植物生态学报 ›› 2024, Vol. 48 ›› Issue (11): 1434-1444.DOI: 10.17521/cjpe.2023.0256 cstr: 32100.14.cjpe.2023.0256
所属专题: 碳循环
收稿日期:
2023-09-06
接受日期:
2024-04-08
出版日期:
2024-11-20
发布日期:
2024-04-09
通讯作者:
*王清奎(qwang@iae.ac.cn)
基金资助:
WANG Liang1, ZHAO Xue-Chao1, YANG Shao-Bo1, WANG Qing-Kui1,2,*()
Received:
2023-09-06
Accepted:
2024-04-08
Online:
2024-11-20
Published:
2024-04-09
Contact:
*WANG Qing-Kui (qwang@iae.ac.cn)
Supported by:
摘要:
激发效应是指外源碳输入引起的土壤有机碳分解速率的短期变化, 是全球陆地生态系统碳循环的重要过程, 对全球土壤碳储量及其动态变化具有重要影响。凋落叶和细根作为森林土壤碳输入的主要途径, 调控土壤有机碳分解的激发效应, 而大气氮沉降引起的土壤氮有效性的增加也是影响激发效应的重要因素。然而, 凋落叶和细根的输入引起的激发效应的差异及它们对土壤氮有效性增加的响应机理尚不清楚。该研究将13C标记的杉木(Cunninghamia lanceolate)叶覆盖在杉木人工林土壤表面, 细根则混合在土壤中, 以尽可能模拟它们在野外林地中的存在状态, 同时添加氮以增加土壤氮有效性, 通过室内模拟培养35天, 测定土壤释放CO2的量及其13C丰度值, 并在培养结束时测定土壤养分和微生物群落结构。主要结果: 1)杉木叶促进了土壤有机碳分解, 即产生了正激发效应(1.69 mg C·kg-1·d-1), 而杉木细根则产生了负激发效应(-1.26 mg C·kg-1·d-1); 2)土壤氮有效性增加使杉木叶引起的正激发效应的强度降低了38.7%, 但使杉木细根引起的负激发效应的强度增加了16.6%; 3)添加杉木叶降低土壤真菌细菌比(22.9%), 添加杉木细根增加了真菌生物量(30.8%); 同时土壤氮有效性增加提高了真菌细菌比和真菌生物量。该研究发现了凋落叶和细根对激发效应的影响存在差别, 且土壤氮有效性增加降低了激发效应强度, 研究结果为氮沉降背景下森林土壤有机碳库的预测与管理提供理论支持。
王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应. 植物生态学报, 2024, 48(11): 1434-1444. DOI: 10.17521/cjpe.2023.0256
WANG Liang, ZHAO Xue-Chao, YANG Shao-Bo, WANG Qing-Kui. Priming effect of soil organic carbon decomposition induced by Cunninghamia lanceolate leaf litter and fine root and its response to nitrogen addition in subtropical forests. Chinese Journal of Plant Ecology, 2024, 48(11): 1434-1444. DOI: 10.17521/cjpe.2023.0256
凋落物类型 Litter type | 13C丰度 δ13C (‰) | 碳含量 C (g·kg-1) | 氮含量 N (g·kg-1) | C:N | 木质素含量 Lignin (g·kg-1) | 木质素:氮 Lignin:N |
---|---|---|---|---|---|---|
叶 Leaf | -2.61 ± 0.90a | 469.1 ± 0.43a | 23.76 ± 0.18a | 19.75 ± 0.13b | 121.5 ± 0.11b | 5.15 ± 0.75b |
细根 Fine root | -16.41 ± 0.17b | 473.1 ± 9.38a | 12.95 ± 0.29b | 36.53 ± 0.16a | 135.4 ± 0.23a | 10.25 ± 0.12a |
表1 杉木叶和细根的13C丰度值和基本化学性质(平均值±标准误)
Table 1 Chemical properties and carbon isotope composition (δ13C) of leaves and fine roots of Cunninghamia lanceolata at the end of 13C labeling (mean ± SE)
凋落物类型 Litter type | 13C丰度 δ13C (‰) | 碳含量 C (g·kg-1) | 氮含量 N (g·kg-1) | C:N | 木质素含量 Lignin (g·kg-1) | 木质素:氮 Lignin:N |
---|---|---|---|---|---|---|
叶 Leaf | -2.61 ± 0.90a | 469.1 ± 0.43a | 23.76 ± 0.18a | 19.75 ± 0.13b | 121.5 ± 0.11b | 5.15 ± 0.75b |
细根 Fine root | -16.41 ± 0.17b | 473.1 ± 9.38a | 12.95 ± 0.29b | 36.53 ± 0.16a | 135.4 ± 0.23a | 10.25 ± 0.12a |
处理 Treatment | pH | 土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 碳氮比 C:N |
---|---|---|---|---|
CK | 4.06 ± 0.03a | 15.74 ± 0.95a | 1.83 ± 0.22a | 8.65 ± 0.55a |
L | 4.01 ± 0.05a | 15.37 ± 0.22ab | 1.89 ± 0.33a | 8.30 ± 1.43a |
