植物生态学报 ›› 2024, Vol. 48 ›› Issue (12): 1589-1601.DOI: 10.17521/cjpe.2024.0069 cstr: 32100.14.cjpe.2024.0069
兰光飞1,2, 张强1,2, 陈相标1,2, 陈仕东1,2, 熊德成1,2, 刘小飞1,2, 杨智杰1,2,*(), 杨玉盛1,2
收稿日期:
2024-03-11
接受日期:
2024-09-28
出版日期:
2024-12-20
发布日期:
2024-12-20
通讯作者:
*杨智杰(zhijieyang@fjnu.edu.cn)基金资助:
LAN Guang-Fei1,2, ZHANG Qiang1,2, CHEN Xiang-Biao1,2, CHEN Shi-Dong1,2, XIONG De-Cheng1,2, LIU Xiao-Fei1,2, YANG Zhi-Jie1,2,*(), YANG Yu-Sheng1,2
Received:
2024-03-11
Accepted:
2024-09-28
Online:
2024-12-20
Published:
2024-12-20
Contact:
*YANG Zhi-Jie(zhijieyang@fjnu.edu.cn)Supported by:
摘要: 凋落物在森林生态系统养分循环过程中发挥着重要作用。亚热带常绿阔叶林凋落物产量及其组成常表现出多峰的季节变化特征, 但其影响机制尚不明确。该研究以福建三明格氏栲自然保护区内的格氏栲(Castanopsis kawakamii)常绿阔叶天然林为研究对象, 对其地上不同组分的凋落物产量和环境因子进行了5年(2018-2022年)的连续定位观测。结果表明: 1)该天然林的年凋落物量在4 949.17-6 873.45 kg·hm-2·a-1之间, 其中各组分占比为落叶(66.63%) >碎屑(16.07%) >落枝(12.78%) >落果(4.64%)。2)凋落物总量的季节动态呈现三峰型, 第一个峰出现在3-5月, 第二个峰在7-8月, 第三个峰在9-12月。其中, 叶凋落物、果凋落物季节动态呈现双峰型, 叶凋落物高峰值分别出现在4和8月, 而果凋落物高峰主要集中在3和12月。枝凋落物和碎屑凋落物季节动态呈现三峰型, 枝凋落物高峰值分别出现在5、8和12月, 碎屑凋落物的高峰分别出现在4、8和12月。3)随机森林模型预测结果表明, 影响凋落物季节动态的主要环境因子分别是月降雨量、气温和日间降雨时长。其中, 3-5月凋落物量随着日间降雨时长和土壤含水率的增加而减少, 7-8月凋落物量随着土壤含水率和日间光合有效辐射的增加而增加。因此, 降雨量及其发生时段等直接与间接作用是影响中亚热带常绿阔叶林凋落物产量及季节动态特征的重要因素。
兰光飞, 张强, 陈相标, 陈仕东, 熊德成, 刘小飞, 杨智杰, 杨玉盛. 中亚热带格氏栲林凋落物季节动态特征及其影响因素. 植物生态学报, 2024, 48(12): 1589-1601. DOI: 10.17521/cjpe.2024.0069
LAN Guang-Fei, ZHANG Qiang, CHEN Xiang-Biao, CHEN Shi-Dong, XIONG De-Cheng, LIU Xiao-Fei, YANG Zhi-Jie, YANG Yu-Sheng. Seasonal dynamics of litterfall of a Castanopsis kawakamii evergreen broadleaf forest in mid-subtropical China and their influencing factors. Chinese Journal of Plant Ecology, 2024, 48(12): 1589-1601. DOI: 10.17521/cjpe.2024.0069
图1 2018-2022年福建三明格氏栲省级自然保护区月平均气温和月降雨量。小图为每月气温和降雨量5年平均值±标准误。
Fig. 1 Monthly mean air temperature and monthly precipitation from 2018 to 2022 in the Castanopsis kawakamii Provincial Nature Reserve in Sanming, Fujian. The small graph shows the 5-year monthly air temperature and month precipitation (mean ± SE).
年份 Year | 落叶 Leaf | 落枝 Branch | 落果 Fruit | 碎屑 Miscellany | 年总凋落量 Annual litterfall |
---|---|---|---|---|---|
2018 | 4 952.64 ± 121.53Aa (72.05) | 723.01 ± 22.74Ac (10.52) | 201.54 ± 13.80BCd (2.93) | 996.25 ± 30.62Ab (14.49) | 6 873.45 ± 173.69A |
2019 | 3 416.07 ± 118.90Ba (63.75) | 723.41 ± 19.59Ac (13.50) | 248.06 ± 16.09Bd (4.63) | 971.15 ± 30.01Ab (18.12) | 5 358.93 ± 166.24B |
2020 | 3 379.24 ± 43.53Ba (67.70) | 692.91 ± 16.04Ac (13.88) | 144.19 ± 6.04Dd (2.89) | 774.93 ± 17.56Cb (15.53) | 4 991.28 ± 71.38B |
2021 | 3 498.42 ± 116.98Ba (66.98) | 640.16 ± 34.57Bc (12.26) | 190.48 ± 7.30BCd (3.65) | 893.85 ± 21.53Bb (17.11) | 5 222.92 ± 158.72B |
2022 | 3 007.27 ± 66.33Ca (60.73) | 721.77 ± 24.05Ab (14.58) | 487.49 ± 56.76Ac (9.85) | 767.28 ± 29.35Cb (14.58) | 4 949.17 ± 115.20B |
平均 Mean | 3 650.73 ± 80.27 (66.63) | 700.25 ± 11.09 (12.78) | 254.35 ± 17.11 (4.64) | 880.69 ± 15.02 (16.07) | 5 479.15 ± 95.02 |
表1 中亚热带格氏栲林不同年份凋落物量(kg·hm-2·a-1, 平均值±标准误)及各组分占比(%, 括号内数值)
Table 1 Litterfall production (kg·hm-2·a-1, mean ± SE) and composition percentage (%, data in parentheses) in different years in the mid-subtropical Castanopsis kawakamii forest
年份 Year | 落叶 Leaf | 落枝 Branch | 落果 Fruit | 碎屑 Miscellany | 年总凋落量 Annual litterfall |
---|---|---|---|---|---|
2018 | 4 952.64 ± 121.53Aa (72.05) | 723.01 ± 22.74Ac (10.52) | 201.54 ± 13.80BCd (2.93) | 996.25 ± 30.62Ab (14.49) | 6 873.45 ± 173.69A |
2019 | 3 416.07 ± 118.90Ba (63.75) | 723.41 ± 19.59Ac (13.50) | 248.06 ± 16.09Bd (4.63) | 971.15 ± 30.01Ab (18.12) | 5 358.93 ± 166.24B |
2020 | 3 379.24 ± 43.53Ba (67.70) | 692.91 ± 16.04Ac (13.88) | 144.19 ± 6.04Dd (2.89) | 774.93 ± 17.56Cb (15.53) | 4 991.28 ± 71.38B |
2021 | 3 498.42 ± 116.98Ba (66.98) | 640.16 ± 34.57Bc (12.26) | 190.48 ± 7.30BCd (3.65) | 893.85 ± 21.53Bb (17.11) | 5 222.92 ± 158.72B |
