植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1202-1212.DOI: 10.17521/cjpe.2023.0295 cstr: 32100.14.cjpe.2023.0295
李蓓蓓, 张明军*(), 车存伟, 刘泽琛, 钟晓菲, 张园园, 张宇
收稿日期:
2023-10-19
接受日期:
2024-04-08
出版日期:
2024-09-20
发布日期:
2024-04-12
通讯作者:
张明军(基金资助:
LI Bei-Bei, ZHANG Ming-Jun*(), CHE Cun-Wei, LIU Ze-Chen, ZHONG Xiao-Fei, ZHANG Yuan-Yuan, ZHANG Yu
Received:
2023-10-19
Accepted:
2024-04-08
Online:
2024-09-20
Published:
2024-04-12
Contact:
ZHANG Ming-Jun (Supported by:
摘要:
干旱区覆砂条件显著影响土壤水分状况, 进而影响植被对土壤水分的吸收和利用。然而, 对于枣树(Ziziphus jujuba)在不同覆砂条件下的吸水策略及其对输入水的动态响应仍知之甚少。该研究于2023年5月利用氢氧稳定同位素方法结合贝叶斯混合模型(MixSIAR)研究了枣树在不同覆砂厚度下的水分利用策略及其对输入水的响应。结果表明: 不覆砂样地在灌溉后第2天出现土壤含水量(SWC)峰值, 覆砂5 cm的样地在灌溉后第4天出现峰值, 覆砂10和15 cm的样地在灌溉后第6天出现峰值, 覆砂显著提高了SWC, 增强了土壤的保水性。不覆砂样地的氧稳定同位素比值(δ18O)和氢稳定同位素比值(δ2H)分别为-5.4‰- -2.2‰和-76.1‰- -61.0‰, 覆砂样地的δ18O和δ2H分别为-5.6‰- -3.0‰和-61.0‰- -75.7‰。灌溉后第2、4、6天, 0-10 cm土层不覆砂样地枣树水分利用比例(16.2%、9.1%、10.0%)相较覆砂5、10、15 cm样地(73.0%、54.5%、37.0%; 49.0%、46.2%、22.8%; 27.1%、36.1%、21.4%)稳定且覆砂措施增加了枣树对0-10 cm土壤水的利用, 即枣树对深层土壤水的利用存在滞后效应。以上结果说明了覆砂措施能够有效提高土壤的保水性, 影响植物水分利用策略, 有利于植物适应当地的干旱条件以及应对其他的环境变化。
李蓓蓓, 张明军, 车存伟, 刘泽琛, 钟晓菲, 张园园, 张宇. 基于稳定同位素示踪的不同覆砂厚度下枣树水分利用策略. 植物生态学报, 2024, 48(9): 1202-1212. DOI: 10.17521/cjpe.2023.0295
LI Bei-Bei, ZHANG Ming-Jun, CHE Cun-Wei, LIU Ze-Chen, ZHONG Xiao-Fei, ZHANG Yuan-Yuan, ZHANG Yu. Water utilization strategy of Ziziphus jujuba under different sand cover thicknesses based on stable isotope tracing. Chinese Journal of Plant Ecology, 2024, 48(9): 1202-1212. DOI: 10.17521/cjpe.2023.0295
图2 不同覆砂厚度下枣树样地土壤含水量(SWC)时空变化。A, 不覆砂。B, 覆砂5 cm。C, 覆砂10 cm。D, 覆砂15 cm。蓝色线代表土壤含水量随时间的变化, 红色线代表土壤含水量随深度的变化。
Fig. 2 Spatial and temporal variation of soil water content (SWC) in Ziziphus jujuba sample plots under different sand cover thicknesses. A, Without sand cover. B, With 5 cm of sand cover. C, With 10 cm of sand cover. D, With 15 cm of sand cover. Blue line represents soil water content over time, red line represents soil water content over depth.