R | 4.07 ± 0.05a | 15.37 ± 0.30ab | 1.86 ± 0.31a | 8.39 ± 1.23a |
N | 3.74 ± 0.06b | 14.73 ± 0.33b | 1.83 ± 0.25a | 8.14 ± 0.87a |
LN | 3.77 ± 0.06b | 14.82 ± 0.10ab | 1.94 ± 0.23a | 7.73 ± 0.94a |
RN | 3.81 ± 0.03b | 15.44 ± 0.84ab | 1.88 ± 0.22a | 8.28 ± 0.80a |
表2 杉木人工林土壤培养后理化性质(平均值±标准误)
Table 2 Physical and chemical properties of incubate soil in Cunninghamia lanceolata forest (mean ± SE)
处理 Treatment | pH | 土壤有机碳含量 Soil organic carbon (C) content (g·kg-1) | 全氮含量 Total nitrogen (N) content (g·kg-1) | 碳氮比 C:N |
---|---|---|---|---|
CK | 4.06 ± 0.03a | 15.74 ± 0.95a | 1.83 ± 0.22a | 8.65 ± 0.55a |
L | 4.01 ± 0.05a | 15.37 ± 0.22ab | 1.89 ± 0.33a | 8.30 ± 1.43a |
R | 4.07 ± 0.05a | 15.37 ± 0.30ab | 1.86 ± 0.31a | 8.39 ± 1.23a |
N | 3.74 ± 0.06b | 14.73 ± 0.33b | 1.83 ± 0.25a | 8.14 ± 0.87a |
LN | 3.77 ± 0.06b | 14.82 ± 0.10ab | 1.94 ± 0.23a | 7.73 ± 0.94a |
RN | 3.81 ± 0.03b | 15.44 ± 0.84ab | 1.88 ± 0.22a | 8.28 ± 0.80a |
变量 Variable | 凋落物 Litter | 氮添加 Nitrogen addition | 凋落物×氮添加 Litter × nitrogen addition |
---|---|---|---|
总CO2 Total CO2 | <0.001 | <0.001 | 0.030 |
凋落物源CO2 Litter-derived CO2 | <0.001 | <0.001 | 0.277 |
有机碳源CO2 SOC-derived CO2 | <0.001 | <0.001 | 0.627 |
激发效应 Priming effect | <0.001 | <0.001 | 0.504 |
革兰氏阳性细菌 Gram-positive bacteria | <0.001 | <0.001 | 0.011 |
革兰氏阴性细菌 Gram-negative bacteria | 0.127 | <0.001 | 0.630 |
放线菌 Actinomycetes | <0.001 | 0.001 | 0.552 |
真菌 Fungi (F) | <0.001 | 0.036 | 0.009 |
细菌 Bacteria (B) | <0.001 | <0.001 | 0.453 |
真菌细菌比 F:B | <0.001 | <0.001 | 0.247 |
总微生物生物量 Total PLFAs | <0.001 | <0.001 | 0.162 |
β-1,4葡萄糖苷酶 β-1,4 glucosidase | <0.001 | <0.001 | 0.001 |
N-乙酰氨基肽酶 N-acetyl-glucosaminidase | <0.001 | <0.001 | 0.913 |
纤维二糖苷酶 β-cellobiohydrolase | <0.001 | <0.001 | 0.038 |
木聚糖酶 Xylanase | <0.001 | <0.001 | 0.172 |
表3 凋落物类型和加氮对各来源CO2、激发效应、土壤胞外酶活性、微生物生物量和群落组成的影响(p值)
Table 3 Main effects (p) of litter type, nitrogen addition and their interactions on CO2 from various sources, priming effect, soil extracellular enzyme activities, microbial biomass and community composition
变量 Variable | 凋落物 Litter | 氮添加 Nitrogen addition | 凋落物×氮添加 Litter × nitrogen addition |
---|---|---|---|
总CO2 Total CO2 | <0.001 | <0.001 | 0.030 |
凋落物源CO2 Litter-derived CO2 | <0.001 | <0.001 | 0.277 |
有机碳源CO2 SOC-derived CO2 | <0.001 | <0.001 | 0.627 |
激发效应 Priming effect | <0.001 | <0.001 | 0.504 |
革兰氏阳性细菌 Gram-positive bacteria | <0.001 | <0.001 | 0.011 |
革兰氏阴性细菌 Gram-negative bacteria | 0.127 | <0.001 | 0.630 |
放线菌 Actinomycetes | <0.001 | 0.001 | 0.552 |
真菌 Fungi (F) | <0.001 | 0.036 | 0.009 |
细菌 Bacteria (B) | <0.001 | <0.001 | 0.453 |
