植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 611-618.DOI: 10.3773/j.issn.1005-264x.2010.05.015
• 简报 • 上一篇
罗东辉1, 夏婧1, 袁婧薇2,3, 张忠华1, 祝介东2,3, 倪健1,*()
收稿日期:
2009-07-28
接受日期:
2010-01-13
出版日期:
2010-07-28
发布日期:
2010-05-01
通讯作者:
倪健
作者简介:
* E-mail: jni@ibcas.ac.cn
LUO Dong-Hui1, XIA Jing1, YUAN Jing-Wei2,3, ZHANG Zhong-Hua1, ZHU Jie-Dong2,3, NI Jian1,*()
Received:
2009-07-28
Accepted:
2010-01-13
Online:
2010-07-28
Published:
2010-05-01
Contact:
NI Jian
摘要:
在贵州茂兰喀斯特森林国家自然保护区内, 选取2种立地条件上(岩石和土壤分别占优势)的5个植被恢复阶段(草本群落、灌草群落、灌木群落、次顶极常绿落叶阔叶林和顶极常绿落叶阔叶林)共10个样地, 利用平均标准木机械布点法对根系进行采集, 分析了其生物量总量、不同根系径级的分配格局和地下空间的分布规律。结果表明: 1)喀斯特植物群落的正向植被恢复进程极显著地增加了地下生物量(p < 0.001), 从草本群落的2.63 Mg·hm-2增加到顶极森林群落的58.15 Mg·hm-2; 同一恢复阶段的石生和土壤立地上根系生物量的差异不显著(p > 0.05), 在顶极和次顶极常绿落叶阔叶林阶段, 石生立地的根系生物量高于土壤立地, 而灌木、灌草和草本群落阶段则相反。2)同一恢复阶段的石生立地的粗根生物量均高于土壤立地, 但差异不显著(p > 0.05), 而细根和小根生物量则从石生到土壤立地显著增加(p < 0.05); 随着喀斯特植被的恢复, 石生和土壤立地上粗根占总根系生物量的比例均逐渐增加。3)石生立地根系的分布以水平扩散和穿梭为主, 无垂直层次分布; 而土壤立地各恢复阶段的根系生物量主要集中在地面到地下10 cm的垂直空间内; 在不同的土层深度, 粗根占所有根径级生物量的80%, 且随土层加深, 其比例降低。该研究不仅填补了喀斯特植被根系生物量观测的空白, 为估算我国西南喀斯特地区植被的总生物量和生产力提供了本底数据, 也为进一步研究喀斯特森林稳定性维持机制和喀斯特石漠化防治与植被适应性修复奠定了基础。
罗东辉, 夏婧, 袁婧薇, 张忠华, 祝介东, 倪健. 我国西南山地喀斯特植被的根系生物量初探. 植物生态学报, 2010, 34(5): 611-618. DOI: 10.3773/j.issn.1005-264x.2010.05.015
LUO Dong-Hui, XIA Jing, YUAN Jing-Wei, ZHANG Zhong-Hua, ZHU Jie-Dong, NI Jian. Root biomass of karst vegetation in a mountainous area of southwestern China. Chinese Journal of Plant Ecology, 2010, 34(5): 611-618. DOI: 10.3773/j.issn.1005-264x.2010.05.015
图1 茂兰国家级自然保护区及所选样地位置图。 R-CS, 石生立地顶极群落; R-HS, 石生立地草本群落; R-HSS, 石生立地灌草群落; R-SCS, 石生立地次顶极群落; R-SSS, 石生立地灌木群落; S-CS, 土壤立地顶极群落; S-HS, 土壤立地草本群落; S-HSS, 土壤立地灌草群落; S-SCS, 土壤立地次顶极群落; S-SSS, 土壤立地灌木群落。
Fig. 1 The locations of Maolan National Natural Reserve and selected plots. R-CS, rock-stand climax stage; R-HS, rock-stand herb stage; R-HSS, rock-stand herb-scrub stage; R-SCS, rock-stand sub-climax stage; R-SSS, rock-stand scrub stage; S-CS, soil-stand climax stage; S-HS, soil-stand herb stage; S-HSS, soil-stand herb-scrub stage; S-SCS, soil-stand sub-climax stage; S-SSS, soil-stand scrub stage.