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | SWC (%) | ||
---|---|---|---|---|
2023-05-11 | 2023-05-13 | 2023-05-15 | ||
0 | 0-30 | 6.4 | 7.1 | 5.5 |
30-100 | 7.8 | 7.6 | 6.9 | |
5 | 0-30 | 11.8 | 12.6 | 10.6 |
30-100 | 13.9 | 13.8 | 13.1 | |
10 | 0-30 | 12.0 | 13.4 | 11.7 |
30-100 | 14.8 | 14.7 | 14.8 | |
15 | 0-30 | 13.0 | 14.1 | 13.2 |
30-100 | 16.2 | 17.4 | 16.4 |
表1 灌溉后枣树不同覆砂厚度下土层的平均土壤含水量(SWC)
Table 1 Mean soil water content (SWC) of Ziziphus jujuba soils under different sand cover thicknesses after irrigation
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | SWC (%) | ||
---|---|---|---|---|
2023-05-11 | 2023-05-13 | 2023-05-15 | ||
0 | 0-30 | 6.4 | 7.1 | 5.5 |
30-100 | 7.8 | 7.6 | 6.9 | |
5 | 0-30 | 11.8 | 12.6 | 10.6 |
30-100 | 13.9 | 13.8 | 13.1 | |
10 | 0-30 | 12.0 | 13.4 | 11.7 |
30-100 | 14.8 | 14.7 | 14.8 | |
15 | 0-30 | 13.0 | 14.1 | 13.2 |
30-100 | 16.2 | 17.4 | 16.4 |
图3 不同覆砂厚度下土壤水同位素比值分布。GMWL, 全球大气降水线; IWL, 输入水线; LMWL, 当地大气降水线。
Fig. 3 Distribution of soil water isotope ratios under different sand cover thicknesses. GMWL, global meteoric water line; IWL, input water line; LMWL, local meteoric water line.
图4 不同覆砂厚度下土壤水氧稳定同位素组成(δ18O)变化特征。a, 不覆砂; b, 覆砂5 cm; c, 覆砂10 cm; d, 覆砂15 cm; e, 灌溉前。
Fig. 4 Characteristics of oxygen stable isotope composition (δ18O) variations of soil water under different sand cover thicknesses. a, without sand cover; b, with 5 cm of sand cover; c, with 10 cm of sand cover; d, with 15 cm of sand cover; e, before irrigation.
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | 同位素 Isotope | 2023-5-11 | 2023-5-13 | 2023-5-15 |
---|---|---|---|---|---|
0 | 0-30 | 2H | -64.6 | -61.0 | -63.8 |
18O | -3.1 | -2.2 | -2.7 | ||
30-100 | 2H | -76.1 | -74.4 | -75.0 | |
18O | -5.4 | -5.3 | -5.4 | ||
5 | 0-30 | 2H | -71.6 | -69.6 | -61.0 |
18O | -4.3 | -3.9 | -3.0 | ||
30-100 | 2H | -73.4 | -74.5 | -73.6 | |
18O | -5.2 | -5.5 | -5.4 | ||
10 | 0-30 | 2H | -71.2 | -71.8 | -67.4 |
18O | -4.4 | -4.4 | -3.6 | ||
30-100 | 2H | -72.2 | -74.3 | -72.0 | |
18O | -5.1 | -5.3 | -5.3 | ||
15 | 0-30 | 2H | -72.1 | -72.9 | -72.2 |
18O | -4.6 | -4.8 | -4.4 | ||
30-100 | 2H | -74.7 | -75.7 | -73.8 | |
18O | -5.3 | -5.6 | -5.4 |
表2 不同覆砂厚度下灌溉发生后不同土壤深度的同位素组成(‰)变化
Table 2 Changes in isotope composition (‰) at different soil depths after irrigation occurred at different sand cover thicknesses
覆砂厚度 Sand thickness (cm) | 土层 Layer of soil (cm) | 同位素 Isotope | 2023-5-11 | 2023-5-13 | 2023-5-15 |
---|---|---|---|---|---|
0 | 0-30 | 2H | -64.6 | -61.0 | -63.8 |
18O | -3.1 | -2.2 | -2.7 | ||
30-100 | 2H | -76.1 | -74.4 | -75.0 | |
18O | -5.4 | -5.3 | -5.4 | ||
5 | 0-30 | 2H | -71.6 | -69.6 | -61.0 |
18O | -4.3 | -3.9 | -3.0 | ||
30-100 | 2H | -73.4 | -74.5 | -73.6 | |
18O | -5.2 | -5.5 | -5.4 | ||
10 | 0-30 | 2H | -71.2 | -71.8 | -67.4 |
18O | -4.4 | -4.4 | -3.6 | ||
30-100 | 2H | -72.2 | -74.3 | -72.0 | |
18O | -5.1 | -5.3 | -5.3 | ||
15 | 0-30 | 2H | -72.1 | -72.9 | -72.2 |
18O | -4.6 | -4.8 | -4.4 | ||
30-100 | 2H | -74.7 | -75.7 | -73.8 | |
18O | -5.3 | -5.6 | -5.4 |
图5 不同覆砂厚度的土壤水对枣树根系吸水的贡献率。a, 不覆砂; b, 覆砂5 cm; c, 覆砂10 cm; d, 覆砂15 cm; e, 灌溉前。
Fig. 5 Contribution of soil water to water uptake by Ziziphus jujuba roots with different sand cover thicknesses. a, without sand cover; b, with 5 cm of sand cover; c, with 10 cm of sand cover; d, with 15 cm of sand cover; e, before irrigation.
