植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1118-1127.DOI: 10.17521/cjpe.2023.0121 cstr: 32100.14.cjpe.2023.0121
童郁强1,2, 吴梦鸽1,2, 王玲3, 赵实3, 韩叙1,2, 张彤1,2, 刘静1,2, 秦胜金1,2, 董英豪1,2, 魏亚伟1,2,*(), 周永斌2,4,*(
)
收稿日期:
2023-05-04
接受日期:
2024-06-20
出版日期:
2024-09-20
发布日期:
2024-06-24
通讯作者:
魏亚伟(基金资助:
TONG Yu-Qiang1,2, WU Meng-Ge1,2, WANG Ling3, ZHAO Shi3, HAN Xu1,2, ZHANG Tong1,2, LIU Jing1,2, QIN Sheng-Jin1,2, DONG Ying-Hao1,2, WEI Ya-Wei1,2,*(), ZHOU Yong-Bin2,4,*(
)
Received:
2023-05-04
Accepted:
2024-06-20
Online:
2024-09-20
Published:
2024-06-24
Contact:
(Wei YW, Supported by:
摘要:
樟子松(Pinus sylvestris var. mongolica)是辽西北半干旱区主要的人工林造林树种, 准确估算其蒸腾耗水量对樟子松人工林的科学管理具有重要意义。该研究采用基于多点(不同规格) TDP探针研究30年生樟子松树干液流的径向变化特征及其对树木蒸腾耗水量的影响。结果表明: 樟子松树干液流在径向上存在较大的差异且随着季节的变化径向模式也会发生变化。在8月, 樟子松树干液流呈现明显的单峰径向模式, 在距最外侧边材15 mm处达到峰值, 而在10月, 樟子松径向模式表现出较大的差异, 从边材的外侧到心材逐渐下降。基于液流径向变化, 估算出30年生樟子松在8月和10月日蒸腾量分别在25.32-27.45和14.05-16.49 kg之间, 其中, 边材外侧0-20 mm的蒸腾量占据了整株蒸腾量的绝大部分。通过单点估算樟子松整株蒸腾量会产生较大误差, 误差最高可达133.22%。樟子松各深度(5、15、25 mm)的液流通量密度之间存在显著的关联性, 每个深度的液流通量密度与基于边材面积加权平均的液流通量密度之间的线性方程拟合度较好, 通过转换方程可以达到使用单点来估算整株蒸腾量的目的。光合有效辐射对樟子松各深度的液流影响最大, 但不同深度的液流对气象因素的响应程度不同, 因此不能以单深度的液流通量密度受气象因素的影响程度来预估气象因素对整株蒸腾耗水量的影响。
童郁强, 吴梦鸽, 王玲, 赵实, 韩叙, 张彤, 刘静, 秦胜金, 董英豪, 魏亚伟, 周永斌. 基于液流径向变化的樟子松蒸腾耗水量估算及影响因素. 植物生态学报, 2024, 48(9): 1118-1127. DOI: 10.17521/cjpe.2023.0121
TONG Yu-Qiang, WU Meng-Ge, WANG Ling, ZHAO Shi, HAN Xu, ZHANG Tong, LIU Jing, QIN Sheng-Jin, DONG Ying-Hao, WEI Ya-Wei, ZHOU Yong-Bin. Transpiration estimates in Pinus sylvestris var. mongolica plantation based on the radial pattern of sap flow and its influencing factors. Chinese Journal of Plant Ecology, 2024, 48(9): 1118-1127. DOI: 10.17521/cjpe.2023.0121
编号 No. | 胸径 Diameter at breast height (cm) | 树高 Height (m) | 枝下高 Crown height (m) | 冠幅 Crown breadth (m) | 边材半径 Sapwood radius (cm) |
---|---|---|---|---|---|
P1 | 26.2 | 11.8 | 5.5 | 6.2 × 7.8 | 7.1 |
P2 | 25.5 | 11.4 | 5.3 | 6.8 × 6.1 | 7.0 |
P3 | 26.8 | 12.2 | 5.8 | 6.8 × 6.1 | 7.2 |
表1 樟子松样树主要参数
Table 1 Major parameters of sample trees of Pinus sylvestris var. mongolica
编号 No. | 胸径 Diameter at breast height (cm) | 树高 Height (m) | 枝下高 Crown height (m) | 冠幅 Crown breadth (m) | 边材半径 Sapwood radius (cm) |
---|---|---|---|---|---|
P1 | 26.2 | 11.8 | 5.5 | 6.2 × 7.8 | 7.1 |
P2 | 25.5 | 11.4 | 5.3 | 6.8 × 6.1 | 7.0 |
P3 | 26.8 | 12.2 | 5.8 | 6.8 × 6.1 | 7.2 |
图1 樟子松8月(A)和10月(B)各边材深度的液流通量密度变化特征(平均值±标准误)。
Fig. 1 Diurnal variation of sap flux density at different sapwood depths of Pinus sylvestris var. mongolica in August (A) and October (B) (mean ± SE).