2022 | 3 007.27 ± 66.33Ca (60.73) | 721.77 ± 24.05Ab (14.58) | 487.49 ± 56.76Ac (9.85) | 767.28 ± 29.35Cb (14.58) | 4 949.17 ± 115.20B |
平均 Mean | 3 650.73 ± 80.27 (66.63) | 700.25 ± 11.09 (12.78) | 254.35 ± 17.11 (4.64) | 880.69 ± 15.02 (16.07) | 5 479.15 ± 95.02 |
组分 Composition | 模型 Model | 均方误差 MSE | 残差标准误差 RSE | a1 | b1 | c1 | a2 | b2 | c2 | a3 | b3 | c3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
总量 Total | 三峰高斯模型* Trimodal Gaussian model* | 39 912.14 | 216.72 | 1 022.45 | 3.73 | 1.04 | 695.61 | 7.58 | 0.30 | 302.64 | 9.18 | 4.24 |
双峰高斯模型 Bimodal Gaussian model | 42 971.25 | 218.54 | 973.05 | 3.65 | 0.94 | 411.45 | 7.82 | 3.45 | ||||
落叶 Leaf | 三峰高斯模型 Trimodal Gaussian model | 19 857.71 | 151.78 | 819.82 | 3.67 | 0.98 | 43.46 | 7.99 | 0.18 | 237.63 | 8.28 | 2.89 |
双峰高斯模型* Bimodal Gaussian model* | 19 660.90 | 147.87 | 826.80 | 3.67 | 0.98 | 252.81 | 8.26 | 2.71 | ||||
落枝 Branch | 三峰高斯模型* Trimodal Gaussian model* | 1 206.75 | 37.68 | 115.99 | 4.88 | 1.19 | 147.19 | 7.68 | 0.55 | 38.89 | 12.46 | 2.41 |
双峰高斯模型 Bimodal Gaussian model | 1 584.38 | 41.96 | 54.91 | 4.98 | 0.17 | 92.78 | 6.53 | 2.81 | ||||
落果 Fruit | 三峰高斯模型 Trimodal Gaussian model | 2 656.80 | 55.91 | 76.71 | 3.00 | 0.21 | 48.65 | 8.27 | 0.31 | 142.43 | 11.60 | 0.40 |
双峰高斯模型* Bimodal Gaussian model* | 2 650.22 | 55.28 | 76.97 | 3.02 | 0.21 | 147.67 | 11.59 | 0.39 | ||||
碎屑 Miscellany | 三峰高斯模型* Trimodal Gaussian model* | 1 437.45 | 41.12 | 180.09 | 3.75 | 1.01 | 100.46 | 7.62 | 1.22 | 47.73 | 11.81 | 1.17 |
双峰高斯模型 Bimodal Gaussian model | 1 569.29 | 41.76 | 143.64 | 3.62 | 0.69 | 78.06 | 6.95 | 3.47 |
表2 中亚热带格氏栲林各组分月凋落物量的高斯模型拟合参数
Table 2 Parameters of Gaussian model fitting for monthly litterfall production of each component in the mid-subtropical Castanopsis kawakamii forest
组分 Composition | 模型 Model | 均方误差 MSE | 残差标准误差 RSE | a1 | b1 | c1 | a2 | b2 | c2 | a3 | b3 | c3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
总量 Total | 三峰高斯模型* Trimodal Gaussian model* | 39 912.14 | 216.72 | 1 022.45 | 3.73 | 1.04 | 695.61 | 7.58 | 0.30 | 302.64 | 9.18 | 4.24 |
双峰高斯模型 Bimodal Gaussian model | 42 971.25 | 218.54 | 973.05 | 3.65 | 0.94 | 411.45 | 7.82 | 3.45 | ||||
落叶 Leaf | 三峰高斯模型 Trimodal Gaussian model | 19 857.71 | 151.78 | 819.82 | 3.67 | 0.98 | 43.46 | 7.99 | 0.18 | 237.63 | 8.28 | 2.89 |
双峰高斯模型* Bimodal Gaussian model* | 19 660.90 | 147.87 | 826.80 | 3.67 | 0.98 | 252.81 | 8.26 | 2.71 | ||||
落枝 Branch | 三峰高斯模型* Trimodal Gaussian model* | 1 206.75 | 37.68 | 115.99 | 4.88 | 1.19 | 147.19 | 7.68 | 0.55 | 38.89 | 12.46 | 2.41 |
双峰高斯模型 Bimodal Gaussian model | 1 584.38 | 41.96 | 54.91 | 4.98 | 0.17 | 92.78 | 6.53 | 2.81 | ||||
落果 Fruit | 三峰高斯模型 Trimodal Gaussian model | 2 656.80 | 55.91 | 76.71 | 3.00 | 0.21 | 48.65 | 8.27 | 0.31 | 142.43 | 11.60 | 0.40 |
双峰高斯模型* Bimodal Gaussian model* | 2 650.22 | 55.28 | 76.97 | 3.02 | 0.21 | 147.67 | 11.59 | 0.39 | ||||
碎屑 Miscellany | 三峰高斯模型* Trimodal Gaussian model* | 1 437.45 | 41.12 | 180.09 | 3.75 | 1.01 | 100.46 | 7.62 | 1.22 | 47.73 | 11.81 | 1.17 |
双峰高斯模型 Bimodal Gaussian model | 1 569.29 | 41.76 | 143.64 | 3.62 | 0.69 | 78.06 | 6.95 | 3.47 |
图2 中亚热带格氏栲林总凋落物量高斯曲线模型非线性拟合图。以2018-2022年每月凋落物量数据进行拟合(n = 60), 实线为三峰型高斯曲线模型, 虚线为双峰型高斯曲线模型, 实心点和误差棒为月凋落物量5年的平均值和标准误。
Fig. 2 Nonlinear fitting of the Gaussian curve model for total litterfall in the mid-subtropical Castanopsis kawakamii forest. The model was fitted using monthly litterfall production data from 2018 to 2022 (n = 60). The solid line represents the trimodal gaussian curve model, the dashed line represents the bimodal gaussian curve model, and the solid dots and bars indicate the five-year average and SE of monthly litterfall production.