恢复阶段 Restoration stage | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 群落名称 Community name | 平均胸径 Mean diameter at breast height (DBH, cm) | 平均树高 Mean tree height (m) | 密度 Density (No.·hm-2) | 年龄 Stand age (a) |
---|---|---|---|---|---|---|---|---|
R-HS | 107°56.662′ | 25°20.251′ | 925 | 密毛蕨Pteridium revolutum+羊耳菊Inula cappa | 0.3 | 10 | ||
S-HS | 107°58.826′ | 25°20.001′ | 768 | 密毛蕨+金丝草Pogonatherum crinitum | 0.3 | 10 | ||
R-HSS | 107°55.559′ | 25°19.480′ | 907 | 香叶树Lindera communis+青篱柴Tirpitzia sinensis | 1.6* | 1.4 | 2 020 | 8-12 |
S-HSS | 107°58.018′ | 25°18.180′ | 743 | 枫香Liquidambar formosana+长叶冻绿Rhamnus crenata | 1.5* | 1.0 | 1 800 | 8-12 |
R-SSS | 107°55.815′ | 25°18.598′ | 842 | 香叶树+圆果化香Platycarya longipes | 3.8 | 4.0 | 5 600 | 12-18 |
S-SSS | 107°55.800′ | 25°18.610′ | 863 | 香叶树+全缘火棘Pyracantha atalantioides | 3.9 | 4.1 | 4 875 | 13-18 |
R-SCS | 107°57.263′ | 25°18.592′ | 851 | 华南梾木Swida austrosinensis+齿叶黄皮Clausena dunniana | 7.8 | 6.8 | 2 775 | 60-133 |
S-SCS | 107°57.263′ | 25°18.211′ | 711 | 小花梾木Swida parviflora+香叶树 | 8.6 | 6.9 | 1 956 | 25-54 |
R-CS | 107°57.483′ | 25°18.653′ | 860 | 齿叶黄皮+圆果化香 | 8.7 | 7.6 | 2 122 | 80-236 |
S-CS | 107°57.350′ | 25°18.117′ | 925 | 榕叶冬青Ilex ficoidea+西南米槠Castanopsis carlesii var. spinulosa | 9.6 | 8.2 | 2 833 | 60-135 |
表1 样地的位置和基本特征
Table 1 Location and basic characteristics of the selected plots
恢复阶段 Restoration stage | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 群落名称 Community name | 平均胸径 Mean diameter at breast height (DBH, cm) | 平均树高 Mean tree height (m) | 密度 Density (No.·hm-2) | 年龄 Stand age (a) |
---|---|---|---|---|---|---|---|---|
R-HS | 107°56.662′ | 25°20.251′ | 925 | 密毛蕨Pteridium revolutum+羊耳菊Inula cappa | 0.3 | 10 | ||
S-HS | 107°58.826′ | 25°20.001′ | 768 | 密毛蕨+金丝草Pogonatherum crinitum | 0.3 | 10 | ||
R-HSS | 107°55.559′ | 25°19.480′ | 907 | 香叶树Lindera communis+青篱柴Tirpitzia sinensis | 1.6* | 1.4 | 2 020 | 8-12 |
S-HSS | 107°58.018′ | 25°18.180′ | 743 | 枫香Liquidambar formosana+长叶冻绿Rhamnus crenata | 1.5* | 1.0 | 1 800 | 8-12 |
R-SSS | 107°55.815′ | 25°18.598′ | 842 | 香叶树+圆果化香Platycarya longipes | 3.8 | 4.0 | 5 600 | 12-18 |
S-SSS | 107°55.800′ | 25°18.610′ | 863 | 香叶树+全缘火棘Pyracantha atalantioides | 3.9 | 4.1 | 4 875 | 13-18 |
R-SCS | 107°57.263′ | 25°18.592′ | 851 | 华南梾木Swida austrosinensis+齿叶黄皮Clausena dunniana | 7.8 | 6.8 | 2 775 | 60-133 |
S-SCS | 107°57.263′ | 25°18.211′ | 711 | 小花梾木Swida parviflora+香叶树 | 8.6 | 6.9 | 1 956 | 25-54 |
R-CS | 107°57.483′ | 25°18.653′ | 860 | 齿叶黄皮+圆果化香 | 8.7 | 7.6 | 2 122 | 80-236 |
S-CS | 107°57.350′ | 25°18.117′ | 925 | 榕叶冬青Ilex ficoidea+西南米槠Castanopsis carlesii var. spinulosa | 9.6 | 8.2 | 2 833 | 60-135 |
图2 不同植被恢复阶段根系生物量。 A, 根系总生物量。B, 不同径级根系生物量。R-CS, R-HS, R-HSS, R-SCS, R-SSS, S-CS, S-HS, S-HSS, S-SCS和S-SSS同图1。
Fig. 2 Root biomass (RB) in different vegetation restoration stages (RTS). A, Total root biomass. B, Root biomass in different root diameter-classes. R-CS, R-HS, R-HSS, R-SCS, R-SSS, S-CS, S-HS, S-HSS, S-SCS and S-SSS see Fig. 1.