图2 樟子松8月和10月的日平均液流通量密度(平均值±标准误)。*表示相同深度的日平均液流通量密度在不同月份之间差异显著; 不同小写字母表示相同月份时不同深度的日平均液流通量密度存在差异显著(p < 0.05)。
Fig. 2 Mean diurnal sap flux density at different sapwood depths of Pinus sylvestris var. mongolica in August and October (mean ± SE). * indicates the significant difference in mean diurnal sap flux density between different months at the same depth; different lowercase letters indicate significant differences between different depths in the same month (p < 0.05).
编号 No. | 月份 Month | 多点估算日蒸腾量 Estimated transpiration by multi point (kg) | 单点估算日蒸腾量 Estimated transpiration by single-point (kg) | |||||
---|---|---|---|---|---|---|---|---|
5 mm | 误差 Error (%) | 15 mm | 误差 Error (%) | 25 mm | 误差 Error (%) | |||
P1 | 8 | 25.32 ± 0.93C | 35.65 ± 0.39B | 40.79 | 57.63 ± 1.68A | 127.61 | 21.42 ± 3.00C | -15.42 |
10 | 16.21 ± 1.92B | 27.50 ± 4.22A | 69.65 | 18.26 ± 1.69B | 12.65 | 20.38 ± 2.48AB | 25.73 | |
P2 | 8 | 27.45 ± 0.51B | 34.38 ± 0.87B | 25.25 | 63.98 ± 8.74A | 133.08 | 25.60 ± 3.09B | -6.73 |
10 | 14.05 ± 3.16A | 21.03 ± 6.54A | 49.70 | 20.75 ± 3.76A | 47.69 | 16.94 ± 3.91A | 20.57 | |
P3 | 8 | 27.33 ± 6.06B | 35.61 ± 11.20AB | 30.29 | 63.74 ± 12.84A | 133.22 | 24.46 ± 3.87B | -10.49 |
10 | 16.49 ± 3.48B | 30.49 ± 3.64A | 84.90 | 22.45 ± 4.08AB | 36.14 | 21.96 ± 5.05AB | 33.18 |
表2 采用多点和单点液流通量密度估算樟子松日蒸腾量的对比(平均值±标准误)
Table 2 Comparison of the daily mean transpiration of Pinus sylvestris var. mongolica single tree estimated by single-point and multipoint sap flux densities (mean ± SE)
编号 No. | 月份 Month | 多点估算日蒸腾量 Estimated transpiration by multi point (kg) | 单点估算日蒸腾量 Estimated transpiration by single-point (kg) | |||||
---|---|---|---|---|---|---|---|---|
5 mm | 误差 Error (%) | 15 mm | 误差 Error (%) | 25 mm | 误差 Error (%) | |||
P1 | 8 | 25.32 ± 0.93C | 35.65 ± 0.39B | 40.79 | 57.63 ± 1.68A | 127.61 | 21.42 ± 3.00C | -15.42 |
10 | 16.21 ± 1.92B | 27.50 ± 4.22A | 69.65 | 18.26 ± 1.69B | 12.65 | 20.38 ± 2.48AB | 25.73 | |
P2 | 8 | 27.45 ± 0.51B | 34.38 ± 0.87B | 25.25 | 63.98 ± 8.74A | 133.08 | 25.60 ± 3.09B | -6.73 |
10 | 14.05 ± 3.16A | 21.03 ± 6.54A | 49.70 | 20.75 ± 3.76A | 47.69 | 16.94 ± 3.91A | 20.57 | |
