almeida-Paes R, do Valle ACF (2019). Clinical features and genetic background of the sympatric species Paracoccidioides brasiliensis and Paracoccidioides americana. PLoS Neglected Tropical Diseases, 13, e0007309. DOI: 10.1371/journal.pntd.0007309. |
[4] |
Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002). Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics, 161, 1307-1320.
DOI PMID |
[5] |
Excoffier L, Lischer HEL (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
DOI PMID |
[6] |
Falchi A, Paolini J, Desjobert JM, Melis A, Costa J, Varesi L (2009). Phylogeography of Cistus creticus L. on Corsica and Sardinia inferred by the TRNL-F and RPL32-TRNL sequences of cpDNA. Molecular Phylogenetics and Evolution, 52, 538-543.
DOI URL |
[7] | Fan ZP, Wang Q, Li FY (2018). Seasonal dynamics of soil organic carbon in different forest types and its driving factors in mountainous region of eastern Liaoning. Chinese Journal of Ecology, 37, 3220-3230. |
[范志平, 王琼, 李法云 (2018). 辽东山地不同森林类型土壤有机碳季节动态及其驱动因子. 生态学杂志, 37, 3220-3230.] | |
[8] | Fang H, Zhang H, Yao ZP, Ma L, Wang Z, Jiang YY, Ma H (2015). Investigation of the phylogenetic relationships of different color of Haloxylon ammodendron fruit wing based on ITS2 sequence. Xinjiang Agricultural Sciences, 52, 1822-1827. |
[方辉, 张桦, 姚正培, 马林, 王泽, 蒋圆圆, 麻浩 (2015). 基于ITS2序列探讨不同果翅颜色梭梭的系统发育关系. 新疆农业科学, 52, 1822-1827.] | |
[9] |
Ferris KG, Willis JH (2018). Differential adaptation to a harsh granite outcrop habitat between sympatric Mimulus species. Evolution, 72, 1225-1241.
DOI URL |
[10] |
He YZ, Huang WD, Zhao X, Lü P, Wang HH (2021). Review on the impact of climate change on plant diversity. Journal of Desert Research, 41, 59-66.
DOI |
[何远政, 黄文达, 赵昕, 吕朋, 王怀海 (2021). 气候变化对植物多样性的影响研究综述. 中国沙漠, 41, 59-66.]
DOI |
|
[11] |
Hewitt GM (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 359, 183-195.
DOI URL |
[12] |
Huang WD, Zhao XY, Zhao X, Li YQ, Lian J, Yun JY (2014). Relationship between the genetic diversity of Artemisia halodendron and climatic factors. Acta Oecologica, 55, 97-103.
DOI URL |
[13] |
Jia SW, Zhang ML (2019). Pleistocene climate change and phylogeographic structure of the Gymnocarpos przewalskii (Caryophyllaceae) in the northwest China: evidence from plastid DNA, ITS sequences, and Microsatellite. Ecology and Evolution, 9, 5219-5235.
DOI URL |
[14] | Jiang W (2014). Effects of Warming and Grazing to Genetic Diversity of Stipa aliena and Elymus nutans Populations in Alpine Meadow of Qinghai-Tibetan Plateau. Master degree dissertation, Inner Mongolia University, Hohhot. |
[姜威 (2014). 增温与放牧对高寒草甸异针茅和垂穗披碱草种群遗传多样性的影响. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[15] | Jiang YY, Zhang H, Yao ZP, Ma H, Wang Z, Li YJ, Fang H, Ma L (2015). Investigation on the phylogenesis of wild Haloxylon persicum based on ITS2 sequence. Journal of Xinjiang Agricultural University, 38, 200-204. |
[蒋圆圆, 张桦, 姚正培, 麻浩, 王泽, 李亚婕, 方辉, 马林 (2015). 基于ITS2序列探讨野生白梭梭的系统发育关系. 新疆农业大学学报, 38, 200-204.] | |
[16] |
Levins R (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237-240.
