植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 601-610.DOI: 10.3773/j.issn.1005-264x.2010.05.014
所属专题: 生态系统碳水能量通量
王义东1,2, 王辉民1,*(), 马泽清1, 李庆康1, 施蕾蕾1,2, 徐飞1,2
收稿日期:
2009-07-04
接受日期:
2009-11-24
出版日期:
2010-07-04
发布日期:
2010-05-01
通讯作者:
王辉民
作者简介:
* E-mail: wanghm@igsnrr.ac.cn
WANG Yi-Dong1,2, WANG Hui-Min1,*(), MA Ze-Qing1, LI Qing-Kang1, SHI Lei-Lei1,2, XU Fei1,2
Received:
2009-07-04
Accepted:
2009-11-24
Online:
2010-07-04
Published:
2010-05-01
Contact:
WANG Hui-Min
摘要:
土壤呼吸是当前区域碳收支及全球变化研究中的一个热点问题。降雨作为一个重要的扰动因子, 对准确估算土壤呼吸具有重要影响, 这在干旱和半干旱地区尤为明显。尽管关于土壤呼吸对降雨响应过程与规律的研究已取得了较大进展, 但是对于其机制的解释仍然存在较大的争议, 集中体现在对“Birch效应” (降雨强烈激发土壤呼吸的现象)的解释上, 即到底是“底物供应改变机制”还是“微生物胁迫机制”在调控该过程。该文综述了土壤呼吸对降雨事件、降雨量及降雨格局的响应过程与规律; 阐述了土壤呼吸各组分对降雨响应的差异, 分析了雨后物理替代与阻滞、底物供应、根系和微生物活性、微生物群落结构与功能等一系列过程引起土壤呼吸改变的机制; 重点阐述了微生物对土壤水分波动的响应与适应机制。在此基础上提出了今后需重点关注的4个方面:1) “底物供应改变机制”与“微生物胁迫机制”的区分; 2)土壤呼吸各组分对降雨响应的差异; 3)不同时空尺度上土壤呼吸对降雨响应的模拟与估算; 4)降雨带来的外援N和H+的作用。
王义东, 王辉民, 马泽清, 李庆康, 施蕾蕾, 徐飞. 土壤呼吸对降雨响应的研究进展. 植物生态学报, 2010, 34(5): 601-610. DOI: 10.3773/j.issn.1005-264x.2010.05.014
WANG Yi-Dong, WANG Hui-Min, MA Ze-Qing, LI Qing-Kang, SHI Lei-Lei, XU Fei. Review of response mechanism of soil respiration to rainfall. Chinese Journal of Plant Ecology, 2010, 34(5): 601-610. DOI: 10.3773/j.issn.1005-264x.2010.05.014
[1] | Adu J, Oades J (1978). Physical factors influencing decomposition of organic materials in soil aggregates. Soil Biology and Biochemistry, 10, 109-115. |
[2] | Anderson JM (1973). Carbon dioxide evolution from two temperate deciduous woodland soils. Journal of Applied Ecology, 10, 361-375. |
[3] | Appel T (1998). Non-biomass soil organic N: the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soil drying. Soil Biology and Biochemistry, 30, 1445-1456. |
[4] |
Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004). Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141, 221-235.
URL PMID |
[5] | Ball BC, Albert S, Jone PP (1999). Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil and Tillage Research, 53, 29-39. |
[6] | Birch HF (1958). The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil, 10, 9-31. |
[7] | Birch HF (1959). Further observations on humus decomposition and nitrification. Plant and Soil, 6, 262-286. |
[8] | Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572. |
[9] | Borken W, Davidson EA, Savage K, Gaudinski J, Trumbore SE (2003). Drying and wetting effects on carbon dioxide release from organic horizons. Soil Science Society of America Journal, 67, 1888-1896. |
[10] | Bottner P (1985). Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C and 15N-labelled plant material. Soil Biology and Biochemistry, 17, 329-337. |
[11] | Bremer JD, Ham JM, Owensby CE, Knapp AK (1998). Responses of soil respiration to clipping and grazing in a tallgrass prairie. Journal of Environmental Quality, 27, 1539-1548. |
[12] | Cavelier J, Penzuela MC (1990). Soil respiration in the cloud forest and dry deciduous forest of Cerrania de Macuira, Colombia. Biotropica, 22, 346-352. |
[13] | Chang SC, Tseng KH, Hsia YJ, Wang CP, Wu JT (2008). Soil respiration in a subtropical montane cloud forest in Taiwan. Agricultural and Forest Meteorology, 148, 788-798. |
[14] | Chen QS (陈全胜), Li LH (李凌浩), Han XG (韩兴国), Yan ZD (阎志丹) (2003). Effects of water content on soil respiration and the mechanisms. Acta Ecologica Sinica (生态学报), 23, 972-978. (in Chinese with English abstract) |
[15] | Chen S, Lin G, Huang J, He M (2008). Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes. Journal of Plant Ecology, 1, 237-246. doi: 10.1093/jpe/rtn020. |
[16] | Chen S, Lin G, Huang J, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 15, 2450-2461. |
[17] | Cisneros-Dozal LM, Trumbore S, Hanson PJ (2006). Partitioning sources of soil-respired CO2 and their seasonal variation using a unique radiocarbon tracer. Global Change Biology, 12, 194-204. |
[18] | Clein J, Schimel JP (1994). Reduction in microbial activity in birch litter due to drying and rewetting events. Soil Biology and Biochemistry, 26, 403-406 |
[19] | Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM (2004). Controls on soil respiration in semiarid soils. Soil Biology and Biochemistry, 36, 945-951. |
[20] | Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004). Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10, 161-169. |
[21] | Davidson EA, Savage K, Verchot LV, Navarro R (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113, 21-37. |
[22] | Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM (2000). Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53-69. |
[23] | de Nobili M, Contin M, Mondini C, Brookes PC (2001). Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biology and Biochemistry, 33, 1163-1170. |
[24] |
DeForest JL, Chen J, McNulty SG (2009). Leaf litter is an important mediator of soil respiration in an oak-dominated forest. International Journal of Biometeorology, 53, 127-134.