土壤深度 Soil depth (cm) | S-HS | S-HSS | S-SSS | S-SCS | S-CS |
---|---|---|---|---|---|
< 5 | 2.03 | 4.07 | 6.59 | 4.27 | 51.82 |
5-10 | 0.04 | 1.48 | 3.87 | 6.22 | 4.44 |
10-15 | 0.09 | 1.68 | 4.71 | 1.23 | |
15-20 | 2.02 | 4.17 | |||
> 20 | 2.74 | ||||
合计 Total | 2.07 | 5.64 | 14.16 | 22.11 | 57.49 |
表2 土壤立地植被恢复各阶段根系生物量的垂直分布
Table 2 Vertical distribution of root biomass (Mg·hm-2) of soil-stand plant communities in different restoration stages
土壤深度 Soil depth (cm) | S-HS | S-HSS | S-SSS | S-SCS | S-CS |
---|---|---|---|---|---|
< 5 | 2.03 | 4.07 | 6.59 | 4.27 | 51.82 |
5-10 | 0.04 | 1.48 | 3.87 | 6.22 | 4.44 |
10-15 | 0.09 | 1.68 | 4.71 | 1.23 | |
15-20 | 2.02 | 4.17 | |||
> 20 | 2.74 | ||||
合计 Total | 2.07 | 5.64 | 14.16 | 22.11 | 57.49 |
土壤深度 Soil depth (cm) | 细根和小根 Fine and small roots | 中根 Medium roots | 粗根 Coarse roots | 不同土层根系生物量 RB in different soil layers | 粗根比例 Ratio of coarse roots (%) |
---|---|---|---|---|---|
< 5 | 4.81 | 4.04 | 42.98 | 51.86 | 82.9 |
5-10 | 0.94 | 1.13 | 2.36 | 4.43 | 53.3 |
10-60 | 0.40 | 0.19 | 0.64 | 1.23 | 52.0 |
总根系生物量 Total RB | 6.15 | 5.36 | 45.98 | 57.52 | 79.9 |
< 10 cm根系生物量比例Ratio of RB < 10 cm (%) | 93.50 | 96.50 | 98.60 | 97.90 |
表3 土壤立地顶极常绿落叶阔叶混交林不同根径级根系生物量的垂直分布
Table 3 Vertical distribution of root biomass (RB, Mg·hm-2) of soil-stand climax (evergreen-deciduous broad-leaved mixed forest) in different root diameter classes
土壤深度 Soil depth (cm) | 细根和小根 Fine and small roots | 中根 Medium roots | 粗根 Coarse roots | 不同土层根系生物量 RB in different soil layers | 粗根比例 Ratio of coarse roots (%) |
---|---|---|---|---|---|
< 5 | 4.81 | 4.04 | 42.98 | 51.86 | 82.9 |
5-10 | 0.94 | 1.13 | 2.36 | 4.43 | 53.3 |
10-60 | 0.40 | 0.19 | 0.64 | 1.23 | 52.0 |
总根系生物量 Total RB | 6.15 | 5.36 | 45.98 | 57.52 | 79.9 |
< 10 cm根系生物量比例Ratio of RB < 10 cm (%) | 93.50 | 96.50 | 98.60 | 97.90 |
[1] |
Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111, 1-11.