DOI URL |
[17] |
McMillen DP (2004). Geographically weighted regression: the analysis of spatially varying relationships. American Journal of Agricultural Economics, 86, 554-556.
DOI URL |
[18] |
Meng HH, Zhang ML (2013). Diversification of plant species in arid Northwest China: species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Molecular Phylogenetics and Evolution, 68, 398-409.
DOI URL |
[19] |
Peakall R, Smouse PE (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics, 28, 2537-2539.
PMID |
[20] |
Pons O, Petit RJ (1996). Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics, 144, 1237-1245.
DOI PMID |
[21] |
Rogers AR, Harpending H (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569.
DOI PMID |
[22] |
Shaw J, Lickey EB, Schilling EE, Small RL (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany, 94, 275-288.
DOI PMID |
[23] | Sheng Y, Zhen WH, Pei KQ, Ma KP (2004). Population genetic structure of a dominant desert tree, Haloxylon ammodendron (Chenopodiaceae), in the Southeast Gurbantunggut Desert detected by RAPD and ISSR markers. Acta Botanica Sinica, 46, 675-681. |
[24] |
Shi XJ, Zhang ML (2015). Phylogeographical structure inferred from cpDNA sequence variation of Zygophyllum xanthoxylon across north-west China. Journal of Plant Research, 128, 269-282.
DOI URL |
[25] | Sun FF, Nie YB, Ma SM, Wei B, Ji WQ (2019). Species differentiation of Haloxylon ammodendron and Haloxylon persicum based on ITS and cpDNA sequences. Scientia Silvae Sinicae, 55(3), 43-53. |
[孙芳芳, 聂迎彬, 马松梅, 魏博, 吉万全 (2019). 基于ITS和cpDNA序列的梭梭和白梭梭物种分化. 林业科学, 55(3), 43-53.] | |
[26] | The Editorial Committee of Chinese Vegetation (1980). Chinese Vegetation. Science Press, Beijing. |
[中国植被编辑委员会 (1980). 中国植被. 科学出版社, 北京.] | |
[27] | Wang J, Wu Y, Ren G, Guo Q, Liu J, Lascoux M (2011). Genetic differentiation and delimitation between ecologically diverged Populus euphratica and P. pruinosa. PLoS ONE, 6, e26530. DOI: 10.1371/journal.pone.0026530. |
[28] |
Wang Q, Abbott RJ, Yu Q, Lin K, Liu J (2013). Pleistocene climate change and the origin of two desert plant species, Pugionium cornutum and Pugionium dolabratum (Brassicaceae), in northwest China. New Phytologist, 199, 277-287.
DOI URL |
[29] |
Wen ZB, Xu Z, Zhang HX, Feng Y (2016). Chloroplast phylogeographic patterns of Calligonum sect. Pterococcus (Polygonaceae) in arid Northwest China. Nordic Journal of Botany, 34, 335-342.
DOI URL |
[30] |
Wolfe KH, Li W, Sharp PM (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America, 84, 9054-9058.
DOI PMID |
[31] | Xu ZP, Wan T, Cai P, Zhang XM, Yi WD, Wan YC (2017). Study on the relevance between genetic diversity of Gymnocarpos przewalskii populations and soil factors. Ecology and Environmental Sciences, 26, 1473-1479. |
[徐振朋, 宛涛, 蔡萍, 张晓明, 伊卫东, 宛诣超 (2017). 裸果木种群遗传多样性及其与土壤因子的关联性研究. 生态环境学报, 26, 1473-1479.]
DOI |
|
[32] |
Yin JF, Zhou XB, Yin BF, Li YG, Zhang YM (2021). Species-dependent responses of root growth of herbaceous plants to snow cover changes in a temperate desert, Northwest China. Plant and Soil, 459, 249-260.