[1] | Bai YR, Zhao YP, Wang YQ, Zhang X (2017). Soil infiltration process and model analysis of field mulched with different thickness of gravel-sand in Ningxia. Journal of Soil and Water Conservation, 31(4), 81-85. |
[白一茹, 赵云鹏, 王幼奇, 张兴 (2017). 宁夏砂田不同砾石覆盖厚度土壤入渗过程及模型分析. 水土保持学报, 31(4), 81-85.] | |
[2] |
Barbeta A, Gimeno TE, Clavé L, Fréjaville B, Jones SP, Delvigne C, Wingate L, Ogée J (2020). An explanation for the isotopic offset between soil and stem water in a temperate tree species. New Phytologist, 227, 766-779.
DOI PMID |
[3] |
Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Peñuelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225.
DOI PMID |
[4] | Beyer M, Kühnhammer K, Dubbert M (2020). In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future. Hydrology and Earth System Sciences, 24, 4413-4440. |
[5] | Bowen GJ (2010). Isoscapes: spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences, 38, 161-187. |
[6] | Bu L, Liu J, Zhu L, Luo S, Chen X, Li S, Lee Hill R, Zhao Y (2013). The effects of mulching on maize growth, yield and water use in a semi-arid region. Agricultural Water Management, 123, 71-78. |
[7] | Cai YK, Li Y, Feng H (2014). Effects of gravel-sand mulching degree and size on soil moisture evaporation. Journal of Soil and Water Conservation, 28(6), 273-277. |
[蔡永坤, 李毅, 冯浩 (2014). 不同砂石覆盖度和粒径对土壤水分蒸发的影响. 水土保持学报, 28(6), 273-277.] | |
[8] | Ceacero CJ, Díaz-Hernández JL, del Campo AD, Navarro-Cerrillo RM (2020). Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil and Tillage Research, 197, 104495. DOI: 10.1016/j.still.2019.104495. |
[9] | Che CW, Zhang MJ, Wang SJ, Du QQ, Ma ZZ, Meng HF, Qu DY (2020). Studying spatio-temporal variation and nfluencing factors of soil evaporation in southern and northern mountains of Lanzhou city based on stable hydrogen and oxygen isotopes. Geographical Research, 39, 2537-2551. |
[车存伟, 张明军, 王圣杰, 杜勤勤, 马转转, 孟鸿飞, 瞿德业 (2020). 基于氢氧稳定同位素的兰州市南北两山土壤蒸发时空变化及影响因素研究. 地理研究, 39, 2537-2551.]
DOI |
|
[10] | Dai JJ, Zhang XP, Luo ZD, Wang R, Liu ZL, He XG, Rao ZG, Guan HD (2020). Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, 589, 125199. DOI: 10.1016/j.jhydrol.2020.125199. |
[11] | Diaz F, Jimenez CC, Tejedor M (2005). Influence of the thickness and grain size of tephra mulch on soil water evaporation. Agricultural Water Management, 74, 47-55. |
[12] | Ding D, Zhao Y, Feng H, Hill RL, Chu X, Zhang T, He JQ (2018). Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China. Agricultural Water Management, 201, 246-257. |
[13] | Duan CX, Chen GJ, Hu YJ, Wu SF, Feng H, Dong QG (2021). Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions. Agricultural Water Management, 245, 106559. DOI: 10.1016/j.agwat.2020.106559. |
[14] | Fort F, Volaire F, Guilioni L, Barkaoui K, Navas ML, Roumet C (2017). Root traits are related to plant water-use among rangeland Mediterranean species. Functional Ecology, 31, 1700-1709. |
[15] | Gao L, Shao MG (2012). Temporal stability of shallow soil water content for three adjacent transects on a hillslope. Agricultural Water Management, 110, 41-54. |
[16] | Geris J, Tetzlaff D, McDonnell JJ, Soulsby C (2017). Spatial and emporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment, 595, 486-493. |
[17] | Good SP, Noone D, Bowen G (2015). Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349, 175-177. |
[18] | Gulhanat B, Chang SL, Bahjaynar T, Zhang YT (2022). Water sources of Picea schrenkiana and Berberis heteropoda in the Tianshan Mountains in summer. Chinese Journal of Applied Ecology, 33, 1893-1900. |
[古丽哈娜提·波拉提别克, 常顺利, 巴贺贾依娜尔·铁木尔别克, 张毓涛(2022). 天山林区雪岭云杉和异果小檗夏季水分来源. 应用生态学报, 33, 1893-1900.]