真菌细菌比 F:B | <0.001 | <0.001 | 0.247 |
总微生物生物量 Total PLFAs | <0.001 | <0.001 | 0.162 |
β-1,4葡萄糖苷酶 β-1,4 glucosidase | <0.001 | <0.001 | 0.001 |
N-乙酰氨基肽酶 N-acetyl-glucosaminidase | <0.001 | <0.001 | 0.913 |
纤维二糖苷酶 β-cellobiohydrolase | <0.001 | <0.001 | 0.038 |
木聚糖酶 Xylanase | <0.001 | <0.001 | 0.172 |
图1 凋落物和氮添加对杉木林土壤总CO2 (A)、凋落物源(B)和有机碳源CO2 (C)、激发效应(D)的影响(平均值±标准误, n = 3)。CK, 对照组; L, 添加杉木叶; R, 添加杉木细根。不同小写字母表示不同凋落物添加处理间存在显著差异, 不同大写字母表示不同氮添加处理之间存在显著差异(p < 0.05)。
Fig. 1 Effects of litter and nitrogen addition on total (A), litter- (B) and SOC-derived CO2 (C) and priming effect (D) in Cunninghamia lanceolata forest (mean ± SE, n = 3). CK, control; L, Cunninghamia lanceolate leaf litter addition; R, Cunninghamia lanceolate fine root addition. SOC, soil organic carbon. Different lowercase letters represent significant difference among different litter addition treatments (p < 0.05), and different uppercase letters indicate significant differences between different nitrogen addition treatments (p < 0.05).
图2 凋落物和氮添加对杉木林土壤微生物生物量和群落组成的影响(平均值±标准误, n = 3)。CK, 对照组; L, 添加杉木叶; R, 添加杉木细根。不同小写字母表示不同凋落物添加处理间存在显著差异(p < 0.05)。不同大写字母表示不同氮添加处理之间存在显著差异(p < 0.05)。
Fig. 2 Effects of litter and nitrogen addition on soil microbial biomass and community composition in Cunninghamia lanceolata forest (mean ± SE, n = 3). CK, control; L, Cunninghamia lanceolate leaf litter addition; R, Cunninghamia lanceolate fine root addition. Different lowercase letters represent significant differences among different litter addition treatments. Different uppercase letters indicate significant differences between different nitrogen addition treatments with and without nitrogen additions (p < 0.05). ACT, actinomycetes; B, bacteria; F, fungi; PLFAs, phospholipid fatty acids.
图3 凋落物和氮添加对杉木林土壤胞外酶活性的影响(平均值±标准误, n = 3)。CK, 对照组; L, 添加杉木叶; R, 添加杉木细根。不同小写字母表示不同凋落物添加处理间存在显著差异(p < 0.05)。不同大写字母表示不同氮添加处理之间存在显著差异(p < 0.05)。
Fig. 3 Effects of litter and nitrogen (N) additions on soil extracellular enzyme activities in Cunninghamia lanceolata forest (mean ± SE, n = 3). CK, control; L, Cunninghamia lanceolate leaf litter addition; R, Cunninghamia lanceolate fine root addition. Different lowercase letters represent significant differences among different litter addition treatments. Different uppercase letters indicate significant differences between different nitrogen addition treatments with and without N additions (p < 0.05).
图4 激发效应与真菌含量、细菌含量、真菌细菌比和纤维二糖苷酶活性的相关性分析。图中数据均为减去对照的变化量。
Fig. 4 Correlation analysis of priming effect with fungi (F) content, bacteria (B) content, F:B and β-cellobiohydrolase activity. Data in the figure are subtracted from the change in the control.