DOI |
[33] | Zeng YF, Zhang JG, Abuduhamiti B, Wang WT, Jia ZQ (2018). Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations. BMC Evolutionary Biology, 18, 75. DOI: 10.1186/s12862-018-1194-1. |
[34] | Zhang HX, Zhang ML (2012). Genetic structure of the Delphinium naviculare species group tracks Pleistocene climatic oscillations in the Tianshan Mountains, arid Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 353- 355, 93-103. |
[35] | Zhang H, Zhang M, Sanderson SC (2016). Spatial genetic structure of forest and xerophytic plant species in arid Eastern Central Asia: insights from comparative phylogeography and ecological niche modelling. Biological Journal of the Linnean Society. DOI: 10.1111/bij.12903. |
[36] | Zhang HX, Zheng TY (2020). Effects of elevation on population genetic characteristics of Malus sieversii. Chinese Journal of Ecology, 39, 4031-4037. |
[张宏祥, 郑田勇 (2020). 海拔对新疆野苹果种群遗传特征的影响. 生态学杂志, 39, 4031-4037.] | |
[37] | Zhang L, Sun FF, Ma SM, Wang CC, Wei B, Zhang YL (2022). Phylogeography of Amygdalus mongolica in relation to Quaternary climatic aridification and oscillations in northwestern China. PeerJ, 10, e13345. DOI: 10.7717/peerj.13345. |
[38] | Zhang LY (2002). Haloxylon ammodendron and Haloxylon persicum in Xinjiang Desert (I). Plants, (4), 4-6. |
[张立运 (2002). 新疆荒漠中的梭梭和白梭梭(上). 植物杂志, (4), 4-6.] | |
[39] | Zhang P, Dong YZ, Wei Y, Hu CZ (2006). ISSR analysis of genetic diversity of Haloxylon ammodendron in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 26, 1337-1341. |
[张萍, 董玉芝, 魏岩, 胡成志 (2006). 利用ISSR标记对新疆梭梭遗传多样性的研究. 西北植物学报, 26, 1337-1341.] | |
[40] | Zhong Y, Tang XH, Shi SH, Huang YL, Tan FX (1999). Effect of outgroups on construction of gene trees. Acta Scientiarum Naturalium Universitatis Sunyatseni, 38, 124-127. |
[钟扬, 唐先华, 施苏华, 黄椰林, 谈凤笑 (1999). 外类群对构建基因树的影响. 中山大学学报(自然科学版), 38, 124-127.] |
[1] | 马佳正 陈雨婷 马松梅 张丹 贺凌云. 基于GIS和多源数据的沙漠植物白梭梭遗传格局与扩散路径模拟[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 韩雨晴 熊伟 刘雅莉 张景波 辛智鸣 马迎宾 廉泓林 王思涵. 乌兰布和沙漠梭梭茎干液流对降雨脉冲的响应[J]. 植物生态学报, 2024, 48(9): 0-0. |
[3] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[4] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[5] | 王春成, 张云玲, 马松梅, 黄刚, 张丹, 闫涵. 中国扁桃亚属四种野生扁桃的系统发育与物种分化[J]. 植物生态学报, 2021, 45(9): 987-995. |
[6] | 姜超, 谭珂, 任明迅. 季风对亚洲热带植物分布格局的影响[J]. 植物生态学报, 2017, 41(10): 1103-1112. |
[7] | 张利锐, 彭艳玲, 任广朋, 周永锋, 李忠虎, 刘建全. 马尾松和黄山松两个核基因位点的群体遗传多样性和种间分化[J]. 植物生态学报, 2011, 35(5): 531-538. |
[8] | 严巧娣, 苏培玺, 陈宏彬, 张岭梅. 五种C4荒漠植物光合器官中含晶细胞的比较分析[J]. 植物生态学报, 2008, 32(4): 873-882. |
[9] | 苏培玺, 安黎哲, 马瑞君, 刘新民. 荒漠植物梭梭和沙拐枣的花环结构及C4光合特征[J]. 植物生态学报, 2005, 29(1): 1-7. |
[10] | 侯天侦, 梁远强. 新疆甘家湖梭梭林的光合、水分生理生态的研究[J]. 植物生态学报, 1991, 15(2): 141-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19