DOI URL PMID |
[2] | Deng KM (邓坤枚), Luo TX (罗天祥), Zhang L (张林), Wang XY (王学云), Li CH (李长会) (2005). Root biomass of different stand-age Pinus yunnanensis forest and its distribution pattern in different soil depths. Chinese Journal of Applied Ecology (应用生态学报), 16, 21-24. (in Chinese with English abstract) |
[3] |
Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[4] | Du XJ (杜晓军), Liu CF (刘常富), Jin G (金罡), Shi XN (石小宁) (1998). Root biomass of main forest ecosystems in Changbai Mountains. Journal of Shenyang Agricultural University (沈阳农业大学学报), 29, 229-232. (in Chinese with English abstract) |
[5] |
Espeleta JF, Clark DA (2007). Multi-scale variation in fine-root biomass in a tropical rain forest: a seven-year study. Ecological Monographs, 77, 377-404.
DOI URL |
[6] |
Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001). Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
DOI URL PMID |
[7] | Feng ZW (冯宗炜), Wang XK (王效科), Wu G (吴刚) (1999). Biomass and Primary Productivity of Forest Ecosystems in China (中国森林生态系统的生物量和生产力). Science Press, Beijing. (in Chinese) |
[8] |
Gill RA, Kelly RH, Parton WJ, Day KA, Jackson RB, Morgan JA, Scurlock JMO, Tieszen LL, Castle JV, Ojima DS, Zhang XS (2002). Using simple environmental variables to estimate below-ground productivity in grasslands. Global Ecology and Biogeography, 11, 79-86.
DOI URL |
[9] |
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). A global analysis of root distribution for terrestrial biomes. Oecologia, 108, 389-411.
DOI URL PMID |
[10] | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United State of America, 94, 7362-7366. |
[11] |
Lee EH, Tingey DT, Beedlow PA, Johnson MG, Burdick CA (2007). Relating fine root biomass to soil and climate conditions in the Pacific Northwest. Forest Ecology and Management, 242, 195-208.
DOI URL |
[12] |
Luo TX, Brown S, Pan YD, Shi PL, Ouyang H, Yu ZL, Zhu HZ (2005). Root biomass along subtropical to alpine gradients: global implications from Tibetan transect studies. Forest Ecology and Management, 206, 349-363.
DOI URL |
[13] |
Matamala R, Gonzàlez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003). Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302, 1385-1387.
DOI URL PMID |
[14] |
Schenk HJ, Jackson RB (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480-494.
DOI URL |
[15] | Scurlock JMO, Cramer W, Olson RJ, Parton WJ, Prince SD (1999). Terrestrial NPP: towards a consistent data set for global model evaluation. Ecological Applications, 9, 913-919. |
[16] | Tu YL (屠玉麟), Yang J (杨军) (1995). Study on biomass of the karst scrub communities in central region of Guizhou Province. Carsologica Sinica (中国岩溶), 14, 199-207. (in Chinese with English abstract) |
[17] |
Xiao CW, Sang WG, Wang RZ (2008). Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. Forest Ecology and Management, 255, 765-773.