[1] | Agnihotri R, Sharma MP, Prakash A, Ramesh A, Bhattacharjya S, Patra AK, Manna MC, Kurganova I, Kuzyakov Y (2022). Glycoproteins of arbuscular mycorrhiza for soil carbon sequestration: review of mechanisms and controls. Science of the Total Environment, 806, 150571. DOI: 10.1016/j.scitotenv.2021.150571. |
[2] | Angst G, Mueller KE, Nierop KGJ, Simpson MJ (2021). Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology & Biochemistry, 156, 108189. DOI: 10.1016/j.soilbio.2021.108189. |
[3] | Aye NS, Butterly CR, Sale PWG, Tang C (2018). Interactive effects of initial pH and nitrogen status on soil organic carbon priming by glucose and lignocellulose. Soil Biology & Biochemistry, 123, 33-44. |
[4] | Chen LQ (2010). Research on structure of soil particle by hydrometer method. Environmental Science Survey, 29(4), 97-99. |
[陈丽琼 (2010). 比重计法测定土壤颗粒组成的研究. 环境科学导刊, 29(4), 97-99.] | |
[5] | Chen L, Liu L, Mao C, Qin S, Wang J, Liu F, Blagodatsky S, Yang G, Zhang Q, Zhang D, Yu J, Yang Y (2018). Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications, 9, 3951. DOI: 10.1038/s41467-018-06232-y. |
[6] |
Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014). Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356-2367.
DOI PMID |
[7] |
Chen T, Yuan FH, Zhang LM, Hu YL (2022). Effects of addition of leaf litter with different chemical properties on soil organic carbon mineralization and priming effect. Chinese Journal of Applied Ecology, 33, 2602-2610.
DOI |
[陈甜, 元方慧, 张琳梅, 胡亚林 (2022). 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响. 应用生态学报, 33, 2602-2610.]
DOI |
|
[8] |
Delgado-Baquerizo M, Eldridge DJ, Ochoa V, Gozalo B, Singh BK, Maestre FT (2017). Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 20, 1295-1305.
DOI PMID |
[9] | Deng S, Zheng X, Chen X, Zheng S, He X, Ge T, Kuzyakov Y, Wu J, Su Y, Hu Y (2021). Divergent mineralization of hydrophilic and hydrophobic organic substrates and their priming effect in soils depending on their preferential utilization by bacteria and fungi. Biology and Fertility of Soils, 57, 65-76. |
[10] |
Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI PMID |
[11] |
Fang Y, Nazaries L, Singh BK, Singh BP (2018). Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils. Global Change Biology, 24, 2775-2790.
DOI PMID |
[12] | Fanin N, Alavoine G, Bertrand I (2020). Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma, 377, 114576. DOI: 10.1016/j.geoderma.2020.114576. |
[13] | Feng JG, Zhu B (2021). Does calculation method affect the nutrient-addition effect on priming? Geoderma, 393, 115040. DOI: 10.1016/j.geoderma.2021.115040. |
[14] | Gan ZY, Wang H, Ding C, Lei M, Yang XG, Cai JY, Qiu QY, Hu YL (2022). Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms. Chinese Journal of Ecology, 46, 797-810. |
[甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林 (2022). 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理. 植物生态学报, 46, 797-810.]
DOI |
|
[15] |
German DP, Chacon SS, Allison SD (2011). Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology, 92, 1471-1480.
PMID |
[16] |
Guenet B, Camino-Serrano M, Ciais P, Tifafi M, Maignan F, Soong JL, Janssens IA (2018). Impact of priming on global soil carbon stocks. Global Change Biology, 24, 1873-1883.
DOI PMID |
[17] | Hicks LC, Rousk K, Rinnan R, Rousk J (2020). Soil microbial responses to 28 years of nutrient fertilization in a subarctic heath. Ecosystems, 23, 1107-1119. |
[18] | Huo CF, Luo YQ, Cheng WX (2017). Rhizosphere priming effect: a meta-analysis. Soil Biology & Biochemistry, 111, 78-84. |
[19] | Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445. |
[20] |
Joergensen RG (2022). Phospholipid fatty acids in soil—Drawbacks and future prospects. Biology and Fertility of Soils, 58, 1-6.
DOI |
[21] |
Keith A, Singh B, Singh BP (2011). Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environmental Science and Technology, 45, 9611-9618.
