植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1089-1103.DOI: 10.17521/cjpe.2024.0057 cstr: 32100.14.cjpe.2024.0057
• 研究论文 • 下一篇
周红娟1,2, 刘子赫1,2, 刘柯言1,2, 张初蕊1,2, 胡旭1,2, 韩璐1,2, 陈立欣1,2,*()
收稿日期:
2024-03-01
接受日期:
2024-06-20
出版日期:
2024-09-20
发布日期:
2024-06-24
通讯作者:
陈立欣(基金资助:
ZHOU Hong-Juan1,2, LIU Zi-He1,2, LIU Ke-Yan1,2, ZHANG Chu-Rui1,2, HU Xu1,2, HAN Lu1,2, CHEN Li-Xin1,2,*()
Received:
2024-03-01
Accepted:
2024-06-20
Online:
2024-09-20
Published:
2024-06-24
Contact:
CHEN Li-Xin (Supported by:
摘要:
分析同一林分内上层乔木与下层灌木在不同降雨事件下的水分吸收和生态位变化特征, 探究混生植物的水分利用策略及对水分的竞争/互补关系, 可为北京土石山区植被恢复和管理提供理论依据。在不同降雨类型(干旱期发生的小雨, 简称“干旱小雨”; 相对湿润期发生的中雨, 简称“湿润中雨”; 干旱期发生的暴雨, 简称“干旱暴雨”)雨前和雨后1-4天内分别采集乔木(刺槐(Robinia pseudoacacia)、栾树(Koelreuteria paniculata)和侧柏(Platycladus orientalis))和灌木(荆条(Vitex negundo))的木质部、土壤、地下水和雨水样品, 分析其稳定同位素特征及其动态变化, 运用MixSIAR模型计算植物对各种潜在水源的利用比例, 并应用Levins指数和Levins重叠指数计算水分生态位宽度和生态位重叠度。结果表明: 土壤含水量和同位素组成、乔木和灌木吸水深度和水分生态位特征均受降雨类型的影响。(1)干旱小雨后灌木的水分利用对降水更为敏感, 其利用水源由深层土壤向上层土壤转移, 而乔木水分来源依然以地下水为主; 湿润中雨后, 不同林分的乔木和灌木均以0-40 cm土壤水为主要水分来源; 干旱暴雨改变了乔木和灌木的水分利用策略, 雨后灌木的主要水分来源均为0-40 cm浅层土壤水分, 而乔木对不同土层的吸水量趋于均匀。(2)干旱小雨前后, 刺槐和栾树生态位宽度低于对应林下灌木, 而干旱暴雨前后栾树生态位宽度高于林下灌木。侧柏和林下荆条生态位宽度对降雨的响应一致, 即荆条生态位宽度在雨后第1天陡增, 侧柏生态位宽度在雨后第2天陡增。干旱小雨前, 刺槐和林下荆条水分生态位重叠较大, 雨后其随降雨天数增加而递减。除干旱小雨前乔木和灌木具有相同水分来源之外, 乔木和灌木面对降雨具有不同水分利用策略, 从而避免了彼此间水分竞争。
周红娟, 刘子赫, 刘柯言, 张初蕊, 胡旭, 韩璐, 陈立欣. 不同降雨条件下北京土石山区混生乔灌植物的水分吸收和生态位特征. 植物生态学报, 2024, 48(9): 1089-1103. DOI: 10.17521/cjpe.2024.0057
ZHOU Hong-Juan, LIU Zi-He, LIU Ke-Yan, ZHANG Chu-Rui, HU Xu, HAN Lu, CHEN Li-Xin. Water uptake and niche characteristics of neighboring plants for arbors and shrubs under different rainfall conditions in a rocky mountainous area, Beijing. Chinese Journal of Plant Ecology, 2024, 48(9): 1089-1103. DOI: 10.17521/cjpe.2024.0057
林型 Forest type | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect | 密度 Density (tree·hm-2) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 林下灌木 Shrub | 灌木高 Shrub height (m) | 灌木生物量Shrub biomass (t·hm-2) |
---|---|---|---|---|---|---|---|---|---|
RP | 146.67 | 17 | 东北 Northeast | 650 | 19.36 ± 3.25 | 9.34 ± 1.36 | 荆条 Vitex negundo | 0.91 ± 0.14 | 1.59 ± 0.18 |
KP | 155.29 | 15 | 东北 Northeast | 700 | 8.64 ± 6.36 | 9.48 ± 1.23 | 荆条 Vitex negundo | 0.75 ± 0.18 | 1.42 ± 0.15 |
PO | 142.45 | 10 | 东北 Northeast | 850 | 16.69 ± 4.55 | 10.25 ± 1.22 | 荆条 Vitex negundo | 0.59 ± 0.11 | 1.33 ± 0.12 |
表1 北京土石山区典型林木的样地基本信息(平均值±标准差)
Table 1 Basic information of typical forest trees in a rocky mountainous area in Beijing (mean ± SD)
林型 Forest type | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Slope aspect | 密度 Density (tree·hm-2) | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 林下灌木 Shrub | 灌木高 Shrub height (m) | 灌木生物量Shrub biomass (t·hm-2) |