URL PMID |
[25] | DeForest JL, Zaka DR, Pregitzerc KS, Burton AJ (2004). Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillinin a northern hardwood forest. Soil Biology and Biochemistry, 36, 965-971. |
[26] | Denef KJ, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K (2001a). Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biology and Biochemistry, 33, 1599-1611. |
[27] | Denef KJ, Six J, Paustian K, Merckx R (2001b). Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry-wet cycles. Soil Biology and Biochemistry, 33, 2145-2153. |
[28] |
Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000). Climate extremes: observations, modeling, and impacts. Science, 289, 2068-2074.
URL PMID |
[29] | Ehleringer JR, Schwinning S, Gebauer R (1999). Water-use in arid land ecosystems. In: Press MC, Scholes JD, Barker MG eds. Plant Physiological Ecology Blackwell, Edinburgh. 347-365. |
[30] | Emmerich WE (2003). Carbon dioxide fluxes in a semiarid environment with high carbonate soils. Agricultural and Forest Meteorology, 116, 91-102. |
[31] | Fierer N, Schimel JP (2003). A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Science Society of America Journal, 67, 798-805. |
[32] | Fierer N, Schimel JP (2002). Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34, 777-787. |
[33] | Flanagan LB, Wever LA, Carlson PJ (2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8, 599-615. |
[34] | Franzluebbers AJ, Stuedemann JA, Schomberg HH, Wilkinson SR (2000). Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biology and Biochemistry, 32, 469-478. |
[35] | Gordona H, Haygarth PM, Bardgett RD (2008). Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology and Biochemistry, 40, 302-311. |
[36] | Grant RF, Rochette P (1994). Soil microbial respiration at different water potentials and temperatures: theory and mathematical modeling. Soil Science Society of America Journal, 58, 1681-1690. |
[37] | Griffin DM (1981). Water potential as a selective factor in the microbial ecology of soils. In: Parr JF, Gardner WR, Elliott LF eds. Water Potential Relations in Soil Microbiology, Special Publication No 9. Soil Science Society of America, Madison. 141-151. |
[38] | Halverson LJ, Jones TM, Firestone MK (2000). Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Science Society of America Journal, 4, 1630-1637. |
[39] | Hanson PJ, ONeill EG, Chambers MLS, Riggs JS, Joslin JD, Wolfe MH (2003). Soil respiration and litter decomposition. In: Hanson PJ, Wullschleger SD eds. North American Temperate Deciduous Forest Responses to Changing Precipitation Regimes. Springer, New York 163-189. |
[40] | Harper CW, Blair JM, Fay PA, Knap AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Change Biology, 11, 322-334. |
[41] | Harris R (1981). Effect of water potential on microbial growth and activity. In: Parr J, Gardner WR eds. Water Potential Relations in Soil Microbiology, Special Publication No. 9. Soil Science Society of America, Madison. 23-95. |
[42] |
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, HoÈgberg MN, Nyberg G, Ottosson-LoÈ fvenius M, Readk DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
DOI URL PMID |
[43] | Holt JA, Hodgen MJ, Lamb D (1990). Soil respiration in the seasonally dry tropics near Townsville, North Queensland. Australian Journal of Soil Research, 28, 737-745. |
[44] | Huang B, Nobel PS (1993). Hydraulic conductivity and anatomy along lateral roots of cacti: changes with soil water status. New Phytologist, 123, 499-507. |
[45] |
Huxman TE, Snyder KA, Tissue D, Joshua Leffler A, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
DOI URL PMID |
[46] | Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A (2009). Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 efflux. Global Change Biology, 15, 1289-1301. |
