植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1172-1179.DOI: 10.17521/cjpe.2023.0168 cstr: 32100.14.cjpe.2023.0168
韩雨晴1, 熊伟1,*(), 吴波1, 卢琦1, 杨文斌1, 刘雅莉1, 张景波2,3, 辛智鸣2,3, 马迎宾2,3, 廉泓林4, 王思涵5
收稿日期:
2023-06-13
接受日期:
2023-12-21
出版日期:
2024-09-20
发布日期:
2024-04-29
通讯作者:
熊伟(基金资助:
HAN Yu-Qing1, XIONG Wei1,*(), WU Bo1, LU Qi1, YANG Wen-Bin1, LIU Ya-Li1, ZHANG Jing-Bo2,3, XIN Zhi-Ming2,3, MA Ying-Bin2,3, LIAN Hong-Lin4, WANG Si-Han5
Received:
2023-06-13
Accepted:
2023-12-21
Online:
2024-09-20
Published:
2024-04-29
Contact:
XIONG Wei (Supported by:
摘要:
量化荒漠植物生态水文过程对降雨脉冲的响应是理解气候变化对旱区生态系统影响的关键。为深入理解乌兰布和沙漠梭梭(Haloxylon ammodendron)人工林中梭梭对降雨脉冲的响应, 于2020年6-10月, 应用热扩散技术和气象水文学方法观测了梭梭茎干液流速率(SFD)、人工林微气象因素和土壤水分含量, 结果表明: (1)在研究期内选择的17场降雨事件中, 降雨后梭梭茎干SFD日均值为0.044 g·cm-2·min-1, 是雨前的1.16倍。其中9场降雨后SFD日变化曲线由雨前的“双峰型”变为“单峰型”; 另外8场降雨则明显改变了梭梭茎干SFD日变化的特征值: 降雨后梭梭茎干液流的启动时间由降雨前的8:00提前至7:00左右, 其平均峰值也由降雨前的0.067增至0.085 g·cm-2·min-1, 且在峰值区间维持时间也明显延长。 (2)阈值-延迟模型(T-D)可以较好地描述梭梭茎干SFD对降雨脉冲的响应过程; 其最低降雨响应阈值为0.8 mm, 滞后时间为1.71 d。(3)梭梭茎干SFD与气温、饱和水汽压差、太阳辐射、风速和土壤体积含水量均呈显著正相关关系, 与相对湿度呈显著负相关关系, 但与降雨量无显著相关关系, 说明降雨输入会通过改变梭梭的水分生理特性和土壤水分条件来间接影响其液流的变化。该研究结果有助于深入了解荒漠植物水分利用特征及其对气候变化的响应机制, 对于人工固沙林的可持续经营与管理具有重要意义。
韩雨晴, 熊伟, 吴波, 卢琦, 杨文斌, 刘雅莉, 张景波, 辛智鸣, 马迎宾, 廉泓林, 王思涵. 乌兰布和沙漠梭梭茎干液流对降雨脉冲的响应. 植物生态学报, 2024, 48(9): 1172-1179. DOI: 10.17521/cjpe.2023.0168
HAN Yu-Qing, XIONG Wei, WU Bo, LU Qi, YANG Wen-Bin, LIU Ya-Li, ZHANG Jing-Bo, XIN Zhi-Ming, MA Ying-Bin, LIAN Hong-Lin, WANG Si-Han. Responses of stem sap flow of Haloxylon ammodendron to rainfall pulses in Ulan Buh Desert. Chinese Journal of Plant Ecology, 2024, 48(9): 1172-1179. DOI: 10.17521/cjpe.2023.0168
编号 Number | 株高 Plant height (m) | 平均地径 Mean DGH (cm) | 平均冠幅 Mean crown width (m) |
---|---|---|---|
1 | 3.5 | 9.0 | 5.1 |
2 | 3.6 | 8.5 | 4.9 |
3 | 3.6 | 5.2 | 4.0 |
4 | 3.4 | 10.8 | 4.5 |
5 | 2.7 | 10.0 | 3.0 |