---|---|---|---|---|---|---|---|---|---|
RP | 146.67 | 17 | 东北 Northeast | 650 | 19.36 ± 3.25 | 9.34 ± 1.36 | 荆条 Vitex negundo | 0.91 ± 0.14 | 1.59 ± 0.18 |
KP | 155.29 | 15 | 东北 Northeast | 700 | 8.64 ± 6.36 | 9.48 ± 1.23 | 荆条 Vitex negundo | 0.75 ± 0.18 | 1.42 ± 0.15 |
PO | 142.45 | 10 | 东北 Northeast | 850 | 16.69 ± 4.55 | 10.25 ± 1.22 | 荆条 Vitex negundo | 0.59 ± 0.11 | 1.33 ± 0.12 |
降雨日期 Rain event date | 降雨量 Rainfall amount (mm) | 降雨强度 Rainfall intensity (mm·min-1) | 降雨类型 Rainfall type | 雨前 BR | 雨后第1天 1st AR | 雨后第2天 2nd AR | 雨后第3天 3rd AR | 雨后第4天 4th AR |
---|---|---|---|---|---|---|---|---|
2023-06-19 | 8.60 | 0.07 | 干旱小雨 Light rainfall during a dry period | 2023-06-18 | 2023-06-20 | 2023-06-21 | 2023-06-22 | ns |
2023-08-21 | 13.44 | 0.04 | 湿润中雨 Moderate rainfall during a wet period | 2023-08-15 | 2023-08-21 | 2023-08-22 | ns | ns |
2023-09-08-2023-09-10 | 85.20 | 0.04 | 干旱暴雨 Rainstorm during a dry period | 2023-09-06 | 2023-09-10 | 2023-09-11 | 2023-09-12 | 2023-09-13 |
表2 采样时间和降雨信息
Table 2 Date of sampling and rainfall information
降雨日期 Rain event date | 降雨量 Rainfall amount (mm) | 降雨强度 Rainfall intensity (mm·min-1) | 降雨类型 Rainfall type | 雨前 BR | 雨后第1天 1st AR | 雨后第2天 2nd AR | 雨后第3天 3rd AR | 雨后第4天 4th AR |
---|---|---|---|---|---|---|---|---|
2023-06-19 | 8.60 | 0.07 | 干旱小雨 Light rainfall during a dry period | 2023-06-18 | 2023-06-20 | 2023-06-21 | 2023-06-22 | ns |
2023-08-21 | 13.44 | 0.04 | 湿润中雨 Moderate rainfall during a wet period | 2023-08-15 | 2023-08-21 | 2023-08-22 | ns | ns |
2023-09-08-2023-09-10 | 85.20 | 0.04 | 干旱暴雨 Rainstorm during a dry period | 2023-09-06 | 2023-09-10 | 2023-09-11 | 2023-09-12 | 2023-09-13 |
图1 北京土石山区采样期间土壤体积含水量和降雨的变化。KP, 栾树林; PO, 侧柏林; RP, 刺槐林。土壤体积含水量(m3·m−3)是每个样地在10、30和50 cm深度测量的平均值。
Fig. 1 Variations of soil volumetric water content and precipitation during the sampling period in a rocky mountainous area in Beijing. KP, Koelreuteria paniculata forest; PO, Platycladus orientalis forest; RP, Robinia pseudoacacia forest. The soil volumetric water content (m3·m−3) were the mean of measurements at the depths of 10, 30 and 50 cm for each plot.
图2 不同降雨类型下土壤水、乔木木质部水、灌木木质部水、雨水、地下水的氢氧同位素组成(δ2H和δ18O)分布特征(平均值±标准差)。Soil water, 土壤水; Tree xylem water, 乔木木质部水; Shrub xylem water, 灌木木质部水; 降雨量, 8.60、13.44和85.20 mm; LMWL, 大气降水线; GWL, 地下水线。不同小写字母表示降雨类型间存在显著差异(p < 0.05)。
Fig. 2 Distribution characteristics of hydrogen and oxygen isotopes composition (δ2H and δ18O) of soil water, tree xylem water, shrub xylem water, rain and groundwater under different rainfall types (mean ± SD). Rainfall amounts, 8.60 mm, 13.44 mm and 85.20 mm; LMWL, local meteoric water line; GWL, groundwater line. Different lowercase letters indicate significant differences at different rainfall types (p < 0.05).