图3 中亚热带格氏栲林2018-2022年凋落物季节动态(平均值±标准误)。A, 总凋落物量。B, 落叶凋落物量。C, 落枝凋落物量。D, 落果凋落物量。E, 碎屑凋落物量。A-E中不同小写字母表示凋落物量在不同月份之间差异显著(p < 0.05)。***, p < 0.001。
Fig. 3 Seasonal dynamics of litterfall production from 2018 to 2022 in the mid-subtropical Castanopsis kawakamii forest (mean ± SE). A, Total litterfall production. B, Leaf litterfall production. C, Branches litterfall production. D, Fruits litterfall production. E, Miscellany litterfall production. Different lowercase letters in A-E indicated significant differences in litterfall production between different months (p < 0.05). ***, p < 0.001.
图4 随机森林回归模型解释中亚热带格氏栲林凋落物季节动态所选变量的模型性能和变量重要值。A, 观测值的凋落物量和模型预测的凋落物量之间的比较。B, 反映随机森林模型中预测变量的重要性(平均值±标准误), 通过均方误差百分比增加(incMSE)的增加来量化。PBIAS, 偏差百分比, 用来评估模型预测值与观测值的偏差百分比, 正值表示系统性高估, 负值表示系统性低估; rMSE, 均方根误差, 衡量模型预测值与真实值之间的差异, 数值越小表示模型预测效果越好; 日间光合有效辐射, 08:00-17:00光合有效辐射。降雨量为月总量, 其余解释变量为月平均值。
Fig. 4 Performance of the Random Forest regression model and the importance of selected variables in explaining seasonal dynamics of litterfall production in the mid-subtropical Castanopsis kawakamii forest. A, Comparison between actual litterfall production and model predicted litterfall production. B, Importance of predictor variables within the Random Forest model (mean ± SE), quantified by the percentage increase in mean squared error (incMSE). PBIAS, percent bias, assesses the percentage bias between the predicted and observed values, positive values indicate a systematic overestimation, while negative values indicate a systematic underestimation; rMSE, root mean squared error, measures the difference between the predicted and observed values, a lower rMSE indicates better model performance; Daytime PAR, photosynthetically active radiation, photosynthetically active radiation from 08:00 to 17:00. Monthly rainfall is represented as the total monthly amount, while other explanatory variables are represented as monthly averages.
图5 随机森林回归模型解释中亚热带格氏栲林凋落物季节动态所选变量重要值和部分依赖关系图。A-C, 3-5月凋落物主峰的随机森林模型结果(R2 = 0.89, rMSE =191.72, PBIAS = 0.004)。D-F, 7-8月凋落物次峰的随机森林模型结果(R2 = 0.89, rMSE = 97.5, PBIAS = 0.009)。
Fig. 5 Random Forest regression model explains the importance of selected variables and presents partial dependence plots for understanding the seasonal dynamics of litterfall production in the mid-subtropical Castanopsis kawakamii forest. A-C, For the main peak of litterfall in March to May, the Random Forest model produced results with an R2 = 0.89, rMSE = 191.72, and PBIAS = 0.004. D-F, For the secondary peak in July to August, the model produced results with an R2 = 0.89, rMSE = 97.5, and PBIAS = 0.009. PAR, photosynthetically active radiation.