6 | 2.0 | 7.5 | 2.2 |
7 | 2.8 | 4.6 | 2.7 |
8 | 2.9 | 4.0 | 3.1 |
9 | 1.8 | 2.8 | 1.2 |
表1 乌兰布和沙漠梭梭人工林固定样地茎干液流测定样株的基本特征
Table 1 Characteristics of sample trees for sap flow measurement in a fixed plot of Haloxylon ammodendron plantation in the Ulan Buh Desert
编号 Number | 株高 Plant height (m) | 平均地径 Mean DGH (cm) | 平均冠幅 Mean crown width (m) |
---|---|---|---|
1 | 3.5 | 9.0 | 5.1 |
2 | 3.6 | 8.5 | 4.9 |
3 | 3.6 | 5.2 | 4.0 |
4 | 3.4 | 10.8 | 4.5 |
5 | 2.7 | 10.0 | 3.0 |
6 | 2.0 | 7.5 | 2.2 |
7 | 2.8 | 4.6 | 2.7 |
8 | 2.9 | 4.0 | 3.1 |
9 | 1.8 | 2.8 | 1.2 |
图1 乌兰布和沙漠梭梭人工林2020年6-10月降雨量和降雨强度的频率分布。
Fig. 1 Frequency distribution of rainfall classes and rainfall intensities in a fixed plot of Haloxylon ammodendron plantation in the Ulan Buh Desert during June to October 2020.
图2 乌兰布和沙漠梭梭人工林研究期内降雨量与各层土壤体积含水量的动态变化。
Fig. 2 Variation of rainfall and soil volumetric water content (SVWC) at different layers during the study period in a fixed plot of Haloxylon ammodendron plantation in the Ulan Buh Desert.
图3 乌兰布和沙漠梭梭人工林降雨后5天内土壤剖面各层体积含水量与降雨量的相关关系。
Fig. 3 Correlation between soil volumetric water content in each layer and rainfall within five days after rain in a fixed plot of Haloxylon ammodendron plantation in the Ulan Buh Desert.
图4 乌兰布和沙漠梭梭人工林降雨前后梭梭茎干液流密度日平均值及最大值对比(平均值±标准误)。
Fig. 4 Comparison of the daily mean and the maximum of stem sap flux density of Haloxylon ammodendron before and after rain in a fixed plot of H. ammodendron plantation in the Ulan Buh Desert (mean ± SE).
图5 乌兰布和沙漠梭梭人工林梭梭茎干液流密度日变化对降雨脉冲的两种不同响应方式(平均值±标准误)。A, 峰型变化。B, 特征值变化。
Fig. 5 Two different response modes of diurnal variation of stem sap flux density of Haloxylon ammodendron to rainfall pulses in a fixed plot of H. ammodendron plantation in the Ulan Buh Desert (mean ± SE). A, Peak pattern changes. B, Characteristic values changes.