图3 不同降雨量降雨前后不同林分土壤含水量变化(平均值±标准差)。KP, 栾树林; PO, 侧柏林; RP, 刺槐林。降雨量, 8.60、13.44和85.20 mm; BR, 雨前; 1st AR, 雨后第1天; 2nd AR, 雨后第2天; 3rd AR, 雨后第3天; 4th AR, 雨后第4天。不同小写字母表示同一土层不同采样时间土壤含水量存在显著差异(p < 0.05)。
Fig. 3 Variations of soil water content in different stands and rainfall amounts before and after rainfall (mean ± SD). KP, Koelreuteria paniculata forest; PO, Platycladus orientalis forest; RP, Robinia pseudoacacia forest. AR, after rain; BR, before rain. Rainfall amounts, 8.60, 13.44 and 85.20 mm. Different lowercase letters indicate significant differences in soil water content under the same soil layer at different sampling times (p < 0.05).
图4 不同降雨量降雨前后不同林分土壤水氢氧同位素组成(δ2H和δ18O)的变化(平均值±标准差)。KP, 栾树林; PO, 侧柏林; RP, 刺槐林。降雨量, 8.60、13.44和85.20 mm; BR, 雨前; 1st AR, 雨后第1天; 2nd AR, 雨后第2天; 3rd AR, 雨后第3天; 4th AR, 雨后第4天。不同大写字母表示不同采样时间土壤水δ18O值存在显著差异, 不同小写字母表示不同采样时间土壤水δ2H值存在显著差异(p < 0.05)。
Fig. 4 Variations of hydrogen and oxygen isotopes composition (δ2H and δ18O) of soil water in different stands and rainfall amounts before and after rainfall (mean ± SD). RP, Robinia pseudoacacia forest; KP, Koelreuteria paniculata forest; PO, Platycladus orientalis forest. AR, after rain; BR, before rain. Rainfall amounts, 8.60 mm, 13.44 mm and 85.20 mm. Different uppercase letters indicate significant differences in δ18O values of soil water at different sampling times, and different lowercase letters indicate significant differences in δ2H values of soil water at different sampling times (p < 0.05).
图5 不同降雨量降雨前后不同林分木质部水的氢氧同位素组成(δ2H和δ18O)变化(平均值±标准差)。kp, 栾树; po, 侧柏; rp, 刺槐; vnkp, 栾树林下荆条; vnpo, 侧柏林下荆条; vnrp, 刺槐林下荆条。降雨量, 8.60、13.44和85.20 mm; BR, 雨前; 1st AR, 雨后第1天; 2nd AR, 雨后第2天; 3rd AR, 雨后第3天; 4th AR, 雨后第4天。不同大写字母表示不同植被间木质部同位素数值存在显著差异, 不同小写字母表示不同采样时间的木质部同位素数值存在显著差异(p < 0.05)。
Fig. 5 Variations of hydrogen and oxygen isotopes composition (δ2H and δ18O) of xylem water in different stands and rainfall amounts before and after rainfall (mean ± SD). kp, Koelreuteria paniculata; po, Platycladus orientalis; rp, Robinia pseudoacacia; vnkp, Vitex negundo under Koelreuteria paniculata; vnpo, Vitex negundo under Platycladus orientalis; vnrp, Vitex negundo under Robinia pseudoacacia. AR, after rain; BR, before rain. Rainfall amounts, 8.60, 13.44 and 85.20 mm. Different uppercase letters indicate significant differences in xylem isotope values among different vegetations, and different lowercase letters indicate significant differences in xylem isotope values at different sampling times (p < 0.05).
图6 不同降雨量降雨前后不同林分乔木和灌木对各层土壤水分的利用比例。kp, 栾树; po, 侧柏; rp, 刺槐; vnkp, 栾树林下荆条; vnpo, 侧柏林下荆条; vnrp, 刺槐林下荆条。降雨量, 8.60、13.44和85.2 mm。BR, 雨前; 1st AR, 雨后第1天; 2nd AR, 雨后第2天; 3rd AR, 雨后第3天; 4th AR, 雨后第4天; GW, 地下水。
Fig. 6 Absorption proportion of soil water in each layer for trees and shrubs in different stands and rainfall amounts before and after rainfall. kp, Koelreuteria paniculata; po, Platycladus orientalis; rp, Robinia pseudoacacia; vnkp, Vitex negundo under Koelreuteria paniculata; vnpo, Vitex negundo under Platycladus orientalis; vnrp, Vitex negundo under Robinia pseudoacacia. Rainfall amounts, 8.60, 13.44 and 85.2 mm. AR, after rain; BR, before rain. GW, groundwater.