P3 | 8 | 27.33 ± 6.06B | 35.61 ± 11.20AB | 30.29 | 63.74 ± 12.84A | 133.22 | 24.46 ± 3.87B | -10.49 |
10 | 16.49 ± 3.48B | 30.49 ± 3.64A | 84.90 | 22.45 ± 4.08AB | 36.14 | 21.96 ± 5.05AB | 33.18 |
月份 Month | 各深度蒸腾占比 Ratio of transpiration at each depth | ||
---|---|---|---|
0-10 mm (%) | 10-20 mm (%) | 20-30 mm (%) | |
8 | 24.8-26.9 | 38.9-42.5 | 14.1-14.4 |
10 | 32.2-43.9 | 21.8-27.1 | 19.8-23.2 |
表3 樟子松各径向深度的蒸腾耗水量占比
Table 3 Contribution of transpiration at different depths on sapwood to transpiration of Pinus sylvestris var. mongolica
月份 Month | 各深度蒸腾占比 Ratio of transpiration at each depth | ||
---|---|---|---|
0-10 mm (%) | 10-20 mm (%) | 20-30 mm (%) | |
8 | 24.8-26.9 | 38.9-42.5 | 14.1-14.4 |
10 | 32.2-43.9 | 21.8-27.1 | 19.8-23.2 |
图3 樟子松15 mm处液流通量密度与5、25 mm处液流通量密度的数量关系。
Fig. 3 Correlation analysis of sap flux density at depth of 15 mm and sap flux density at depth of 5 and 25 mm of Pinus sylvestris var. mongolica.
深度 Depth (mm) | 8月 August | R² | 10月 October | R² |
---|---|---|---|---|
5 | y = 0.7489x - 0.0091 | 0.974 | y = 0.5831x - 0.2689 | 0.960 |
15 | y = 0.3846x + 0.9657 | 0.989 | y = 0.6933x + 0.2491 | 0.971 |
25 | y = 1.1645x - 0.3805 | 0.995 | y = 0.6960x + 0.4089 | 0.977 |
表4 樟子松5、15、25 mm处液流通量密度(x) (g·m-2·s-1)与基于边材面积加权平均的液流通量密度(y) (g·m-2·s-1)的关系
Table 4 Relationship between sap flux density at 5, 15 and 25 mm (x) and the average sap flux density (y) (g·m-2·s-1) of Pinus sylvestris var. mongolica
深度 Depth (mm) | 8月 August | R² | 10月 October | R² |
---|---|---|---|---|
5 | y = 0.7489x - 0.0091 | 0.974 | y = 0.5831x - 0.2689 | 0.960 |
15 | y = 0.3846x + 0.9657 | 0.989 | y = 0.6933x + 0.2491 | 0.971 |
25 | y = 1.1645x - 0.3805 | 0.995 | y = 0.6960x + 0.4089 | 0.977 |
图4 樟子松各深度液流通量密度与光合有效辐射、饱和水汽压差、风速、气温、相对湿度的关系。A、D、G、J、M, 5 mm处液流通量密度。B、E、H、K、N, 15 mm处液流通量密度。C、F、I、L、O, 25 mm处液流通量密度。
Fig. 4 Relationship between sap flux density at different depths of Pinus sylvestris var. mongolica and photosynthetically active radiation (PAR), vapor pressure deficit (VPD), wind speed (WS), air temperature (Ta) and relative humidity (RH). A, D, G, J, M, sap flux density at 5 mm. B, E, H, K, N, sap flux density at 15 mm. C, F, I, L, O, sap flux density at 25 mm.