环境因子 Environmental factor | 相关系数 Correlation coefficient | |
---|---|---|
微气象因子 Meteorological factor | 降雨量 P | 0.108 |
温度 T | 0.624** | |
相对湿度 RH | -0.471** | |
饱和水汽压差 VPD | 0.738** | |
太阳辐射 R | 0.812** | |
风速 WS | 0.302** | |
土层深度 Soil depth (cm) | 0-20 | 0.182** |
20-40 | 0.606** | |
40-60 | 0.537** | |
60-80 | 0.487** | |
80-100 | 0.557** | |
100-200 | 0.601** |
表2 乌兰布和沙漠梭梭人工林梭梭茎干液流密度与环境因子和土壤体积含水量之间的相关分析
Table 2 Correlation between sap flux density of Haloxylon ammodendron and environmental factors and soil volumetric water content at different depths in a fixed plot of H. ammodendron plantation in the Ulan Buh Desert
环境因子 Environmental factor | 相关系数 Correlation coefficient | |
---|---|---|
微气象因子 Meteorological factor | 降雨量 P | 0.108 |
温度 T | 0.624** | |
相对湿度 RH | -0.471** | |
饱和水汽压差 VPD | 0.738** | |
太阳辐射 R | 0.812** | |
风速 WS | 0.302** | |
土层深度 Soil depth (cm) | 0-20 | 0.182** |
20-40 | 0.606** | |
40-60 | 0.537** | |
60-80 | 0.487** | |
80-100 | 0.557** | |
100-200 | 0.601** |
[1] | Aranda I, Forner A, Cuesta B, Valladares F (2012). Species- specific water use by forest tree species: from the tree to the stand. Agricultural Water Management, 114, 67-77. |
[2] | Cavanaugh ML, Kurc SA, Scott RL (2011). Evapotranspiration partitioning in semiarid shrubland ecosystems: a two-site evaluation of soil moisture control on transpiration. Ecohydrology, 4, 671-681. |
[3] | Chang XX, Zhao WZ, Zhang ZH (2007). Water consumption characteristic of Haloxylon ammodendron for sand binding in desert area. Acta Ecologica Sinica, 27, 1826-1837. |
[常学向, 赵文智, 张智慧 (2007). 荒漠区固沙植物梭梭(Haloxylon ammodendron)耗水特征. 生态学报, 27, 1826-1837.]. | |
[4] | Cheng YB, Feng W, Zhan HB, Xiao HJ, Xin ZM, Yang WB (2022). An experimental investigation of precipitation utilization of plants in arid regions. Hydrology and Earth System Sciences, 2022. DOI: 10.5194/hess-2022-392. |
[5] | Eberbach PL, Burrows GE (2006). The transpiration response by four topographically distributed Eucalyptus species, to rainfall occurring during drought in south eastern Australia. Physiologia Plantarum, 127, 483-493. |
[6] | He Q, Yan M, Miyazawa Y, Chen Q, Cheng R, Otsuki K, Yamanaka N, Du S (2020). Sap flow changes and climatic responses over multiple-year treatment of rainfall exclusion in a sub-humid black locust plantation. Forest Ecology and Management, 457, 117730. DOI: 10.1016/j.foreco.2019.117730. |
[7] | Huang L, Zhang ZS (2016). Effect of rainfall pulses on plant growth and transpiration of two xerophytic shrubs in a revegetated desert area: Tengger Desert, China. Catena, 137, 269-276. |
[8] |
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
PMID |
[9] | Iqbal S, Zha T, Jia X, Hayat M, Qian D, Bourque CPA, Tian Y, Bai Y, Liu P, Yang R, Khan A (2021). Interannual Variation in sap flow response in three xeric shrub species to periodic drought. Agricultural and Forest Meteorology, 297,108276. DOI: 10.1016/j.agrformet.2020.108276. |
[10] | Ivans S, Hipps L, Leffler AJ, Ivans CY (2006). Response of water vapor and CO2 fluxes in semiarid lands to seasonal and intermittent precipitation pulses. Journal of Hydrom-eteorology, 7, 995-1010. |
[11] | Jia ZQ, Lu Q, Guo BG, Zhao M, Liang YQ (2004). Progress in the study of psammophyte—Haloxylon. Forest Research, 17(1), 125-132. |
[贾志清, 卢琦, 郭保贵, 赵明, 梁远强 (2004). 沙生植物——梭梭研究进展. 林业科学研究, 17(1), 125-132.] | |
[12] | Kannenberg SA, Barnes ML, Bowling DR, Driscoll AW, Guo J, Anderegg WR (2023). Quantifying the drivers of ecosystem fluxes and water potential across the soil-plant- atmosphere continuum in an arid woodland. Agricultural and Forest Meteorology, 329, 109269. DOI: 10.1016/j. agrformet.2022.109269. |
[13] | Liu YL, Bai JH, Xiong W, Han YQ, Lian HL, Guo H, Xin ZM, Liu XJ, Liu HY (2022). The characteristics of branch nocturnal sap flow and its environmental driving mechanism of Haloxylon ammodendron artificial shrub in the Ulan Buh Desert. Journal of Desert Research, 42(5), 195-203. |
[刘雅莉, 白建华, 熊伟, 韩雨晴, 廉泓林, 郭浩, 辛智鸣, 刘湘杰, 刘怀远 (2022). 乌兰布和沙漠梭梭(Haloxylon ammodendron)夜间液流特征及其环境驱动机制. 中国沙漠, 42(5), 195-203.]