图7 不同降雨量降雨前后不同林分上层乔木和下层灌木水分生态位宽度变化特征。kp, 栾树; po, 侧柏; rp, 刺槐; vnkp, 栾树林下荆条; vnpo, 侧柏林下荆条; vnrp, 刺槐林下荆条。降雨量, 8.60、13.44和85.20 mm。BR, 雨前; 1st AR, 雨后第1天; 2nd AR, 雨后第2天; 3rd AR, 雨后第3天; 4th AR, 雨后第4天。***, p < 0.001; *, p < 0.05; ns, p > 0.05。
Fig. 7 Variations of water niche width of overstory arbors and understory shrubs in different stands and rainfall amounts before and after rainfall. kp, Koelreuteria paniculata; po, Platycladus orientalis; rp, Robinia pseudoacacia; vnkp, Vitex negundo under Koelreuteria paniculata; vnpo, Vitex negundo under Platycladus orientalis; vnrp, Vitex negundo under Robinia pseudoacacia. Rainfall amounts, 8.60, 13.44 and 85.20 mm; AR, after rain; BR, before rain. ***, p < 0.001; *, p < 0.05; ns, p > 0.05.
图8 降雨前后不同林分上层乔木和下层灌木水分生态位重叠变化特征。KP, 栾树林; PO, 侧柏林; RP, 刺槐林。BR, 雨前; 1st AR, 雨后第1天; 2nd AR, 雨后第2天; 3rd AR, 雨后第3天; 4th AR, 雨后第4天。不同小写字母表示降雨类型间存在显著差异(p < 0.05)。
Fig. 8 Characteristics of water niche overlap of overstory arbors and understory shrubs in different stands before and after rainfall. KP, Koelreuteria paniculata forest; PO, Platycladus orientalis forest; RP, Robinia pseudoacacia forest. AR, after rain; BR, before rain. Different lowercase letters indicate significant difference in different rainfall types (p < 0.05).
[1] |
Antunes C, Silva C, Máguas C, Joly CA, Vieira S (2019). Seasonal changes in water sources used by woody species in a tropical coastal dune forest. Plant and Soil, 437, 41-54.
DOI |
[2] | Bello J, Hasselquist NJ, Vallet P, Kahmen A, Perot T, Korboulewsky N (2019). Complementary water uptake depth of Quercus petraea and Pinus sylvestris in mixed stands during an extreme drought. Plant and Soil, 437, 93-115. |
[3] |
Brinkmann N, Eugster W, Buchmann N, Kahmen A (2019). Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biology, 21, 71-81.
DOI PMID |
[4] | Chen BJW, Xu C, Liu MS, Huang ZYX, Zhang MJ, Tang J, Anten NPR (2020). Neighbourhood-dependent root distributions and the consequences on root separation in arid ecosystems. Journal of Ecology, 108, 1635-1648. |
[5] | Dai JJ, Zhang XP, Wang L, Wang R, Luo ZD, He XG, Rao ZG (2023). Water stable isotope characteristics and water use strategies of co-occurring plants in ecological and economic forests in subtropical monsoon regions. Journal of Hydrology, 621, 129565. DOI: 10.1016/j.jhydrol.2023.129565. |
[6] | Dai Y, Zheng XJ, Tang LS, Li Y (2015). Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert. Plant and Soil, 389, 73-87. |
[7] | Deng WP, Yu XX, Jia GD, Li YJ, Liu YJ (2014). Water sources of three typical plants in the Beijing Mountain areas in rainy season. Arid Zone Research, 31, 649-657. |
[邓文平, 余新晓, 贾国栋, 李亚军, 刘瑜洁 (2014). 雨季北京山区3种典型植物的水分来源. 干旱区研究, 31, 649-657.] | |
[8] |
Dodd MB, Lauenroth WK, Welker JM (1998). Differential water resource use by herbaceous and woody plant life- forms in a shortgrass steppe community. Oecologia, 117, 504-512.
DOI PMID |
[9] |
Eggemeyer KD, Awada T, Harvey FE, Wedin DA, Zhou X, Zanner CW (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology, 29, 157-169.
DOI PMID |
[10] |
Ellner SP, Snyder RE, Adler PB, Hooker G (2019). An expanded modern coexistence theory for empirical applications. Ecology Letters, 22, 3-18.
DOI PMID |
[11] | Feng YC, Zheng XY, Wang ZN, Liu B, Lan SR (2019). Niche characteristics of plant populations in understory herbaceous layer of Cunninghamia lanceolata pure forest and mixed forest. Journal of Ecology and Rural Environment, 35, 217-224. |
[冯玉超, 郑晓阳, 王正宁, 刘博, 兰思仁 (2019). 杉木纯林和混交林林下草本层种群生态位特征. 生态与农村环境学报, 35, 217-224.] | |
[12] | Fu XY, Liu HM, Yu XW, Kou X, Wen L, Dong SG, Wang LX (2020). Water sources and use strategies of plants in Lake Daihai wetland. Journal of Arid Land Resources and Environment, 34(12), 42-49. |
[付昕宇, 刘华民, 于晓雯, 寇欣, 温璐, 董少刚, 王立新 (2020). 岱海湖滨带湿地植物水分来源及利用策略研究. 干旱区资源与环境, 34(12), 42-49.] | |
[13] | Ge ZX, Cai TJ, Duan BX, Xu ZP, Lang MH, Man XL (2023). Water use characteristics of Larix gmelinii and Betula platyphylla in the cold temperate zone during the growing season. Acta Ecologica Sinica, 43, 10142-10155. |
[葛照欣, 蔡体久, 段北星, 徐志鹏, 郎明翰, 满秀玲 (2023). 寒温带兴安落叶松和白桦生长季水分利用特征. 生态学报, 43, 10142-10155.] | |
[14] | Grossiord C, Gessler A, Granier A, Berger S, Bréchet C, Hentschel R, Hommel R, Scherer-Lorenzen M, Bonal D (2014). Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. Journal of Hydrology, 519, 3511-3519. |
[15] |
Grossiord C, Sevanto S, Bonal D, Borrego I, Dawson TE, Ryan M, Wang W, McDowell NG (2019). Prolonged warming and drought modify belowground interactions for water among coexisting plants. Tree Physiology, 39, 55-63.