[47] | IPCC (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007, the Physical Science Basis, Summary for Policymakers. Climate Change 2007, the Physical Science Basis, Summary for Policymakers. Cambridge University Press, Cambridge, UK. |
[48] | Jenkinson DS, Adams DE, Wild A (1991). Model estimates of CO2 emissions from soil in response to global warming. Nature, 351, 304-306. |
[49] | Kieft TL, Soroker E, Firestone MK (1987). Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry, 19, 119-126. |
[50] | Kursar TA (1989). Evaluation of soil respiration and soil CO2 concentration in a lowland moist forest in Panama. Plant and Soil, 113, 21-29. |
[51] | Kuzyakov Y (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38, 425-448. |
[52] | Lee MS, Nakane K, Nakatsubo T, Mo W, Koizumi H (2002). Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecological Research, 17, 401-409. |
[53] | Lee X, Wu H, Sigler J, Christopher O, Thomas S (2004). Rapid and transient response of soil respiration to rain. Global Change Biology, 10, 1017-1026. |
[54] | Liu X, Wan S, Su B, Hui D, Luo Y (2002). Responses of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant and Soil, 240, 213-223. |
[55] | Lu XK (鲁显楷), Mo JM (莫江明), Dong SF (董少峰) (2008). Effect of nitrogen deposition on forest biodiversity: a review. Acta Ecologica Sinica (生态学报), 28, 5532-5548. (in Chinese with English abstract) |
[56] | Lundquist E, Jackson L, Scow K (1999a). Wet dry cycles affect DOC in two California agricultural soils. Soil Biology and Biochemistry, 31, 1031-1038. |
[57] | Lundquist E, Scow K, Jackson L, Uesugi S, Johnson C (1999b). Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biology and Biochemistry, 31, 1661-1675. |
[58] | Luo Y, Zhou X (2006). Soil Respiration and the Environment. Elsevier, London. |
[59] | McIntyre RES, Adams MA, Ford DJ, Grierson PF (2009). Rewetting and litter addition influence mineralisation and microbial communities in soils from a semi-arid intermittent stream. Soil Biology and Biochemistry, 41, 92-101. |
[60] | Mclean MA, Huhta V (2000). Temporal and spatial fluctuations in moisture affect humus microfungal community structure in microcosms. Soil Biology and Biochemistry, 32, 114-119. |
[61] | Medina E, Zelwer M (1972). Soil respiration in tropical plant communities. In: Golley PM, Golley FB eds. Proceedings of the Second International Symposium of Tropical Ecology. University of Geogia Press, Athens, Georgia. 245-269. |
[62] | Mikha MM, Rice CW, Milliken GA (2005). Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biology and Biochemistry, 37, 339-347. |
[63] | Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM (2005). Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biology and Biochemistry, 37, 2195-2204. |
[64] | Mo JM, Zhang W, Zhu WX, Gundersen P, Fang YT, Li DJ, Wang H (2008). Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 14, 403-412. |
[65] | Monger HC, Gallegos RA (2000). Biotic and abiotic processes and rates of pedogenic carbonate accumulation in the southwestern United States-relationship to atmospheric CO2 sequestration. In: Lal R, Kimbel JM, Eswaran H, Stewart BA eds. Global Climate Change and Pedogenic Carbonates. CRC Preaa, Boca Raton, USA. 273-289. |
[66] | Mummey DL, Smith JL, Bolton H (1994). Nitrous oxide flux from a shrub-steppe ecosystem: sources and regulation. Soil Biology and Biochemistry, 26, 279-286. |
[67] | Ngao J, Epron D, Brechet C, Granier A (2005). Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter. Global Change Biology, 11, 1768-1776. |
[68] |
Norton U, Mosier AR, Morgan JA, Derner JD, Ingram LJ, Stah PD (2008). Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA. Soil Biology and Biochemistry, 40, 1421-1431.
DOI URL |
[69] |
Olsson P, Linder S, Giesler R, Högberg P (2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 11, 1745-1753.