DOI |
|
[19] | Hamzei J (2011). Seed, oil, and protein yields of canola under combinations of irrigation and nitrogen application. Agronomy Journal, 103, 1152-1158. |
[20] |
Hao S, Li FD (2021). Water sources of the typical desert vegetation in Ebinur Lake Basin. Acta Geographica Sinica, 76, 1649-1661.
DOI |
[郝帅, 李发东 (2021). 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76, 1649-1661.]
DOI |
|
[21] | Jia ZJ, Liu XZ, Xu TY, Li WC, Liu QL, Chen JH, Ma B (2023). Analysis of soil water evaporation characteristics and its influencing factors under mixed sand cover. Journal of Soil and Water Conservation, 37, 227-236. |
[贾振江, 刘学智, 徐天渊, 李王成, 刘巧玲, 陈继虹, 马波 (2023). 砂土混合覆盖下的土壤水分蒸发特性及其因子分析. 水土保持学报, 37, 227-236.] | |
[22] | Jiménez CC, Tejedor M, Diaz F, Rodriguez CM (2005). Effectiveness of sand mulch in soil and water conservation in an arid region, Lanzarote, Canary Islands, Spain. Journal of Soil and Water Conservation, 60, 63-67. |
[23] |
Köcher P, Horna V, Leuschner C (2013). Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiology, 33, 817-832.
DOI PMID |
[24] | Li JJ, Fang XM, Ma HZ, Zhu JJ, Pan BT, Chen HL (1996). Late Cenozoic geomorphologic evolution of the upper Yellow River and uplift of the Tibetan Plateau. Science in China (Series D), 26, 316-322. |
[李吉均, 方小敏, 马海洲, 朱俊杰, 潘保田, 陈怀录 (1996). 晚新生代黄河上游地貌演化与青藏高原隆起. 中国科学(D辑: 地球科学), 26, 316-322.] | |
[25] | Li R, Chai SX, Chai YW, Li YW, Lan XM, Ma JT, Cheng HB, Chang L (2021). Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China. Agricultural Water Management, 254, 106965. DOI: 10.1016/j.agwat.2021.106965. |
[26] | Li S, Li Y, Lin H, Feng H, Dyck M (2018). Effects of different mulching technologies on evapotranspiration and summer maize growth. Agricultural Water Management, 201, 309-318. |
[27] | Liao Y, Cao HX, Liu X, Li HT, Hu QY, Xue WK (2021). By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agricultural Water Management, 253, 106936. DOI: 10.1016/j.agwat.2021.106936. |
[28] | Liu BX, Shao MA (2014). Estimation of soil water storage using temporal stability in four land uses over 10 years on the Loess Plateau, China. Journal of Hydrology, 517, 974-984. |
[29] | Liu JZ, Wu HW, Cheng Y, Jin Z, Hu J (2021). Stable isotope analysis of soil and plant water in a pair of natural grassland and understory of planted forestland on the Chinese Loess Plateau. Agricultural Water Management, 249, 106800. DOI: 10.1016/j.agwat.2021.106800. |
[30] | Liu XE, Li XG, Hai L, Wang YP, Li FM (2014). How efficient is film fully-mulched ridge-furrow cropping to conserve rainfall in soil at a rainfed site. Field Crops Research, 169, 107-115. |
[31] | Lü WC, Qiu Y, Xie ZK, Wang XP, Wang YJ (2021). Effects of mulch gravels with different sizes on the process of water infiltration. Research of Soil and Water Conservation, 28(6), 46-51. |
[吕文聪, 邱阳, 谢忠奎, 王新平, 王亚军 (2021). 砾石覆盖粒径对土壤入渗过程的影响. 水土保持研究, 28(6), 46-51.] | |
[32] | Miguez-Macho G, Fan Y (2021). Spatiotemporal origin of soil water taken up by vegetation. Nature, 598, 624-628. |