DOI PMID |
[16] |
Grossiord C, Sevanto S, Dawson TE, Adams HD, Collins AD, Dickman LT, Newman BD, Stockton EA, McDowell NG (2017). Warming combined with more extreme precipitation regimes modifies the water sources used by trees. New Phytologist, 213, 584-596.
DOI PMID |
[17] | Han L, Liu LL, Peng L, Wang NN, Zhou P (2023). Mixing of tree species with the same water use strategy might lead to deep soil water deficit. Forest Ecology and Management, 534, 120876. DOI: 10.1016/j.foreco.2023.120876. |
[18] | Han LB, Wang Q, Wang XB, Gu ZY, Du YJ, Song GL (2009). Researchs on root distribution of Vitex negundo var. heterophylla (Franch.) Rehd on different sites conditions. Journal of Basic Science and Engineering, 17, 231-237. |
[韩烈保, 王琼, 王晓蓓, 辜再元, 杜永吉, 宋桂龙 (2009). 不同立地条件下荆条根系分布规律. 应用基础与工程科学学报, 17, 231-237.] | |
[19] | Hao XM, Li WH, Chen YN (2008). Water table and the desert riparian forest community in the lower reaches of Tarim River, China. Journal of Plant Ecology (Chinese Version), 32, 838-847. |
[郝兴明, 李卫红, 陈亚宁 (2008). 新疆塔里木河下游荒漠河岸(林)植被合理生态水位. 植物生态学报, 32, 838-847.]
DOI |
|
[20] | Jiang T, Zheng WG, Yu XX, Jia GD, Ba Heti ZE, Zhang H, Wang YS, Wang YP, Ding BB (2022). Leaf water absorption of Platycladus orientalis under drought stress in Beijing. Acta Ecologica Sinica, 42, 1429-1440. |
[蒋涛, 郑文革, 余新晓, 贾国栋, 孜尔蝶·巴合提, 张欢, 王渝淞, 王玥璞, 丁兵兵 (2022). 北京山区干旱胁迫下侧柏叶片水分吸收策略. 生态学报, 42, 1429-1440.] | |
[21] |
Kulmatiski A, Adler PB, Foley KM (2020). Hydrologic niches explain species coexistence and abundance in a shrub- steppe system. Journal of Ecology, 108, 998-1008.
DOI |
[22] | Levins R (1968). Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press, Princeton, USA. |
[23] | Liu HY, Yin Y, Wang QY, He SY (2015). Climatic effects on plant species distribution within the forest-steppe ecotone in northern China. Applied Vegetation Science, 18, 43-49. |
[24] | Liu L, Bai YX, Qiao YG, Miao C, She WW, Qin SG, Zhang YQ (2023). Water-use characteristics of two dominant plant species in different community types in the Mu Us Desert. Catena, 221, 106803. DOI: 10.1016/j.catena.2022.106803. |
[25] | Liu WJ, Liu WY, Li PJ, Duan WP, Li HM (2010). Dry season water uptake by two dominant canopy tree species in a tropical seasonal rainforest of Xishuangbanna, SW China. Agricultural and Forest Meteorology, 150, 380-388. |
[26] | Liu WN, Jia JB, Yu XX, Liu ZQ (2018). Water sources of the oak-pine mixed community in Beijing mountainous area. Journal of Basic Science and Engineering, 26(1), 12-22. |
[刘文娜, 贾剑波, 余新晓, 刘自强 (2018). 北京山区松栎混交群落的植物水分来源研究. 应用基础与工程科学学报, 26(1), 12-22.] | |
[27] | Liu ZH, Jia GD, Liu ZQ, Deng WP (2022). Water source change of Platycladus orientalis under different water regimes in Beijing mountainous area: a multi-timescale study. Scientia Silvae Sinicae, 58(3), 40-47. |
[刘子赫, 贾国栋, 刘自强, 邓文平 (2022). 北京山区侧柏用水来源随水分条件变化的多时间尺度. 林业科学, 58(3), 40-47.] | |
[28] | Liu ZQ, Yu XX, Jia GD (2019). Water uptake by coniferous and broad-leaved forest in a rocky mountainous area of northern China. Agricultural and Forest Meteorology, 265, 381-389. |
[29] | Liu ZQ, Yu XX, Jia GD, Jia JB, Lou YH, Zhang K (2016). Water use characteristics of Platycladus orientalis and Quercus variabilis in Beijing mountain area. Scientia Silvae Sinicae, 52(9), 22-30. |
[刘自强, 余新晓, 贾国栋, 贾剑波, 娄源海, 张坤 (2016). 北京山区侧柏和栓皮栎的水分利用特征. 林业科学, 52(9), 22-30.] | |
[30] | Liu ZQ, Yu XX, Lou YH, Li HZ, Jia GD, Lu WW (2017). Water use strategy of Platycladus orientalis in Beijing mountainous area. Acta Ecologica Sinica, 37, 3697-3705. |
[刘自强, 余新晓, 娄源海, 李瀚之, 贾国栋, 路伟伟 (2017). 北京山区侧柏水分利用策略. 生态学报, 37, 3697-3705.] | |