地区 Region | 森林优势种 Forest dominant species | 季节动态类型 Seasonal dynamic model | 第一次高峰 The first peak | 第二次高峰 The second peak | 第三次高峰 The third peak | 文献 Reference |
---|---|---|---|---|---|---|
福建三明 Sanming, Fujian | 格氏栲 Castanopsis kawakamii | 三峰型 Trimodal (n = 3) | 4月 April (2 561.0)* | 8月 August (756.1) | 10月 October (544.7) | Yang et al., |
木荚红豆 Ormosia xylocarpa | 双峰型 Bimodal (n = 3) | 3月 March (1 678.5)* | 8月 August (661.2) | 10月 October (561.3) | Yang et al., | |
米槠 Castanopsis carlesii | 双峰型 Bimodal (n = 1) | 4月 April (934.3) | 7月 July (1 058.3)* | Wu et al., | ||
福建建瓯万木林 Wanmulin, Jian’ou, Fujian | 木荷 Schima superba | 三峰型 Trimodal (n = 2) | 3月 March (1 059.6)* | 8月 August (344.8) | 10月 October (369.9) | Yang et al., |
细柄蕈树 Altingia gracilipes | 双峰型 Bimodal (n = 3) | 4月 April (1 382.7)* | 8月 August (468.1) | Guo et al., | ||
浙江宁波天童山 Tiantong Mountain, Ningbo, Zhejiang | 栲-木荷 Castanopsis fargesii - Schima superba | 三峰型 Trimodal (n = 2) | 5月 May (1 669.3) | 8月 August (1 853.7)* | 11月 November (916.3) | Deng et al., |
浙江舟山普陀山岛 Putuo Mountain Island, Zhoushan, Zhejiang | 青冈 Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 4月 April (954.4)* | 7月 July (561.4) | Song et al., | |
天竺桂-红楠 Cinnamomum japonicum - Machilus thunbergii | 三峰型 Trimodal (n = 1) | 5月 May (454.7) | 7月 July (842.1)* | 10月 October (342.5) | Song et al., | |
浙江衢州古田山 Gutian Mountain, Quzhou, Zhejiang | 甜槠 Castanopsis eyrei | 双峰型 Bimodal (n = 1) | 4月 April (1 550.5)* | 11月 November (1 523.0) | Wang et al., | |
广东肇庆鼎湖山 Dinghu Mountain, Zhaoqing, Guangdong | 锥栗-厚壳桂-木荷 Castanea henryi - Cryptocarya chinensis - Schima superba | 双峰型 Bimodal (n = 1) | 5月 May (1 084.8) | 8月 August (1 089.8)* | Guan et al., | |
湖北神农架 Shennongjia, Hubei | 宜昌润楠-青冈-川钓樟 Machilus ichangensis - Cyclobalanopsis glauca - Lindera pulcherrim | 三峰型 Trimodal (n = 2) | 4月 April (2 465.6)* | 8月 August (1 101.9) | 11月 November (1 336.1) | Liu et al., |
湖南长沙大山冲 Dashanchong, Changsha, Hunan | 石栎-青冈 Lithocarpus glaber - Cyclobalanopsis glauca | 三峰型 Trimodal (n = 1) | 3月 March (1 102.4)* | 6月 June (874.0) | 9月 September (1 000.0) | Guo et al., |
湖南怀化 Huaihua, Hunan | 栲-青冈-刨花润楠 Castanopsis fargesii - Cyclobalanopsis glauca - Machilus pauhoi | 三峰型 Trimodal (n = 11) | 5月 May (1 014.1)* | 11月 November (542.7) | Guan et al., | |
江西庐山 Lushan, Jiangxi | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 4月 April (740.8)* | 10月 October (538.0) | Qiu et al., | |
重庆北碚缙云山 Jinyun Mountain, Beibei, Chongqing | 栲 Castanopsis fargesii | 双峰型 Bimodal (n = 1) | 5月 May (368.6)* | 11月 November (134.6) | Wei & Zhao, | |
润楠 Machilus nanmu | 单峰型 Unimodal (n = 1) | 4月 April (159.4)* | Wei & Zhao, | |||
四川都江堰 Dujiangyan, Sichuan | 栲-青冈 Castanopsis fargesii - Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 5月 May (2 311.9)* | 10月 October (1 623.9) | Wang et al., | |
云南哀牢山 Ailao Mountain, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 11) | 4月 April (1 850.0)* | 11月 November (920.0) | Dai et al., | |
腾冲栲 Castanopsis wattii | 双峰型 Bimodal (n = 1) | 4月 April (1 668.8) | 11月 November (2 458.6) * | Zhou et al., | ||
云南新平磨盘山 Mopan Mountain, Xinping, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 5月 May (155.4)* | 8月 August (74.8) | Xing et al., |
表3 亚热带不同地区常绿阔叶林凋落物动态类型
Table 3 Seasonal dynamics model of litterfall production in subtropical regions across various locations of evergreen broadleaf forests
地区 Region | 森林优势种 Forest dominant species | 季节动态类型 Seasonal dynamic model | 第一次高峰 The first peak | 第二次高峰 The second peak | 第三次高峰 The third peak | 文献 Reference |
---|---|---|---|---|---|---|
福建三明 Sanming, Fujian | 格氏栲 Castanopsis kawakamii | 三峰型 Trimodal (n = 3) | 4月 April (2 561.0)* | 8月 August (756.1) | 10月 October (544.7) | Yang et al., |
木荚红豆 Ormosia xylocarpa | 双峰型 Bimodal (n = 3) | 3月 March (1 678.5)* | 8月 August (661.2) | 10月 October (561.3) | Yang et al., | |
米槠 Castanopsis carlesii | 双峰型 Bimodal (n = 1) | 4月 April (934.3) | 7月 July (1 058.3)* | Wu et al., | ||
福建建瓯万木林 Wanmulin, Jian’ou, Fujian | 木荷 Schima superba | 三峰型 Trimodal (n = 2) | 3月 March (1 059.6)* | 8月 August (344.8) | 10月 October (369.9) | Yang et al., |
细柄蕈树 Altingia gracilipes | 双峰型 Bimodal (n = 3) | 4月 April (1 382.7)* | 8月 August (468.1) | Guo et al., | ||
浙江宁波天童山 Tiantong Mountain, Ningbo, Zhejiang | 栲-木荷 Castanopsis fargesii - Schima superba | 三峰型 Trimodal (n = 2) | 5月 May (1 669.3) | 8月 August (1 853.7)* | 11月 November (916.3) | Deng et al., |
浙江舟山普陀山岛 Putuo Mountain Island, Zhoushan, Zhejiang | 青冈 Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 4月 April (954.4)* | 7月 July (561.4) | Song et al., | |