[33] | Mo F, Wang J, Zhou H, Luo C, Zhang X, Li X, Li F, Xiong L, Kavagi L, Nguluu SN, Xiong Y (2017). Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): an adaptive management in East African Plateau. Agricultural and Forest Meteorology, 236, 100-112. |
[34] | Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005). Deep root function in soil water dynamics in Cerrado savannas of central Brazil. Functional Ecology, 19, 574-581. |
[35] | Schreel JDM, von der Crone JS, Kangur O, Steppe K (2019). Influence of drought on foliar water uptake capacity of temperate tree species. Forests, 10, 562. DOI: 10.3390/f10070562. |
[36] | Sharma R, Bhardwaj S (2017). Effect of mulching on soil and water conservation—A review. Agricultural Reviews, 38, 311-315. |
[37] | Song RQ, Chu GX, Ye J, Bai L, Zhang RX, Yang JS (2010). Indoor experiment on the effect of sand mixing on soil water infiltration and evaporation. Journal of Agricultural Engineering, 26(S1), 109-114. |
[宋日权, 褚贵新, 冶军, 白玲, 张瑞喜, 杨劲松 (2010). 掺砂对土壤水分入渗和蒸发影响的室内试验. 农业工程学报, 26(S1), 109-114.] | |
[38] | Stock B, Semmens B (2016). MixSIAR GUI User Manual v3.1. Scripps Institution of Oceanography. UC San Diego, San Diego, USA. |
[39] | Su PY, Zhang MJ, Wang SJ, Qiu X, Wang JX, Du QQ, Guo R, Che CW (2020). Water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China. Chinese Journal of Applied Ecology, 31, 1835-1843. |
[苏鹏燕, 张明军, 王圣杰, 邱雪, 王家鑫, 杜勤勤, 郭蓉, 车存伟 (2020). 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31, 1835-1843.]
DOI |
|
[40] | Tang Y (2023). Unravelling δ13C signal in Scots pine trees for climate change and tree physiology studies. Dissertationes Forestales, 2023, 335. DOI: 10.14214/df.335. |
[41] | Tetzlaff D, Buttle J, Carey SK, Kohn MJ, Laudon H, McNamara JP, Smith A, Sprenger M, Soulsby C (2021). Stable isotopes of water reveal differences in plant-soil water relationships across northern environments. Hydrological Processes, 35, 1-19. |
[42] | Wang J, Fu BJ, Lu N, Zhang L (2017). Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609, 27-37. |
[43] | Wang J, Lu N, Fu BJ (2019). Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666, 685-693. |
[44] | Wang J, Zhang M, Argiriou AA, Wang S, Qu D, Zhang Y, Su P (2021). Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 1-18. |
[45] | Wang P, Chen G, Pei XJ, Tang XL, Song C (2023). Water use strategies of typical plants in a tunnel construction area at eastern margin of Qinghai-Xizang Plateau. Bulletin of Soil and Water Conservation, 43(4), 137-145. |
[王鹏, 陈果, 裴向军, 唐晓鹿, 宋词 (2023). 青藏高原东缘某隧道建设区典型植物水分利用策略. 水土保持通报, 43(4), 137-145.] | |
[46] | Wang Y, Xie Z, Malhi SS, Vera CL, Zhang Y (2014). Gravel-sand mulch thickness effects on soil temperature, evaporation, water use efficiency and yield of watermelon in semi-arid Loess Plateau, China. Acta Ecologica Sinica, 34, 261-265. |
[47] | Xu CJ, Jia SH, Zhao X, Bai YS, Cao R (2022). Application of water saving irrigation and fertilization technology in jujube planting. Water Resources Planning and Design, (2), 82-84. |