[31] | Lu CX, Xu M, Shi XJ, Zhao C, Tao Z, Li M, Si BC (2023). Effects of different water isotope input methods based on Bayesian model MixSIAR on water uptake characteristic analysis results in apple orchards. Chinese Journal of Plant Ecology, 47, 238-248. |
[路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成 (2023). 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响. 植物生态学报, 47, 238-248.]
DOI |
|
[32] | Mei XM, Ma L (2022). Effect of afforestation on soil water dynamics and water uptake under different rainfall types on the Loess hillslope. Catena, 213, 106216. DOI: 10.1016/j.catena.2022.106216. |
[33] |
Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012). Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 196, 489-496.
DOI PMID |
[34] | Nie YP, Chen HS, Wang KL, Tan W, Deng PY, Yang J (2011). Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant and Soil, 341, 399-412. |
[35] | Pan YX, Wang XP, Ma XZ, Zhang YF, Hu R (2020). The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, 189, 104499. DOI: 10.1016/j.catena.2020.104499. |
[36] | Pei YW, Huang LM, Li RL, Shao MA, Zhang YL (2022). Root water source of Pinus sylvestris L. var. mongholica and influencing factors in the southeastern part of Mu Us Sandy Land, China. Acta Pedologica Sinica, 59, 1336-1348. |
[裴艳武, 黄来明, 李荣磊, 邵明安, 张应龙 (2022). 毛乌素沙地东南缘人工林樟子松根系吸水来源与影响因素. 土壤学报, 59, 1336-1348.] | |
[37] |
Peñuelas J, Terradas J, Lloret F (2011). Solving the conundrum of plant species coexistence: water in space and time matters most. New Phytologist, 189, 5-8.
DOI PMID |
[38] | Priyadarshini KVR, Prins HHT, de Bie S, Heitkönig IMA, Woodborne S, Gort G, Kirkman K, Ludwig F, Dawson TE, de Kroon H (2016). Seasonality of hydraulic redistribution by trees to grasses and changes in their water-source use that change tree-grass interactions. Ecohydrology, 9, 218-228. |
[39] | Schlaepfer DR, Bradford JB, Lauenroth WK, Munson SM, Tietjen B, Hall SA, Wilson SD, Duniway MC, Jia GS, Pyke DA, Lkhagva A, Jamiyansharav K (2017). Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 8, 14196. DOI: 10.1038/ncomms14196. |
[40] | Schwendenmann L, Pendall E, Sanchez-Bragado R, Kunert N, Hölscher D (2015). Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts and complementarity. Ecohydrology, 8, 1-12. |
[41] | Sohel MSI, Grau AV, McDonnell JJ, Herbohn J (2021). Tropical forest water source patterns revealed by stable isotopes: a preliminary analysis of 46 neighboring species. Forest Ecology and Management, 494, 119355. DOI: 10.1016/j.foreco.2021.119355. |
[42] | Sun SJ, Meng P, Zhang JS, Jia CR, Ren YF (2014). Ecosystems water use patterns of Quercus variabilis and Grewia biloba based on stable hydrogen and oxygen isotopes in the south aspect of Taihang Mountains. Acta Ecologica Sinica, 34, 6317-6325. |
[孙守家, 孟平, 张劲松, 贾长荣, 任迎丰 (2014). 太行山南麓山区栓皮栎-扁担杆生态系统水分利用策略. 生态学报, 34, 6317-6325.] | |
[43] | Sun ZY, Feng MM, Zhang XY, Zhang SQ, Zhang WG, Li Y, Huang YQ, Qi P, Wang WJ, Zou YC, Jiang M (2022). A healthier water use strategy in primitive forests contributes to stronger water conservation capabilities compared with secondary forests. Science of the Total Environment, 851, 158290. DOI: 10.1016/j.scitotenv.2022.158290. |
[44] | Tang YK, Wu X, Chen C, Jia C, Chen YM (2019). Water source partitioning and nitrogen facilitation promote coexistence of nitrogen-fixing and neighbor species in mixed plantations in the semiarid Loess Plateau. Plant and Soil, 445, 289-305. |
[45] | Tang YK, Wu X, Chen YM, Wen J, Xie YL, Lu SB (2018). Water use strategies for two dominant tree species in pure and mixed plantations of the semiarid Chinese Loess Plateau. Ecohydrology, 11, e1943. DOI: 10.1002/eco.1943. |