深度 Depth | 回归方程 Regression equation | R2 |
---|---|---|
5 mm | y = 2.093 + 0.017PAR + 3.937VPD - 1.023WS | 0.847 |
15 mm | y = - 4.181 + 0.029PAR + 5.981VPD - 9.911WS | 0.758 |
25 mm | y = 0.614 + 0.01PAR + 5.64VPD - 1.457WS | 0.857 |
表5 樟子松各深度液流通量密度与各气象因子的回归方程
Table 5 Regression equation between sap flux density at different depths of Pinus sylvestris var. mongolica and meteorological factors
深度 Depth | 回归方程 Regression equation | R2 |
---|---|---|
5 mm | y = 2.093 + 0.017PAR + 3.937VPD - 1.023WS | 0.847 |
15 mm | y = - 4.181 + 0.029PAR + 5.981VPD - 9.911WS | 0.758 |
25 mm | y = 0.614 + 0.01PAR + 5.64VPD - 1.457WS | 0.857 |
气温 Ta (℃) | 光合有效 辐射 PAR (µmol·s-1·m-2) | 空气相 对湿度 RH (%) | 饱和水 汽压差 VPD (kPa) | 风速 WS (m·s-1) | |
---|---|---|---|---|---|
相关系数 Pearson correlation | 0.640** | 0.881** | -0.403** | 0.639** | 0.203** |
双尾检验 Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
样本数 N | 288 | 288 | 288 | 288 | 288 |
表6 樟子松蒸腾耗水量与各气象因子的相关性分析
Table 6 Pearson correlation of transpiration in Pinus sylvestris var. mongolica with meteorological factors
气温 Ta (℃) | 光合有效 辐射 PAR (µmol·s-1·m-2) | 空气相 对湿度 RH (%) | 饱和水 汽压差 VPD (kPa) | 风速 WS (m·s-1) | |
---|---|---|---|---|---|
相关系数 Pearson correlation | 0.640** | 0.881** | -0.403** | 0.639** | 0.203** |
双尾检验 Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
样本数 N | 288 | 288 | 288 | 288 | 288 |
[1] | Alvarado-Barrientos MS, Hernández-Santana V, Asbjornsen H (2013). Variability of the radial profile of sap velocity in Pinus patula from contrasting stands within the seasonal cloud forest zone of Veracruz, Mexico. Agricultural and Forest Meteorology, 168, 108-119. |
[2] |
Asbjornsen H, Goldsmith GR, Alvarado-Barrientos MS, Rebel K, van Osch FP, Rietkerk M, Chen J, Gotsch S, Tobón C, Geissert DR, Gómez-Tagle A, Vache K, Dawson TE (2011). Ecohydrological advances and applications in plant-water relations research: a review. Journal of Plant Ecology, 4, 3-22.
DOI |
[3] |
Berdanier AB, Miniat CF, Clark JS (2016). Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees. Tree Physiology, 36, 932-941.
DOI PMID |
[4] | Bodo AV, Arain MA (2021). Radial variations in xylem sap flux in a temperate red pine plantation forest. Ecological Processes, 10, 24. DOI: 10.1186/s13717-021-00295-4. |
[5] | Cao GX, Wang YN, Guo Z, Ji M, Wang YH, Xu LH (2020). Responses of transpiration to variation in evaporative demands and soil water in a larch plantation at the south side of Liupan Mountains, China. Chinese Journal of Applied Ecology, 31, 3376-3384. |
[曹恭祥, 王云霓, 郭中, 季蒙, 王彦辉, 徐丽宏 (2020). 六盘山南侧华北落叶松人工林蒸腾对土壤水分和潜在蒸散的响应. 应用生态学报, 31, 3376-3384.]
DOI |
|
[6] | Chang XX, Zhao WZ, He ZB (2014). Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 187, 14-21. |
[7] | Chen B, Chen LX, Liu QQ, Liu PS, Zhang ZQ (2015). Transpiration of Pinus sylvestris var. mongolica and its response to urban environmental factors in semi-arid area. Acta Ecologica Sinica, 35, 5076-5084. |
陈彪, 陈立欣, 刘清泉, 刘平生, 张志强 (2015). 半干旱地区城市环境下樟子松蒸腾特征及其对环境因子的响应. 生态学报, 35, 5076-5084.] | |
[8] | Dang HZ, Feng JC, Han H (2020). Characteristics of azimuthal variation of sap flux density in Pinus sylvestris var. mongolica grown in sandy land. Scientia Silvae Sinicae, 56(1), 29-37. |
党宏忠, 冯金超, 韩辉 (2020). 沙地樟子松边材液流速率的方位差异特征. 林业科学, 56(1), 29-37.] | |
[9] | Dang HZ, Han H, Chen S, Li MY (2021). A fragile soil moisture environment exacerbates the climate change- related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: long-term observations. Agricultural Water Management, 251, 106857. DOI: 10.1016/j.agwat.2021.106857. |
[10] | Dang HZ, Que XE, Feng JC, Wang MM, Zhang JX (2019). Response of sap flow rate of apple trees to environmental factors in Loess Platea of Western Shanxi Province, China. Chinese Journal of Applied Ecology, 30, 823-831. |
党宏忠, 却晓娥, 冯金超, 王檬檬, 张金鑫 (2019). 晋西黄土区苹果树边材液流速率对环境驱动的响应. 应用生态学报, 30, 823-831.]