天竺桂-红楠 Cinnamomum japonicum - Machilus thunbergii | 三峰型 Trimodal (n = 1) | 5月 May (454.7) | 7月 July (842.1)* | 10月 October (342.5) | Song et al., | |
浙江衢州古田山 Gutian Mountain, Quzhou, Zhejiang | 甜槠 Castanopsis eyrei | 双峰型 Bimodal (n = 1) | 4月 April (1 550.5)* | 11月 November (1 523.0) | Wang et al., | |
广东肇庆鼎湖山 Dinghu Mountain, Zhaoqing, Guangdong | 锥栗-厚壳桂-木荷 Castanea henryi - Cryptocarya chinensis - Schima superba | 双峰型 Bimodal (n = 1) | 5月 May (1 084.8) | 8月 August (1 089.8)* | Guan et al., | |
湖北神农架 Shennongjia, Hubei | 宜昌润楠-青冈-川钓樟 Machilus ichangensis - Cyclobalanopsis glauca - Lindera pulcherrim | 三峰型 Trimodal (n = 2) | 4月 April (2 465.6)* | 8月 August (1 101.9) | 11月 November (1 336.1) | Liu et al., |
湖南长沙大山冲 Dashanchong, Changsha, Hunan | 石栎-青冈 Lithocarpus glaber - Cyclobalanopsis glauca | 三峰型 Trimodal (n = 1) | 3月 March (1 102.4)* | 6月 June (874.0) | 9月 September (1 000.0) | Guo et al., |
湖南怀化 Huaihua, Hunan | 栲-青冈-刨花润楠 Castanopsis fargesii - Cyclobalanopsis glauca - Machilus pauhoi | 三峰型 Trimodal (n = 11) | 5月 May (1 014.1)* | 11月 November (542.7) | Guan et al., | |
江西庐山 Lushan, Jiangxi | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 4月 April (740.8)* | 10月 October (538.0) | Qiu et al., | |
重庆北碚缙云山 Jinyun Mountain, Beibei, Chongqing | 栲 Castanopsis fargesii | 双峰型 Bimodal (n = 1) | 5月 May (368.6)* | 11月 November (134.6) | Wei & Zhao, | |
润楠 Machilus nanmu | 单峰型 Unimodal (n = 1) | 4月 April (159.4)* | Wei & Zhao, | |||
四川都江堰 Dujiangyan, Sichuan | 栲-青冈 Castanopsis fargesii - Cyclobalanopsis glauca | 双峰型 Bimodal (n = 1) | 5月 May (2 311.9)* | 10月 October (1 623.9) | Wang et al., | |
云南哀牢山 Ailao Mountain, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 11) | 4月 April (1 850.0)* | 11月 November (920.0) | Dai et al., | |
腾冲栲 Castanopsis wattii | 双峰型 Bimodal (n = 1) | 4月 April (1 668.8) | 11月 November (2 458.6) * | Zhou et al., | ||
云南新平磨盘山 Mopan Mountain, Xinping, Yunnan | 常绿阔叶树 Evergreen broadleaf forest | 双峰型 Bimodal (n = 1) | 5月 May (155.4)* | 8月 August (74.8) | Xing et al., |
[1] |
Asner GP, Alencar A (2010). Drought impacts on the Amazon forest: the remote sensing perspective. New Phytologist, 187, 569-578.
DOI PMID |
[2] | Chen TC, Wang SY, Huang WR, Yen MC (2004). Variation of the east Asian summer monsoon rainfall. Journal of Climate, 17, 744-762. |
[3] | Dai SY, Wei T, Tang J, Xu ZX, Gong HD (2023). Temporal changes in litterfall and nutrient cycling from 2005-2015 in an evergreen broad-leaved forest in the Ailao Mountains, China. Plants, 12, 1277. DOI: 10.3390/ plants12061277. |
[4] |
Dai YH, Gong FX, Yang XQ, Chen XZ, Su YX, Liu LY, Wu JP, Liu XD, Sun QL (2022). Litterfall seasonality and adaptive strategies of tropical and subtropical evergreen forests in China. Journal of Plant Ecology, 15, 320-334.
DOI |
[5] | Deng XX, Wang ZC, Li C, Guo H, Jin KC (2017). Seasonal dynamics of the litter fall production of evergreen broadleaf forest and its relationships with meteorological factors at Tiantong of Zhejiang Province. Journal of Central South University of Forestry & Technology, 37(3), 73-78. |
[ 邓秀秀, 王忠诚, 李程, 郭灏, 金珂丞 (2017). 浙江天童常绿阔叶林凋落物量季节动态及其与气象因子的关系. 中南林业科技大学学报, 37(3), 73-78.] | |
[6] | Detto M, Wright SJ, Calderón O, Muller-Landau HC (2018). Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nature Communications, 9, 913. DOI: 10.1038/s41467-018-03306-9. |
[7] | Ding YH, Si D, Liu YJ, Wang ZY, Li Y, Zhao L, Song YF (2018). On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese Journal of Atmospheric Sciences, 42, 533-558. |
[ 丁一汇, 司东, 柳艳菊, 王遵娅, 李怡, 赵亮, 宋亚芳 (2018). 论东亚夏季风的特征、驱动力与年代际变化. 大气科学, 42, 533-558.] | |
[8] | Fox J, Weisberg S (2019). An R Companion to Applied Regression. 3rd ed. Sage Publications, New York. |
[9] | Gao W, Huang MG, Huang YR, Wu XS, Fang DL, Chen AP, Huang SD (2023). Dynamic characteristics of litterfall and carbon and nitrogen return in three forest types in subtropical China. Research of Soil and Water Conservation, 30(4), 146-153. |
[ 高伟, 黄茂根, 黄雍容, 吴兴盛, 方栋龙, 陈爱平, 黄石德 (2023). 亚热带3种森林凋落物量及碳氮归还动态变化. 水土保持研究, 30(4), 146-153.] | |
[10] | Greenwell BM (2017). pdp: an R package for constructing partial dependence plots. The R Journal, 9, 421-436. |
[11] | Guan LL, Zhou GY, Zhang DQ, Liu JX, Zhang QM (2004). Twenty years of litter fall dynamics in subtropical evergreen broad-leaved forests at the Dinghushan forest ecosystem research station. Acta Phytoecologica Sinica, 28, 449-456. |
[ 官丽莉, 周国逸, 张德强, 刘菊秀, 张倩媚 (2004). 鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究. 植物生态学报, 28, 449-456.]