DOI URL |
[18] | Yang HK (杨汉奎), Cheng SZ (程仕泽) (1991). Study on biomass of the karst forest community in Maolan, Guizhou Province. Acta Ecologica Sinica (生态学报), 11, 307-312. (in Chinese with English abstract) |
[19] | Yang LW (杨丽韫), Luo TX (罗天祥), Wu ST (吴松涛) (2005). Root biomass and belowground C and N storage of primitive Korean pine and broad-leaved climax forest in Changbai Mountains at its different succession stages. Chinese Journal of Applied Ecology (应用生态学报), 16, 1195-1199. (in Chinese with English abstract) |
[20] | Yu LF (喻理飞), Zhu SQ (朱守谦), Ye JZ (叶镜中), Wei LM (魏鲁明), Chen ZR (陈正仁) (2002a). Dynamics of a degraded karst forest in the process of natural restoration. Scientia Silvae Sinicae (林业科学), 38, 1-7. (in Chinese with English abstract) |
[21] | Yu LF (喻理飞), Zhu SQ (朱守谦), Ye JZ (叶镜中), Wei LM (魏鲁明), Chen ZR (陈正仁) (2002b). Evaluation on degradation of karst forest community and human disturbance. Chinese Journal of Applied Ecology (应用生态学报), 13(5), 54-61. (in Chinese with English abstract) |
[22] | Zhang L (张林), Luo TX (罗天祥), Deng KM (邓坤枚), Dai Q (戴强), Huang Y (黄永), Jiang ZF (蒋正富), Tao MY (陶明友), Zeng KY (曾开益) (2004). Biomass and net primary productivity of secondary evergreen broadleaved forest in Huangmian Forest Farm, Guangxi. Chinese Journal of Applied Ecology (应用生态学报), 15, 2029-2033. (in Chinese with English abstract) |
[23] | Zhou ZX (周政贤) (1987). Scientific Investigation of Karst Forest in Maolan (茂兰喀斯特森林科学考察集). Guizhou People Press, Guiyang. 1-73. (in Chinese) |
[24] | Zhu SQ (朱守谦) (1993). The Ecological Research on Karst Forest I (喀斯特森林生态研究I). Guizhou Science Press, Guiyang. 1-50. (in Chinese) |
[25] | Zhu SQ (朱守谦), Wei LM (魏鲁明), Chen ZR (陈正仁), Zhang CG (张从贵) (1995). A preliminary study on biomass components of karst forest in Maolan of Guizhou Province, China. Acta Phytoecologica Sinica (植物生态学报), 19, 358-367. (in Chinese with English abstract) |
[1] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[2] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[3] | 崔光帅, 罗天祥, 梁尔源, 张林. 干旱半干旱区灌丛对草本植物的促进作用研究进展[J]. 植物生态学报, 2022, 46(11): 1321-1333. |
[4] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[5] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[6] | 邓梦达, 游健荣, 李家湘, 李雄, 杨静, 邓创发, 刘昂, 刘文剑, 丁聪, 谢勇, 周国辉, 喻勋林. 长株潭城市群生态绿心地区主要植被类型的群落特征[J]. 植物生态学报, 2020, 44(12): 1296-1304. |
[7] | 陈婵, 张仕吉, 李雷达, 刘兆丹, 陈金磊, 辜翔, 王留芳, 方晰. 中亚热带植被恢复阶段植物叶片、凋落物、土壤碳氮磷化学计量特征[J]. 植物生态学报, 2019, 43(8): 658-671. |
[8] | 王明明,刘新平,何玉惠,张铜会,魏静,车力木格,孙姗姗. 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素[J]. 植物生态学报, 2019, 43(8): 672-684. |
[9] | 俞筱押, 李玉辉, 杨光荣. 石林地质公园不同群落类型植物果实组成与种子散布特征[J]. 植物生态学报, 2018, 42(6): 663-671. |
[10] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[11] | 岑宇, 王成栋, 张震, 任侠, 刘美珍, 杨帆. 河北省天然草地生物量和碳密度空间分布格局[J]. 植物生态学报, 2018, 42(3): 265-276. |
[12] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 湖南东部植被恢复对土壤有机碳矿化的影响[J]. 植物生态学报, 2018, 42(12): 1211-1224. |
[13] | 张浩, 吕茂奎, 谢锦升. 红壤侵蚀区芒萁对土壤可溶性有机质光谱特征的影响[J]. 植物生态学报, 2017, 41(8): 862-871. |
[14] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[15] | 刘翥,杨玉盛,司友涛,康根丽,郑怀舟. 植被恢复对侵蚀红壤可溶性有机质含量及光谱学特征的影响[J]. 植物生态学报, 2014, 38(11): 1174-1183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19