DOI URL |
[70] | Orchard VA, Cook FJ (1983). Relationship between soil respiration and soil moisture. Soil Biology and Biochemistry, 15, 447-453. |
[71] | Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemistry Cycles, 9, 23-36. |
[72] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. |
[73] | Reichstein M, Tenhunen JD, Ourcival JM, Ourcival JM, Rambal S, Dore S, Valentini R (2002). Ecosystem respiration in two Mediterranean evergreen Holm oak forests: drought effects and decomposition dynamics. Functional Ecology, 16, 27-39. |
[74] | Scheu S, Parkinson D (1994). Changes in bacterial and fungal biomass C, bacterial and fungal biovolume and ergosterol content after drying, remoistening and incubation of different layers of cool temperate forest soils. Soil Biology and Biochemistry, 26, 1515-1525. |
[75] | Schimel JP, Balser TC, Wallenstein M (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology, 86, 1386-1394. |
[76] | Schjønning P, Thomsen IK, Moldrup P, Christensen BT (2003). Linking soil microbial activity to water- and air-phase contents and diffusivities. Soil Science Society of America Journal, 67, 156-165. |
[77] | Schlesinger WH (1985). The formation of caliche in soils of the Mojave Desert, California. Geochimica et Cosmochimica Acta, 49, 57-66. |
[78] | Scott RL, Edwards EA, Shuttleworth WJ, Huxman TE, Watts C, Goodrich DC (2004). Interannual and seasonal variation in fluxes of water and CO2 from a riparian woodland ecosystem. Agricultural and Forest Meteorology, 122, 65-84. |
[79] |
Sitaula BK, Bakken LR, Abrahamsen G (1995). N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil. Soil Biology and Biochemistry, 27, 1401-1408.
DOI URL |
[80] | Sponseller RA (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Global Change Biology, 13, 426-436. |
[81] |
Stark JM, Firestone MK (1995). Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology, 61, 218-221.
DOI URL PMID |
[82] | Turner BL, Driessen JP, Haygarth PM, McKelvie ID (2003). Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biology and Biochemistry, 35, 187-189. |
[83] | Utomo W, Dexter A (1982). Changes in soil aggregate water stability induced by wetting and drying cycles in non-saturated soil. Journal of Soil Science, 33, 623-637. |
[84] | van Gestel M, Merckx R, Vlassak K (1993). Microbial biomass responses to soil drying and rewetting: the fate of fast- and slow-growing microorganisms in soils from different climates. Soil Biology and Biochemistry, 25, 109-123. |
[85] | Wang Y, Wang H, Ma Z, Wen X, Li Q, Liu Y, Sun X, Yu G (2009). Contribution of aboveground litter decomposition to soil respiration in a subtropical coniferous plantation in southern China. Asia-Pacific Journal of Atmospheric Sciences, 45, 137-147. |
[86] | Wu J, Brookes PC (2005). The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology and Biochemistry, 37, 507-515. |
[87] | Xiang SR, Doyle A, Holden PA, Schimel JP (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 40, 2281-2289. |
[88] | Xu L, Baldocchl DD, Tang J (2004). How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles, 18, GB4002. doi: 10.1029/2004GB002281. |
[89] | Xu M, Qi Y (2001). Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 15, 687-697. |
[90] | Xue JH (薛璟花), Mo JM (莫江明), Li J (李炯), Wang H (王晖) (2005). Effects of nitrogen deposition on soil microorganis. Ecology and Environment (生态环境), 14, 777-782. (in Chinese with English abstract) |
[91] |
Yuste JC, Nagy M, Janssens IA, Carrara1 A, Ceulemans R (2005). Soil respiration in a mixed temperate forest and its contribution to total ecosystem respiration. Tree Physiology, 25, 609-619.
DOI URL PMID |
[92] | Zhang HX (张红星), Wang XK (王效科), Feng ZW (冯宗炜), Song WZ (宋文质), Liu WZ (刘文兆), Li SJ (李双江), Pang JZ (庞军柱), Ouyang ZY (欧阳志云) (2008). The great rainfall effect on soil respiration of wheat field in semiarid region of the Loess Plateau. Acta Ecologica Sinica (生态学报), 28, 6189-6196. (in Chinese with English abstract) |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4): 321-333. |
[3] | 吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民. 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响[J]. 植物生态学报, 2021, 45(4): 334-344. |
[4] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[5] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[6] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[7] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[8] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[9] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[10] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[11] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[12] | 冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广. 生物标志物及其在生态系统研究中的应用[J]. 植物生态学报, 2020, 44(4): 384-394. |
[13] | 张亮, 王志磊, 薛婷婷, 郝笑云, 杨晨露, 高飞飞, 王莹, 韩星, 李华, 王华. 葡萄园生态系统碳源/汇及碳减排策略研究进展[J]. 植物生态学报, 2020, 44(3): 179-191. |
[14] | 黄玫, 王娜, 王昭生, 巩贺. 磷影响陆地生态系统碳循环过程及模型表达方法[J]. 植物生态学报, 2019, 43(6): 471-479. |
[15] | 张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. 模拟降雨格局变化对亚热带地区两树种液流特征的影响[J]. 植物生态学报, 2019, 43(11): 988-998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19