DOI |
|
[12] | Guan X, Huang K, Yan SK, Wang SL (2021). A dataset of litter recovery amount and standing crop dynamics in middle subtropical broad-leaved evergreen forests (2005-2015). China Scientific Data, 6, 205-212. |
[ 关欣, 黄苛, 颜绍馗, 汪思龙 (2021). 2005-2015年中亚热带常绿阔叶林凋落物回收量和现存量月动态数据集. 中国科学数据, 6, 205-212.] | |
[13] | Guo J, Yu LH, Fang X, Xiang WH, Deng XW, Lu X (2015). Litter production and turnover in four types of subtropical forests in China. Acta Ecologica Sinica, 35, 4668-4677. |
[ 郭婧, 喻林华, 方晰, 项文化, 邓湘雯, 路翔 (2015). 中亚热带4种森林凋落物量、组成、动态及其周转期. 生态学报, 35, 4668-4677.] | |
[14] | Guo JF, Chen GS, Qian W, Yang SH, Yang YS, Zheng QR (2006). Litter production and nutrient return in two natural forests and a Cunninghamia lanceolata plantation in Wanmulin Nature Reserve. Acta Ecologica Sinica, 26, 4091-4098. |
[ 郭剑芬, 陈光水, 钱伟, 杨少红, 杨玉盛, 郑群瑞 (2006). 万木林自然保护区2种天然林及杉木人工林凋落量及养分归还. 生态学报, 26, 4091-4098.] | |
[15] | Huang SD, Huang YR, Gao W, Nie S, Cai B, Lin J (2020). Dynamics of litterfall and nutrient return in three typical forests of Wuyi Mountain along altitudinal gradient. Journal of Tropical and Subtropical Botany, 28, 394-402. |
[ 黄石德, 黄雍容, 高伟, 聂森, 蔡斌, 林捷 (2020). 沿海拔梯度武夷山3种典型森林凋落物及养分归还动态. 热带亚热带植物学报, 28, 394-402.] | |
[16] | Jackson MB, Ram PC (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, 227-241. |
[17] |
Kramer K, Leinonen I, Loustau D (2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. International Journal of Biometeorology, 44, 67-75.
PMID |
[18] | Li AG, Fan YX, Chen SL, Song HW, Lin CF, Yang YS (2022a). Soil warming did not enhance leaf litter decomposition in two subtropical forests. Soil Biology & Biochemistry, 170, 108716. DOI: 10.1016/j.soilbio.2022.108716. |
[19] | Li YN, Deng Y, Cheung HN, Zhou W, Yang S, Zhang HN (2022b). Amplifying subtropical hydrological transition over China in early summer tied to weakened mid-latitude synoptic disturbances. NPJ Climate and Atmospheric Science, 5, 40. DOI: 10.1038/s41612-022-00259-1. |
[20] | Liaw A, Wiener M (2002). Classification and regression by randomForest. R News, 2, 18-22. |
[21] | Lin TC, Hogan JA, Chang CT (2020). Tropical cyclone ecology: a scale-link perspective. Trends in Ecology & Evolution, 35, 594-604. |
[22] | Liu C, Westman CJ, Berg B, Kutsch W, Wang G, Man R, Ilvesniemi H (2004). Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13, 105-114. |
[23] | Liu L, Shen GZ, Chen FQ, Luo L, Xie ZQ, Yu J (2012). Dynamic characteristics of litterfall and nutrient return of four typical forests along the altitudinal gradients in Mt. Shennongjia, China. Acta Ecologica Sinica, 32, 2142-2149. |
[ 刘蕾, 申国珍, 陈芳清, 罗璐, 谢宗强, 喻杰 (2012). 神农架海拔梯度上4种典型森林凋落物现存量及其养分循环动态. 生态学报, 32, 2142-2149.] | |
[24] | Liu L, Gong F, Chen X, Su Y, Fan L, Wu S, Yang X, Zhang J, Yuan W, Ciais P, Zhou C (2022). Bidirectional drought-related canopy dynamics across pantropical forests: a satellite-based statistical analysis. Remote Sensing in Ecology and Conservation, 8, 72-91. |
[25] | Liu XD, Feng YJ, Zhao XY, Cui ZJ, Liu PL, Chen XZ, Zhang QM, Liu JX (2024). Climatic drivers of litterfall production and its components in two subtropical forests in South China: a 14-year observation. Agricultural and Forest Meteorology, 344, 109798. DOI: 10.1016/j.agrformet.2023.109798. |
[26] | Loo YY, Billa L, Singh A (2015). Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geoscience Frontiers, 6, 817-823. |
[27] | Lu XQ, Yu H, Ying M, Zhao BK, Zhang S, Lin LM, Bai LN, Wan RJ (2021). Western North Pacific tropical cyclone database created by the China meteorological administration. Advances in Atmospheric Sciences, 38, 690-699. |
[28] | Midi H, Bagheri A (2010). Robust multicollinearity diagnostic measure in collinear data set//Mastorakis NE, Mladenov V, Bojkovic Z. Proceedings of the 4th International Conference on Applied Mathematics, Simulation, Modelling. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, USA. |
[29] | Morffi-Mestre H, Ángeles-Pérez G, Powers JS, Andrade JL, Huechacona Ruiz AH, May-Pat F, Chi-May F, Dupuy JM (2020). Multiple factors influence seasonal and interannual litterfall production in a tropical dry forest in Mexico. Forests, 11, 1241. DOI: 10.3390/f11121241. |
[30] | Portillo-Estrada M, Korhonen JFJ, Pihlatie M, Pumpanen J, Frumau AKF, Morillas L, Tosens T, Niinemets Ü (2013). Inter- and intra-annual variations in canopy fine litterfall and carbon and nitrogen inputs to the forest floor in two European coniferous forests. Annals of Forest Science, 70, 367-379. |
[31] | Qiu LB, Xiao TQ, Bai TJ, Mo XY, Huang JH, Deng WP, Liu YQ (2023). Seasonal dynamics and influencing factors of litterfall production and carbon input in typical forest community types in Lushan Mountain, China. Forests, 14, 341. DOI: 10.3390/f14020341. |
[32] | Seber GAF, Wild CJ (2003). Nonlinear Regression. Wiley-Interscience, New York. |
[33] | Shen GR, Chen DM, Wu Y, Liu L, Liu CJ (2019). Spatial patterns and estimates of global forest litterfall. Ecosphere, 10, e02587. DOI: 10.1002/ecs2.2587. |
[34] | Shi JZ, Xu H, Lin MX, Li YD (2019). Dynamics of litterfall production in the tropical mountain rainforest of Jianfengling, Hainan Island, China. Plant Science Journal, 37, 593-601. |
[ 石佳竹, 许涵, 林明献, 李意德 (2019). 海南尖峰岭热带山地雨林凋落物产量及其动态. 植物科学学报, 37, 593-601.] | |
[35] | Song TC, Da LJ (2016). Evergreen broad-leaved forest of East Asia//Box EO. Vegetation Structure and Function at Multiple Spatial, Temporal and Conceptual Scales. Springer, New York. 101-128. |
[36] |
Song YJ, Tian WB, Liu XY, Yin F, Cheng JY, Zhu DN, Arshad A, Yan ER (2016). Associations between litterfall dynamics and micro-climate in forests of Putuoshan Island, Zhejiang, China. Chinese Journal of Plant Ecology, 40, 1154-1163.