[46] | Tao ZX, Wang HJ, Liu YC, Xu YJ, Dai JH (2017). Phenological response of different vegetation types to temperature and precipitation variations in northern China during 1982-2012. International Journal of Remote Sensing, 38, 3236-3252. |
[47] | Tiemuerbieke B, Min XJ, Zang YX, Xing P, Ma JY, Sun W (2018). Water use patterns of co-occurring C3 and C4 shrubs in the Gurbantonggut Desert in northwestern China. Science of the Total Environment, 634, 341-354. |
[48] | Wang J, Fu BJ, Wang LX, Lu N, Li JY (2020). Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, 288-289, 108020. DOI: 10.1016/j.agrformet.2020.108020. |
[49] |
Wang YL, Liu LC, Gao YH, Li G, Zhao JC, Xie M (2016). Analysis of water sources of plants in artificial sand-fixation vegetation area based on large rainfall events. Chinese Journal of Applied Ecology, 27, 1053-1060.
DOI |
[王艳莉, 刘立超, 高艳红, 李刚, 赵杰才, 谢敏 (2016). 基于较大降水事件的人工固沙植被区植物水分来源分析. 应用生态学报, 27, 1053-1060.]
DOI |
|
[50] | Wu HW, Li XY, Jiang ZY, Chen HY, Zhang CC, Xiao X (2016). Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai-Tibet Plateau, China. Science of the Total Environment, 542, 182-191. |
[51] | Wu W, Tao Z, Chen G, Meng T, Li Y, Feng H, Si B, Manevski K, Andersen MN, Siddique KHM (2022). Phenology determines water use strategies of three economic tree species in the semi-arid Loess Plateau of China. Agricultural and Forest Meteorology, 312, 108716. DOI: 1016/j.agrformet.2021.108716. |
[52] | Wu X, Niu YB, Xun MY, Jin JY, Li NY, Tang YK, Chen YM (2022). Responses of water source to seasonal drought of dominant afforestation tree species in the loess hilly region of China. Acta Ecologica Sinica, 42, 4101-4112. |
[吴旭, 牛耀彬, 荀梦瑶, 金俊逸, 李娜艳, 唐亚坤, 陈云明 (2022). 黄土丘陵区优势造林树种水分来源对季节性干旱的响应. 生态学报, 42, 4101-4112.] | |
[53] | Wu YM, Han L, Liu KY, Hu X, Fu ZQ, Chen LX (2023). Water source of Robinia pseudoacacia and Platycladus orientalis plantations under different soil moisture conditions in the Loess Plateau of Western Shanxi, China. Chinese Journal of Applied Ecology, 34, 588-596. |
[吴应明, 韩璐, 刘柯言, 胡旭, 付照琦, 陈立欣 (2023). 晋西黄土区不同土壤水分条件下刺槐和侧柏人工林的水分利用来源. 应用生态学报, 34, 588-596.]
DOI |
|
[54] | Yang B, Wen XF, Sun XM (2015). Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agricultural and Forest Meteorology, 201, 218-228. |
[55] | Yang F, Lin YY, Chen LX, Han L, Wu YM, Yu YJ (2022). Soil water use and niche characteristics of dominant tree species in arbor layer and shrub layer in two plantations of Pinus tabulaeformis and Robinia pseudoacacia in loess region of western Shanxi Province. Scientia Silvae Sinicae, 58(6), 1-12. |
[杨菲, 林毅雁, 陈立欣, 韩璐, 吴应明, 喻雅洁 (2022). 晋西黄土区油松和刺槐2种人工林内乔灌优势种的土壤水分利用及水分生态位特征. 林业科学, 58(6), 1-12.] | |
[56] | Yang H, Auerswald K, Bai Y, Han X (2011). Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China. Plant and Soil, 340, 303-313. |
[57] | Yi LT, Hao SQ, Han HR, Fan XH, Kang FF (2012). Niche characteristics of a Quercus liaotungensis forest in the Lingkong Mountains. Journal of Zhejiang A&F University, 29(1), 46-51. |
[伊力塔, 豪树奇, 韩海荣, 凡小华, 康峰峰 (2012). 灵空山辽东栎林种群生态位特征. 浙江农林大学学报, 29(1), 46-51.] | |
[58] | Zhang M, Yu G, Zhuang J, Gentry R, Fu Y, Sun X, Zhang L, Wen X, Wang Q, Han S, Yan J, Zhang Y, Wang Y, Li Y (2011). Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agricultural and Forest Meteorology, 151, 803-816. |
[59] | Zhang X, Wu JJ, Jia GD, Lei ZR, Zhang LQ, Liu R, Lü XR, Dai YM (2023). Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis. Chinese Journal of Plant Ecology, 47, 1585-1599. |
[张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌 (2023). 降水控制对侧柏液流变化特征及其水分来源的影响. 植物生态学报, 47, 1585-1599.]