DOI |
|
[14] | Lu SB, Chen YM, Tang YK, Wu X, Wen J (2017). Sap flux density in response to rainfall pulses for Pinus tabuliformis and Hippophae rhamnoides from mixed plantation in hilly Loess Plateau. Chinese Journal of Applied Ecology, 28, 3469-3478. |
[卢森堡, 陈云明, 唐亚坤, 吴旭, 温杰 (2017). 黄土丘陵区混交林中油松和沙棘树干液流对降雨脉冲的响应. 应用生态学报, 28, 3469-3478.]
DOI |
|
[15] | Niu FR, Chen J, Xiong PF, Wang Z, Zhang H, Xu BC (2019). Responses of soil respiration to rainfall pulses in a natural grassland community on the semi-arid Loess Plateau of China. Catena, 178, 199-208. |
[16] | Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25-51. |
[17] |
Ogle K, Reynolds JF (2004). Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia, 141, 282-294.
PMID |
[18] |
Reynolds JF, Kemp PR, Ogle K, Fernández RJ (2004). Modifying the ‘pulse-reserve’ paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia, 141, 194-210.
PMID |
[19] |
Schwinning S, Sala OE (2004). Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141, 211-220.
PMID |
[20] | Song WM, Chen SP, Zhou YD, Lin GH (2020). Rainfall amount and timing jointly regulate the responses of soil nitrogen transformation processes to rainfall increase in an arid desert ecosystem. Geoderma, 364, 114197. DOI: 10.1016/j.geoderma.2020.114197. |
[21] | Ungar ED, Rotenberg E, Raz-Yaseef N, Cohen S, Yakir D, Schiller G (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: implications for forest management. Forest Ecology and Management, 298, 39-51. |
[22] | Wang D, Gao GY, Li JR, Yuan C, Lü YH, Fu BJ (2020). Sap flow dynamics of xerophytic shrubs differ significantly among rainfall categories in the Loess Plateau of China. Journal of Hydrology, 585, 124815. DOI: 10.1016/j.jhydrol.2020.124815. |
[23] | Wang H, Wang XK, Zhao P, Zheng H, Ren YF, Gao FY, Ouyang ZY (2012). Transpiration rates of urban trees. Aesculus chinensis. Journal of Environmental Sciences, 24, 1278-1287. |
[24] |
Wullschleger SD, Meinzer FC, Vertessy RA (1998). A review of whole-plant water use studies in tree. Tree Physiology, 18, 499-512.