DOI |
[ 宋彦君, 田文斌, 刘翔宇, 尹芳, 程浚洋, 朱丹妮, Arshad A, 阎恩荣 (2016). 浙江普陀山岛森林凋落物动态与微气候的关联性. 植物生态学报, 40, 1154-1163.]
DOI |
|
[37] | Staelens J, Nachtergale L, de Schrijver A, Vanhellemont M, Wuyts K, Verheyen K (2011). Spatio-temporal litterfall dynamics in a 60-year-old mixed deciduous forest. Annals of Forest Science, 68, 89-98. |
[38] | Sun M, Sung HM, Kim J, Lee JH, Shim S, Byun YH (2022). Present-day and future projection of East Asian summer monsoon in Coupled Model Intercomparison Project 6 simulations. PLoS ONE, 17, e0269267. DOI: 10.1371/journal.pone.0269267. |
[39] | Vitousek PM, Gerrish G, Turner DR, Walker LR, Mueller-Dombois D (1995). Litterfall and nutrient cycling in four Hawaiian montane rainforests. Journal of Tropical Ecology, 11, 189-203. |
[40] | Wan CH, Tao C, Yang XB, Huang J, Feng DD, Yang Q, Zhou WS (2014). Litter production of different types of forests in Hainan and its impact factors. Journal of Tropical Biology, 5, 153-161. |
[ 万春红, 陶楚, 杨小波, 黄瑾, 冯丹丹, 杨琦, 周文嵩 (2014). 海南岛不同森林类型凋落物产量及其影响因素. 热带生物学报, 5, 153-161.] | |
[41] | Wang JJ, Wang YJ, Lai LM, Zhao XC, Wang F, Shen GZ, Lai JS, Lu HB, Zhao CQ, Zheng YR (2013). Litter production and decomposition of different forest ecosystems and their relations to environmental factors in different climatic zones of mid and Eastern China. Acta Ecologica Sinica, 33, 4818-4825. |
[ 王健健, 王永吉, 来利明, 赵学春, 王飞, 申国珍, 赖江山, 鲁洪斌, 赵春强, 郑元润 (2013). 我国中东部不同气候带成熟林凋落物生产和分解及其与环境因子的关系. 生态学报, 33, 4818-4825.] | |
[42] | Wang ZH, Wang XH, Shen GC (2014). Effects of typhoon disturbance on the litter production in an evergreen broad-leaved forest in the Tiantong, Zhejiang. Journal of East China Normal University (Natural Science),(1), 79-89. |
[ 王樟华, 王希华, 沈国春 (2014). 台风干扰对天童常绿阔叶林凋落物量的影响. 华东师范大学学报(自然科学版), (1), 79-89.] | |
[43] | Wei YJ, Zhao L (2020). Seasonal dynamics of litterfall and C, N, and P stoichiometric characteristics of six tree species in an evergreen broad-leaved forest on Jinyun Mountains. Forest Research, 33(6), 73-80. |
[ 魏玉洁, 赵亮 (2020). 缙云山常绿阔叶林6个树种凋落叶量及其C、N、P化学计量学季节动态研究. 林业科学研究, 33(6), 73-80.] | |
[44] | Wu JJ, Yang ZJ, Weng FJ, Liu XF, Chen CQ, Lin WS, Wang XH, Chen T (2014). Comparison of soil respiration in natural Castanopsis carlesii forest and plantation forest. Environmental Science, 35, 2426-2432. |
[ 吴君君, 杨智杰, 翁发进, 刘小飞, 陈朝琪, 林伟盛, 王小红, 陈坦 (2014). 米槠天然林和人工林土壤呼吸的比较研究. 环境科学, 35, 2426-2432.] | |
[45] | Wu JP, Su YX, Chen XZ, Liu LY, Yang XQ, Gong FX, Zhang HO, Xiong X, Zhang DQ (2021). Leaf shedding of Pan-Asian tropical evergreen forests depends on the synchrony of seasonal variations of rainfall and incoming solar radiation. Agricultural and Forest Meteorology, 311, 108691. DOI: 10.1016/j.agrformet.2021.108691. |
[46] | Wu QQ, Wang CK, Zhang QZ (2017). Inter- and intra-annual dynamics in litter production for six temperate forests. Acta Ecologica Sinica, 37, 760-769. |
[ 武启骞, 王传宽, 张全智 (2017). 6种温带森林凋落量年际及年内动态. 生态学报, 37, 760-769.] | |
[47] |
Xia LH, Wu HM, Liu M, Leng DS, Li TT (2014). Characteristic analysis of storm surges along Fujian coast associated with tropical cyclones. Journal of Tropical Oceanography, 33(3), 40-45.