DOI |
|
[60] | Zhang Y, Xu Q, Zhang BB, Gao DQ, Wang T, Xu WB, Ren RR, Wang SL (2022). Contrasting water-use patterns of Chinese fir among different plantation types in a subtropical region of China. Frontiers in Plant Science, 13, 946508. DOI: 10.3389/fpls.2022.946508. |
[61] | Zhang YX, Sun T, Ma WQ, Zhao Y, Li DP, Sun YB, Jia HT (2023). Addition of different types and particle sizes of biochar altered CO2 emissions in gray desert soil under dry-wet alternation. Acta Scientiae Circumstantiae, 43, 478-486. |
[张语馨, 孙涛, 马雯琪, 赵一, 李典鹏, 孙约兵, 贾宏涛 (2023). 干湿交替下生物炭添加对灰漠土CO2排放的影响. 环境科学学报, 43, 478-486.] | |
[62] | Zhao N, Meng P, He YB, Lou YH, Yu XX (2017). Response of water sources in Platycladus orientalis and Vitex negundo var. heterophylla system to precipitation events in mountain area of Beijing, China. Chinese Journal of Applied Ecology, 28, 2155-2163. |
[赵娜, 孟平, 何雅冰, 娄源海, 余新晓 (2017). 北京山区侧柏-荆条系统水分来源对降雨事件的响应. 应用生态学报, 28, 2155-2163.]
DOI |
|
[63] | Zhu W, Zhou O, Sun YM, Yilihamu G, Wang YF, Yang HQ, Jia LM, Xi BY (2023). Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudoacacia in mixed forest. Chinese Journal of Plant Ecology, 47, 389-403. |
[祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野(2023). 混交林内毛白杨和刺槐根系吸水的动态生态位划分. 植物生态学报, 47, 389-403.]
DOI |
[1] | 韩雨晴, 熊伟, 吴波, 卢琦, 杨文斌, 刘雅莉, 张景波, 辛智鸣, 马迎宾, 廉泓林, 王思涵. 乌兰布和沙漠梭梭茎干液流对降雨脉冲的响应[J]. 植物生态学报, 2024, 48(9): 1172-1179. |
[2] | 马斌 佘维维 秦欢 宋春阳 袁新月 苗春 刘靓 冯薇 秦树高 张宇清. 氮素和水分添加对黑沙蒿(Artemisia ordosica)种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1-0. |
[3] | 兰光飞 张强 陈相标 陈仕东 熊德成 刘小飞 杨智杰 杨玉盛. 中亚热带格氏栲林凋落物季节动态特征及其影响因素[J]. 植物生态学报, 2024, 48(12): 1-0. |
[4] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[5] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[6] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[7] | 张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. 模拟降雨格局变化对亚热带地区两树种液流特征的影响[J]. 植物生态学报, 2019, 43(11): 988-998. |
[8] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[9] | 朱志成, 黄银, 许丰伟, 邢稳, 郑淑霞, 白永飞. 降雨强度和时间频次对内蒙古典型草原土壤氮矿化的影响[J]. 植物生态学报, 2017, 41(9): 938-952. |
[10] | 任书杰, 于贵瑞. 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J]. 植物生态学报, 2011, 35(2): 119-124. |
[11] | 王义东, 王辉民, 马泽清, 李庆康, 施蕾蕾, 徐飞. 土壤呼吸对降雨响应的研究进展[J]. 植物生态学报, 2010, 34(5): 601-610. |
[12] | 周双喜, 吴冬秀, 张琳, 施慧秋. 降雨格局变化对内蒙古典型草原优势种大针茅幼苗的影响[J]. 植物生态学报, 2010, 34(10): 1155-1164. |
[13] | 邓琦, 周国逸, 刘菊秀, 刘世忠, 段洪浪, 陈小梅, 张德强. CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响[J]. 植物生态学报, 2009, 33(6): 1023-1033. |
[14] | 魏雅芬, 郭柯, 陈吉泉. 降雨格局对库布齐沙漠土壤水分的补充效应[J]. 植物生态学报, 2008, 32(6): 1346-1355. |
[15] | 刘峻杉, 高琼, 郭柯, 刘新平, 邵振艳, 张智才. 毛乌素裸沙丘斑块的实际蒸发量及其对降雨格局的响应[J]. 植物生态学报, 2008, 32(1): 123-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19