DOI PMID |
[22] | Kuzyakov Y, Friedel JK, Stahr K (2000). Review of mechanisms and quantification of priming effects. Soil Biology & Biochemistry, 32, 1485-1498. |
[23] | Li XJ, Xie JS, Zhang QF, Lyu MK, Xiong XL, Liu XF, Lin TC, Yang YS (2020). Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia. Geoderma, 364, 114198. DOI: 10.1016/j.geoderma.2020.114198. |
[24] | Li Y, Sun J, Tian DS, Wang JS, Ha DL, Qu YX, Jing GW, Niu SL (2018). Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Science of the Total Environment, 615, 1535-1546. |
[25] | Liu BJ, Xie ZB, Liu Q, Wang XJ, Lin ZB, Bei QC, Lin XW, Liu G, Zhu JG (2021). Correlation between biochar-induced carbon priming effect in soils and soil physiochemical properties. Soils, 53, 343-353. |
[刘本娟, 谢祖彬, 刘琦, 王晓洁, 林志斌, 卑其成, 蔺兴武, 刘钢, 朱建国 (2021). 生物质炭引起的土壤碳激发效应与土壤理化特性的相关性. 土壤, 53, 343-353.] | |
[26] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159, 2251-2264.
DOI PMID |
[27] | Lyu M, Nie Y, Giardina CP, Vadeboncoeur MA, Ren Y, Fu Z, Wang M, Jin C, Liu X, Xie J (2019). Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests. Functional Ecology, 33, 2226-2238. |
[28] | Lyu M, Xie J, Vadeboncoeur MA, Wang M, Qiu X, Ren Y, Jiang M, Yang Y, Kuzyakov Y (2018). Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils. Biology and Fertility of Soils, 54, 925-934. |
[29] |
Mayer M, Rewald B, Matthews B, Sandén H, Rosinger C, Katzensteiner K, Gorfer M, Berger H, Tallian C, Berger TW, Godbold DL (2021). Soil fertility relates to fungal-mediated decomposition and organic matter turnover in a temperate mountain forest. New Phytologist, 231, 777-790.
DOI PMID |
[30] | Meyer N, Welp G, Rodionov A, Borchard N, Martius C, Amelung W (2018). Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil. Soil Biology & Biochemistry, 119, 152-161. |
[31] | Mo F, Ren C, Yu K, Zhou Z, Phillips RP, Luo Z, Zhang Y, Dang Y, Han J, Ye J, Vinay N, Liao Y, Xiong Y, Wen X (2022). Global pattern of soil priming effect intensity and its environmental drivers. Ecology, 103, e3790. DOI: 10.1002/ecy.3790. |
[32] | Nottingham AT, Turner BL, Stott AW, Tanner EVJ (2015). Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology & Biochemistry, 80, 26-33. |
[33] | Qi DD, Huang GD, Feng YH, He X, Song Y, Song FQ (2024). Nitrogen addition suppresses soil positive priming effect in temperate plantations: evidence from an 8-year in situ field experiment. Functional Ecology, 38, 429-438. |
[34] | Qiu Q, Wang H, Zhang Q, Said Mgelwa A, Zhu B, Hu Y (2022). Negative priming effect from tree leaf and root residues with contrasting chemical composition. Geoderma, 427, 116118. DOI: 10.1016/j.geoderma.2022.116118. |
[35] | Rowland AP, Roberts JD (1994). Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Communications in Soil Science Plant Analysis, 25, 269-277. |
[36] | Shahbaz M, Kumar A, Kuzyakov Y, Börjesson G, Blagodatskaya E (2018). Priming effects induced by glucose and decaying plant residues on SOM decomposition: a three-source 13C/14C partitioning study. Soil Biology & Biochemistry, 121, 138-146. |
[37] | Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E (2017). Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biology and Fertility of Soils, 53, 287-301. |
[38] | Sun ZL, Liu SE, Zhang TA, Zhao XC, Chen S, Wang QK (2019). Priming of soil organic carbon decomposition induced by exogenous organic carbon input: a meta-analysis. Plant and Soil, 443, 463-471. |
[39] | Tian P, Liu S, Wang Q, Sun T, Blagodatskaya E (2019). Organic N deposition favours soil C sequestration by decreasing priming effect. Plant and Soil, 445, 439-451. |