DOI |
|
[11] | Dang HZ, Zha TS, Zhang JS, Li W, Liu SZ (2014). Radial profile of sap flow velocity in mature Xinjiang poplar (Populus alba L. var. pyramidalis) in Northwest China. Journal of Arid Land, 6, 612-627. |
[12] | Du MG, Wang SJ, Fan J, Ge HY (2022). Low sap flow of Picea crassifolia and its influencing factors in Qilian Mountains, China. Chinese Journal of Applied Ecology, 33, 931-938. |
[杜梦鸽, 王善举, 樊军, 葛红元 (2022). 祁连山青海云杉低液流特征及其影响因素. 应用生态学报, 33, 931-938.]
DOI |
|
[13] | Eliades M, Bruggeman A, Djuma H, Lubczynski MW (2018). Tree water dynamics in a semi-arid, Pinus brutia forest. Water, 10, 1039. DOI: 10.3390/w10081039. |
[14] | Fan J, Guyot A, Ostergaard KT, Lockington DA (2018). Effects of earlywood and latewood on sap flux density-based transpiration estimates in conifers. Agricultural and Forest Meteorology, 249, 267-274. |
[15] | Ford CR, Hubbard RM, Kloeppel BD, Vose JM (2007). A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agricultural and Forest Meteorology, 145, 176-185. |
[16] | Ford CR, McGuire MA, Mitchell RJ, Teskey RO (2004). Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiology, 24, 241-249. |
[17] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI PMID |
[18] | Granier A, Huc R, Barigah ST (1996). Transpiration of natural rain forest and its dependence on climatic factors. Agricultural and Forest Meteorology, 78, 19-29. |
[19] |
Hatton TJ, Catchpole EA, Vertessy RA (1990). Integration of sap flow velocity to estimate plant water use. Tree Physiology, 6, 201-209.
PMID |
[20] | Hayat M, Zha T, Jia X, Iqbal S, Qian D, Bourque CPA, Khan A, Tian Y, Bai Y, Liu P, Yang R (2020). A multiple- temporal scale analysis of biophysical control of sap flow in Salix psammophila growing in a semiarid shrubland ecosystem of Northwest China. Agricultural and Forest Meteorology, 288-289, 107985. DOI: 10.1016/j.agrformet.2020.107985. |
[21] | Hernandez-Santana V, Fernández JE, Rodriguez-Dominguez CM, Romero R, Diaz-Espejo A (2016). The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air water deficit. Agricultural and Forest Meteorology, 218- 219, 92-101. |
[22] | Korakaki E, Fotelli MN (2021). Sap flow in aleppo pine in greece in relation to sapwood radial gradient, temporal and climatic variability. Forests, 12, 2. DOI: 10.3390/f12010002. |
[23] | Kume T, Otsuki K, Du S, Yamanaka N, Wang Y, Liu G (2012). Spatial variation in sap flow velocity in semiarid region trees: its impact on stand-scale transpiration estimates. Hydrological Process, 26, 1161-1168. |
[24] | Link RM, Fuchs S, Arias Aguilar DA, Leuschner C, Castillo Ugalde MC, Valverde Otarola JCV, Schuldt B (2020). Tree height predicts the shape of radial sap flow profiles of Costa-Rican tropical dry forest tree species. Agricultural and Forest Meteorology, 287, 107913. DOI: 10.1016/j.agrformet.2020.107913. |
[25] |
Nadezhdina N, Čermák J, Ceulemans RJ (2002). Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 22, 907-918.
