植物生态学报 ›› 2024, Vol. 48 ›› Issue (12): 1589-1601.DOI: 10.17521/cjpe.2024.0069  cstr: 32100.14.cjpe.2024.0069

• 研究论文 • 上一篇    下一篇

中亚热带格氏栲林凋落物季节动态特征及其影响因素

兰光飞1,2, 张强1,2, 陈相标1,2, 陈仕东1,2, 熊德成1,2, 刘小飞1,2, 杨智杰1,2,*(), 杨玉盛1,2   

  1. 1福建师范大学地理科学学院, 福州 350007
    2福建三明森林生态系统国家野外科学观测研究站, 福建三明 365002
  • 收稿日期:2024-03-11 接受日期:2024-09-28 出版日期:2024-12-20 发布日期:2024-12-20
  • 通讯作者: *杨智杰(zhijieyang@fjnu.edu.cn)
  • 基金资助:
    国家自然科学基金(31930071);国家自然科学基金(32271727);福建省自然科学基金(2023I0010);国家科技基础资源调查专项(2021FY100702)

Seasonal dynamics of litterfall of a Castanopsis kawakamii evergreen broadleaf forest in mid-subtropical China and their influencing factors

LAN Guang-Fei1,2, ZHANG Qiang1,2, CHEN Xiang-Biao1,2, CHEN Shi-Dong1,2, XIONG De-Cheng1,2, LIU Xiao-Fei1,2, YANG Zhi-Jie1,2,*(), YANG Yu-Sheng1,2   

  1. 1School of Geographical Science, Fujian Normal University, Fuzhou 350007, China
    2and Sanming Forest Ecosystem National Observation and Research Station, Sanming, Fujian 365002, China
  • Received:2024-03-11 Accepted:2024-09-28 Online:2024-12-20 Published:2024-12-20
  • Contact: *YANG Zhi-Jie(zhijieyang@fjnu.edu.cn)
  • Supported by:
    National Natural Science Foundation of China(31930071);National Natural Science Foundation of China(32271727);Natural Science Foundation of Fujian Province(2023I0010);National Science and Technology Basic Resources Survey Program of China(2021FY100702)

摘要: 凋落物在森林生态系统养分循环过程中发挥着重要作用。亚热带常绿阔叶林凋落物产量及其组成常表现出多峰的季节变化特征, 但其影响机制尚不明确。该研究以福建三明格氏栲自然保护区内的格氏栲(Castanopsis kawakamii)常绿阔叶天然林为研究对象, 对其地上不同组分的凋落物产量和环境因子进行了5年(2018-2022年)的连续定位观测。结果表明: 1)该天然林的年凋落物量在4 949.17-6 873.45 kg·hm-2·a-1之间, 其中各组分占比为落叶(66.63%) >碎屑(16.07%) >落枝(12.78%) >落果(4.64%)。2)凋落物总量的季节动态呈现三峰型, 第一个峰出现在3-5月, 第二个峰在7-8月, 第三个峰在9-12月。其中, 叶凋落物、果凋落物季节动态呈现双峰型, 叶凋落物高峰值分别出现在4和8月, 而果凋落物高峰主要集中在3和12月。枝凋落物和碎屑凋落物季节动态呈现三峰型, 枝凋落物高峰值分别出现在5、8和12月, 碎屑凋落物的高峰分别出现在4、8和12月。3)随机森林模型预测结果表明, 影响凋落物季节动态的主要环境因子分别是月降雨量、气温和日间降雨时长。其中, 3-5月凋落物量随着日间降雨时长和土壤含水率的增加而减少, 7-8月凋落物量随着土壤含水率和日间光合有效辐射的增加而增加。因此, 降雨量及其发生时段等直接与间接作用是影响中亚热带常绿阔叶林凋落物产量及季节动态特征的重要因素。

关键词: 凋落物, 季节动态, 降雨, 亚热带常绿阔叶林, 随机森林模型

Abstract:

Aims Litterfall plays a pivotal role in nutrient cycling in forest ecosystems. The yield and composition of litterfall typically exhibit seasonal variations in subtropical evergreen broadleaf forests, however, the mechanisms underlying the patterns are largely unknown.

Methods Evergreen broadleaf forests were taken as the research object in the Castanopsis kawakamii nature reserve in Sanming, Fujian Province. The litterfall yield and environmental factors were monitored every month during 2018-2022.

Important findings Our results showed that 1) The annual litterfall yield ranged from 4 949.17 to 6 873.45 kg·hm-2·a-1, with leaves accounting for 66.63% of the litterfall. The yield of litterfall components ranked as leaves (66.63%) > miscellany (16.07%) > branches (12.78%) > fruit (4.64%). 2) The seasonal dynamics of total litterfall yield exhibited a trimodal pattern during the year, with the first peak observed from March to May, the second peak observed from July to August, and the third peak found from September to December. Leaf litterfall and fruit litterfall displayed bimodal patterns during the year, with leaf litterfall peaking at April and August, and fruit litterfall peaking at March and December, respectively. The seasonal dynamics of branch litterfall and debris litterfall showed trimodal patterns, with branch litterfall peaking in May, August, and December. Debris litterfall peaked in April, August, and December. 3) Random forest models indicated that the primary environmental factors affecting the seasonal dynamics of litterfall were monthly precipitation, air temperature, and daytime rain duration. The litterfall yield decreased with increasing daytime rain duration and soil moisture during March to May, while it increased with increasing soil moisture and daytime photosynthetically active radiation from July to August. Overall, precipitation and the timing of rainfall events play direct and indirect roles in influencing the litterfall yield and seasonal dynamics in the evergreen broadleaf forests in the mid-subtropical region.

Key words: litterfall, seasonal dynamics, precipitation, subtropical evergreen broadleaf forest, random forest model