PMID |
[25] | Xu H, Zhang XM, Yan HL, Sun HY, Shan LS (2008). Water consumption and transpiration of Haloxylon ammodendron in hinterland of Taklimakan Desert. Acta Ecologica Sinica, 28, 3713-3720. |
[许浩, 张希明, 闫海龙, 孙红叶, 单立山 (2008). 塔克拉玛干沙漠腹地梭梭(Haloxylon ammodendron)蒸腾耗水规律. 生态学报, 28, 3713-3720.] | |
[26] | Xu XY, Sun BP, Ding GD, Guo SJ, Chai CW (2008). Sap flow patterns of three main sand-fixing shrubs and their responses to environmental factors in desert areas. Acta Ecologica Sinica, 28, 895-905. |
[徐先英, 孙保平, 丁国栋, 郭树江, 柴成武 (2008). 干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应. 生态学报, 28, 895-905.] | |
[27] | Yang QY, Zhao WZ, Liu B, Liu H (2014). Physiological responses of Haloxylon ammodendron to rainfall pulses in temperate desert regions, Northwestern China. Trees, 28, 709-722. |
[28] | Zeppel M, Macinnis-Ng CMO, Ford CR, Eamus D (2008). The response of sap flow to pulses of rain in a temperate Australian woodland. Plant and Soil, 305, 121-130. |
[29] | Zhang JC, Xu XY, Sun XB, Guo SJ, Qiang YQ, Yan PY, Zhao YL, Duan XF, Liu XP, Ma FY (2023). Dynamic changes in the sap flow of Haloxylon ammodendron in the Minqin Desert region. Pratacultural Science, 40, 169-178. |
[张锦春, 徐先英, 孙学兵, 郭树江, 强玉泉, 闫沛迎, 赵艳丽, 段晓峰, 柳小平, 马福元 (2023). 民勤荒漠梭梭茎干液流动态. 草业科学, 40, 169-178.] | |
[30] | Zhang XY, Chu JM, Meng P, Zheng N, Yao ZW, Wang HS, Jiang SX (2016). Effects of environmental factors on evapotranspiration characteristics of Haloxylon ammodendron plantation in the Minqin oasis-desert ectone, Northwest China. Chinese Journal of Applied Ecology, 27, 2390-2400. |
[张晓艳, 褚建民, 孟平, 郑宁, 姚增旺, 王鹤松, 姜生秀 (2016). 环境因子对民勤绿洲荒漠过渡带梭梭人工林蒸散的影响. 应用生态学报, 27, 2390-2400.]
DOI |
|
[31] | Zhao WZ, Liu B (2010). The response of sap flow in shrubs to rainfall pulses in the desert region of China. Agricultural and Forest Meteorology, 150, 1297-1306. |
[32] | Zhao WZ, Liu H (2011). Precipitation pulses and ecosystem responses in arid and semiarid regions: a review. Journal of Applied Ecology, 22, 243-249. |
[赵文智, 刘鹄 (2011). 干旱, 半干旱环境降水脉动对生态系统的影响. 应用生态学报, 22, 243-249.] |
[1] | 李蓓蓓, 张明军, 车存伟, 刘泽琛, 钟晓菲, 张园园, 张宇. 基于稳定同位素示踪的不同覆砂厚度下枣树水分利用策略[J]. 植物生态学报, 2024, 48(9): 1202-1212. |
[2] | 付照琦, 胡旭, 田沁瑞, 葛艳灵, 周红娟, 吴小云, 陈立欣. 晋西黄土区2种典型森林树种夜间液流特征及对环境因子的响应[J]. 植物生态学报, 2024, 48(9): 1128-1142. |
[3] | 张小雨, 贾国栋, 余新晓, 孙立博, 蒋涛. 不同退化程度小叶杨人工林冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2024, 48(9): 1143-1156. |
[4] | 童郁强, 吴梦鸽, 王玲, 赵实, 韩叙, 张彤, 刘静, 秦胜金, 董英豪, 魏亚伟, 周永斌. 基于液流径向变化的樟子松蒸腾耗水量估算及影响因素[J]. 植物生态学报, 2024, 48(9): 1118-1127. |
[5] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[6] | 马佳正 陈雨婷 马松梅 张丹 贺凌云. 基于GIS和多源数据的沙漠植物白梭梭遗传格局与扩散路径模拟[J]. 植物生态学报, 2024, 48(10): 1326-1335. |
[7] | 陈雨婷, 马松梅, 张丹, 张林, 王春成. 新疆同域分布梭梭和白梭梭多样性格局及其形成机制[J]. 植物生态学报, 2024, 48(1): 56-67. |
[8] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[9] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[10] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[11] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[12] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[13] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[14] | 张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. 模拟降雨格局变化对亚热带地区两树种液流特征的影响[J]. 植物生态学报, 2019, 43(11): 988-998. |
[15] | 李豆豆, 席本野, 王斐, 贾素苹, 赵洪林, 贺曰林, 刘洋, 贾黎明. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7): 741-751. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19