PMID |
[26] |
Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP (1999). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337-347.
PMID |
[27] | Qin HP, Liu ZB, Guo JB, Wang YH, Yu SP, Wang L (2021). Effects of environment and canopy structure on stem sap flow in a Larix principis-rupprechtii plantation. Chinese Journal of Applied Ecology, 32, 1681-1689. |
[秦颢萍, 刘泽彬, 郭建斌, 王彦辉, 于松平, 王蕾 (2021). 环境和冠层结构对华北落叶松林树干液流的影响. 应用生态学报, 32, 1681-1689.]
DOI |
|
[28] | Schneider T, Teixeira J, Bretherton C, Brient F, Pressel KG, Schär C, Siebesma AP (2017). Climate goals and computing the future of clouds. Nature Climate Change, 7, 3-5. |
[29] | Shinohara Y, Iida S, Oda T, Katayama A, Tsuruta K, Sato T, Tanaka N, Su M, Laplace S, Kijidani Y, Kume T (2022). Are calibrations of sap flow measurements based on thermal dissipation needed for each sample in Japanese cedar and cypress trees. Trees, 36, 1219-1229. |
[30] | Urban J, Rubtsov AV, Urban AV, Shashkin AV, Benkova VE (2019). Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agricultural and Forest Meteorology, 271, 64-72. |
[31] | Wei Z, Yoshimura K, Wang L, Miralles DG, Jasechko S, Lee X (2017). Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44, 2792-2801. |
[32] | William H, Schlesinger SJ (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189- 190, 115-117. |
[33] | Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001). A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 2, 153-168. |
[34] |
Xu F, Yang FT, Wang HM, Dai XQ (2012). Review of advances in radial patterns of stem sap flow. Chinese Journal of Plant Ecology, 36, 1004-1014.
DOI |
[徐飞, 杨风亭, 王辉民, 戴晓琴 (2012). 树干液流径向分布格局研究进展. 植物生态学报, 36, 1004-1014.]
DOI |
|
[35] | Zhang J, He Q, Shi W, Otsuki K, Yamanaka N, Du S (2015). Radial variations in xylem sap flow and their effect on whole-tree water use estimates. Hydrological Process, 29, 4993-5002. |
[36] | Zhang L, Sun PS, Liu SR (2009). A review on water use responses of tree/forest stand to environmental changes by using sap flow techniques. Acta Ecologica Sinica, 29, 5600-5610. |
[张雷, 孙鹏森, 刘世荣 (2009). 树干液流对环境变化响应研究进展. 生态学报, 29, 5600-5610.] | |
[37] | Zhao CY, Si JH, Feng Q, Yu TF, Li W (2015). Stem sap flow research: progress and prospect. Journal of Northwest Forestry University, 30(5), 98-105. |
[赵春彦, 司建华, 冯起, 鱼腾飞, 李炜 (2015). 树干液流研究进展与展望. 西北林学院学报, 30(5), 98-105.] | |
[38] | Zhao FF, Ma X, Di N, Wang Y, Liu Y, Li GD, Jia LM, Xi BY (2020). Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa. Chinese Journal of Plant Ecology, 44, 864-874. |
[赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野 (2020). 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子. 植物生态学报, 44, 864-874.] |
[1] | 付照琦, 胡旭, 田沁瑞, 葛艳灵, 周红娟, 吴小云, 陈立欣. 晋西黄土区2种典型森林树种夜间液流特征及对环境因子的响应[J]. 植物生态学报, 2024, 48(9): 1128-1142. |
[2] | 刘士玲, 杨保国, 郑路, 舒韦维, 闵惠琳, 张培, 李华, 杨坤, 周炳江, 田祖为. 广西红锥人工林径向生长的季节格局及其对气候因子的响应[J]. 植物生态学报, 2024, 48(8): 1021-1034. |
[3] | 许泽海, 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(6): 794-808. |
[4] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[5] | 任悦, 高广磊, 丁国栋, 张英, 赵珮杉, 柳叶. 不同生长期樟子松外生菌根真菌群落物种组成及其驱动因素[J]. 植物生态学报, 2023, 47(9): 1298-1309. |
[6] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[7] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[8] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[9] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[10] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[11] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[12] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[13] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[14] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[15] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19