[许春娟, 贾生海, 赵霞, 白有帅, 曹睿 (2022). 节水灌溉和施肥技术在枣树中的应用. 水利规划与设计, (2), 82-84.] | |
[48] | Yang Y, Zhang MJ, Wang SJ, Qu DY, Zhang Y, Wang JX (2023). Soil moisture variability affected by sand mulch: an isotope-based assessment of irrigated farmland in Northwest China. Ecohydrology, 16, 1-12. |
[49] | Yeh HF, Lin HI, Lee CH, Hsu KC, Wu CS (2014). Identifying seasonal groundwater recharge using environmental stable isotopes. Water, 6, 2849-2861. |
[50] | Zhang P, Wei T, Han QF, Ren XL, Jia ZK (2020). Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China. Agricultural Water Management, 241, 106382. DOI: 10.1016/j.agwat.2020.106382 |
[51] | Zhao L, Zhang L, Zhao N, Ge JZ, Jin JW (2022). Water use strategy of fruit-grass complex systems in different habitats based on isotope tracer. Journal of Soil and Water Conservation, 36(1), 86-94. |
[赵玲, 张露, 赵妮, 戈建珍, 金晶炜 (2022). 基于同位素示踪的不同生境果草复合系统水分利用策略. 水土保持学报, 36(1), 86-94.] | |
[52] | Zhao WJ, Cui Z, Zhou CQ (2020). Spatiotemporal variability of soil-water content at different depths in fields mulched with gravel for different planting years. Journal of Hydrology, 590, 125253. DOI: 10.1016/j.jhydrol.2020.125253. |
[53] | Zhou PP, Zhang MJ, Wang SJ, Wang J, Zhao PP, Liu XM (2016). The characteristics of stable hydrogen and oxygen isotopes of greening plants in Lanzhou downtown. Chinese Journal of Ecology, 35, 2942-2951. |
[周盼盼, 张明军, 王圣杰, 王杰, 赵培培, 刘雪梅 (2016). 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35, 2942-2951.] | |
[54] | Zumrat Y, Dong ZW, Liu SYH, Ye M, Ma XD, Su ZH (2022). Analysis of water sources in Tamarix ramosissima and Haloxylon persicum communities in the desert-oasis transition zone. Journal of Soil and Water Conservation, 36(6), 213-221. |
[祖姆热提·于苏甫江, 董正武, 刘隋赟昊, 叶茂, 马晓东, 苏志豪(2022). 荒漠-绿洲过渡带多枝柽柳和白梭梭水分溯源研究. 水土保持学报, 36(6), 213-221.] |
[1] | 吴风燕, 吴永胜, 陈晓涵, 冯骥, 卢丽媛, 查斯娜, 王超宇, 孟元发, 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率的时空变化特征[J]. 植物生态学报, 2024, 48(9): 1180-1191. |
[2] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[3] | 韩雨晴, 熊伟, 吴波, 卢琦, 杨文斌, 刘雅莉, 张景波, 辛智鸣, 马迎宾, 廉泓林, 王思涵. 乌兰布和沙漠梭梭茎干液流对降雨脉冲的响应[J]. 植物生态学报, 2024, 48(9): 1172-1179. |
[4] | 周红娟, 刘子赫, 刘柯言, 张初蕊, 胡旭, 韩璐, 陈立欣. 不同降雨条件下北京土石山区混生乔灌植物的水分吸收和生态位特征[J]. 植物生态学报, 2024, 48(9): 1089-1103. |
[5] | 牛云明, 贾国栋, 王欣, 刘子赫. 庐山不同海拔植物蒸腾水龄动态及用水策略[J]. 植物生态学报, 2024, 48(9): 1104-1117. |
[6] | 刘倩愿 俞振东 张微微. 河北坝上乔、灌木植物根系无机和有机氮吸收速率及其偏好[J]. 植物生态学报, 2024, 48(10): 1361-1373. |
[7] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[8] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[9] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[10] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[11] | 雷自然, 贾国栋, 余新晓, 刘子赫. 植物水分来源稳定氢氧同位素偏移研究进展[J]. 植物生态学报, 2023, 47(1): 25-40. |
[12] | 单婷婷, 陈彤垚, 陈晓梅, 郭顺星, 王爱荣. 菌根真菌与兰科植物氮营养关系的研究进展[J]. 植物生态学报, 2022, 46(5): 516-528. |
[13] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[14] | 侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略[J]. 植物生态学报, 2021, 45(7): 760-770. |
[15] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19