DOI |
[ 夏丽花, 邬惠明, 刘铭, 冷典颂, 李婷婷 (2014). 热带气旋影响福建沿海风暴潮特征分析. 热带海洋学报, 33(3), 40-45.] | |
[48] | Xing JM, Wang KQ, Song YL, Zhang YJ, Zhang ZM, Pan TS (2021). Characteristics of litter return and nutrient dynamic change in four typical forests in the subalpine of central Yunnan Province. Journal of Central South University of Forestry & Technology, 41(8), 134-144. |
[ 邢进梅, 王克勤, 宋娅丽, 张雨鉴, 张转敏, 潘天森 (2021). 滇中亚高山4种典型林分凋落物归还及养分动态变化特征. 中南林业科技大学学报, 41(8), 134-144.] | |
[49] | Yan JH, Wang YP, Zhou GY, Zhang DQ (2006). Estimates of soil respiration and net primary production of three forests at different succession stages in South China. Global Change Biology, 12, 810-821. |
[50] | Yang C (2016). Dynamics of Litterfall of Evergreen Broad-leaved Forest on Jinyun Mountain. Master degree dissertation, Chongqing University, Chongqing. |
[ 杨超 (2016) 缙云山常绿阔叶林凋落物量及动态研究. 硕士学位论文, 重庆大学, 重庆.] | |
[51] | Yang YS, Guo JF, Chen GS, Xie JS, Cai LP, Lin P (2004). Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China. Annals of Forest Science, 61, 465-476. |
[52] | Yang ZJ, Chen GS, Xie JS, Yang YS (2010). Litter fall production and carbon return in Cunninghamia lanceolata, Schima superba, and their mixed plantations. Chinese Journal of Applied Ecology, 21, 2235-2240. |
[ 杨智杰, 陈光水, 谢锦升, 杨玉盛 (2010). 杉木、木荷纯林及其混交林凋落物量和碳归还量. 应用生态学报, 21, 2235-2240.] | |
[53] | Yuan F, Huang L, Wei YJ, Qian SH, Zhao L, Yang YC (2018). Litterfall production and its relationships with climatic factors in Chinese natural forests. Chinese Journal of Ecology, 37, 3038-3046. |
[ 袁方, 黄力, 魏玉洁, 钱深华, 赵亮, 杨永川 (2018). 中国天然林凋落物量特征及其与气候因子的关系. 生态学杂志, 37, 3038-3046.] | |
[54] | Zhang HC, Yuan WP, Dong WJ, Liu SG (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 240-247. |
[55] | Zhang JY, Wu LG, Ren FM, Cui XP (2013). Changes in tropical cyclone rainfall in China. Journal of the Meteorological Society of Japan Ser. II, 91, 585-595. |
[56] | Zhang XP, Wang XP, Zhu B, Zong ZJ, Peng CH, Fang JY (2008). Litter fall production in relation to environmental factors in Northeast China’s forests. Journal of Plant Ecology (Chinese Version), 32, 1031-1040. |
[ 张新平, 王襄平, 朱彪, 宗占江, 彭长辉, 方精云 (2008). 我国东北主要森林类型的凋落物产量及其影响因素. 植物生态学报, 32, 1031-1040.] | |
[57] | Zhang YH, Chen J, Xu C, Xiong DC, Yang ZJ, Chen SD, Mao C (2023). Effects of warming on quantity and structure of litter-derived dissolved organic matter in subtropical natural Castanopsis kawakamii forests. Chinese Journal of Applied Ecology, 34, 946-954. |
[ 张宇辉, 陈娟, 胥超, 熊德成, 杨智杰, 陈仕东, 毛超 (2023). 增温对亚热带格氏栲天然林凋落物可溶性有机质数量和结构的影响. 应用生态学报, 34, 946-954.]
DOI |
|
[58] | Zhou L, Shalom ADD, Wu P, Li S, Jia Y, Ma X (2015). Litterfall production and nutrient return in different-aged Chinese fir (Cunninghamia lanceolata) plantations in South China. Journal of Forestry Research, 26, 79-89. |
[59] | Zhu Y, Yang YC, Zhou LH, Long YX, Huang L, Chen H (2023). Litterfall amount and dynamic characteristics of evergreen broad-leaved forest in Jinyun Mountain. Science of Soil and Water Conservation, 21(3), 110-118. |
[ 朱茵, 杨永川, 周礼华, 龙宇潇, 黄力, 陈华 (2023). 缙云山常绿阔叶林凋落物量及动态特征. 中国水土保持科学, 21(3), 110-118.] |
[1] | 韩雨晴, 熊伟, 吴波, 卢琦, 杨文斌, 刘雅莉, 张景波, 辛智鸣, 马迎宾, 廉泓林, 王思涵. 乌兰布和沙漠梭梭茎干液流对降雨脉冲的响应[J]. 植物生态学报, 2024, 48(9): 1172-1179. |
[2] | 周红娟, 刘子赫, 刘柯言, 张初蕊, 胡旭, 韩璐, 陈立欣. 不同降雨条件下北京土石山区混生乔灌植物的水分吸收和生态位特征[J]. 植物生态学报, 2024, 48(9): 1089-1103. |
[3] | 冉佳鑫, 张宇辉, 王云, 杨智杰, 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响[J]. 植物生态学报, 2024, 48(9): 1232-1242. |
[4] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[5] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[6] | 徐铭泽, 赵洪贤, 李成, 李满乐, 田赟, 刘鹏, 查天山. 季节尺度毛乌素沙地黑沙蒿的叶片性状网络特征及驱动因素[J]. 植物生态学报, 2024, 48(12): 1650-1665. |
[7] | 马斌, 佘维维, 秦欢, 宣瑞智, 宋春阳, 袁新月, 苗春, 刘靓, 冯薇, 秦树高, 张宇清. 氮水添加对黑沙蒿种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[8] | 张玉, 杜婷, 陈玉莲, 朱和萌, 谭波, 游成铭, 张丽, 徐振锋, 李晗. 冻融作用对亚高山森林土壤有机碳组分中不同凋落物源碳贡献的影响[J]. 植物生态学报, 2024, 48(11): 1422-1433. |
[9] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[10] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[11] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[12] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[13] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[14] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[15] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19