[40] | Wang C, Lu X, Mori T, Mao Q, Zhou K, Zhou G, Nie Y, Mo J (2018). Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology & Biochemistry, 121, 103-112. |
[41] | Wang H, Yang Y, Xi D, Qiu QY, Hu YL (2020). Impacts of labile organic carbon input on the priming effect of three forest soils in Wuyi Mountain. Acta Ecologica Sinica, 40, 9184-9194. |
[王浩, 杨钰, 习丹, 丘清燕, 胡亚林 (2020). 易分解有机碳输入量对武夷山不同林型土壤激发效应的影响. 生态学报, 40, 9184-9194.] | |
[42] | Wang QK (2011). Responses of forest soil carbon pool and carbon cycle to the changes of carbon input. Chinese Journal of Applied Ecology, 22, 1075-1081. |
[王清奎 (2011). 碳输入方式对森林土壤碳库和碳循环的影响研究进展. 应用生态学报, 22, 1075-1081.] | |
[43] | Wang QK, Chen LC, Yang QP, Sun T, Li CM (2019). Different effects of single versus repeated additions of glucose on the soil organic carbon turnover in a temperate forest receiving long-term N addition. Geoderma, 341, 59-67. |
[44] | Wang QK, Wang SL, Fan B, Yu XJ (2007). Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant and Soil, 297, 201-211. |
[45] | Wang QK, Wang SL, He TX, Liu L, Wu JB (2014). Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils. Soil Biology & Biochemistry, 71, 13-20. |
[46] |
Wang X, Li S, Zhu B, Homyak PM, Chen G, Yao X, Wu D, Yang Z, Lyu M, Yang Y (2023). Long-term nitrogen deposition inhibits soil priming effects by enhancing phosphorus limitation in a subtropical forest. Global Change Biology, 29, 4081-4093.
DOI PMID |
[47] | Xu M, Cardenas LM, Horrocks C, López-Aizpún M, Zhang J, Zhang F, Dungait JAJ (2021). The effect of tillage management on microbial functions in a maize crop at different slope positions. Geoderma, 401, 115171. DOI: 10.1016/j.geoderma.2021.115171. |
[48] | Xu YD, Ding F, Gao XD, Wang Y, Li M, Wang JK (2019). Mineralization of plant residues and native soil carbon as affected by soil fertility and residue type. Journal of Soils and Sediments, 19, 1407-1415. |
[49] | Ye C, Huang W, Hall SJ, Hu S (2022). Association of organic carbon with reactive iron oxides driven by soil pH at the global scale. Global Biogeochemical Cycles, 36, e2021GB007128. DOI: 10.1029/2021GB007128. |
[50] |
Zhang Q, Deng HM, Yu JJ, Tao JH, Sun L, Yang PX, Chu JH (2019). Grain growth enhancing through preheating treatment of a sputtered stacked metallic precursor for Cu(In, Al)Se2 thin film solar cells application. Materials Science and Engineering: B, 242, 31-36.
DOI |
[51] | Zhang QF, Cheng L, Feng JG, Mei KC, Zeng QX, Zhu B, Chen YM (2021). Nitrogen addition stimulates priming effect in a subtropical forest soil. Soil Biology & Biochemistry, 160, 108339. DOI: 10.1016/j.soilbio.2021.108339. |
[52] | Zhang Z, Cai XZ, Tang CD, Guo JF (2017). Priming effect of dissolved organic matter in the surface soil of a Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 37, 7660-7667. |
[张政, 蔡小真, 唐偲頔, 郭剑芬 (2017). 可溶性有机质输入对杉木人工林表层土壤有机碳矿化的激发效应. 生态学报, 37, 7660-7667.] | |
[53] |
Zhu YF Sun ZL, Wang QK (2020). Effects of biochar and nitrogen additions on soil organic carbon decomposition and balance in a subtropical forest. Chinese Journal of Ecology, 39, 2851-2859.
DOI |
[朱依凡, 孙兆林, 王清奎 (2020). 生物炭和氮添加对亚热带常绿阔叶林土壤有机碳分解与平衡的影响. 生态学杂志, 39, 2851-2859.] |
[1] | 马煦晗, 黄菊莹, 余海龙, 韩翠, 李冰. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报, 2024, 48(8): 1065-1077. |
[2] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[3] | 俞庆水, 倪晓凤, 吉成均, 朱江玲, 唐志尧, 方精云. 10年氮磷添加对海南尖峰岭热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(6): 690-700. |
[4] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[5] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[6] | 赵常提 夏青霖 田地 陈冰瑞 朱瑞德 刘宵含 俞果 吉成均. 长期氮添加对温带落叶阔叶林优势植物叶片次生代谢产物的影响[J]. 植物生态学报, 2024, 48(12): 1576-1588. |
[7] | 马斌 佘维维 秦欢 宋春阳 袁新月 苗春 刘靓 冯薇 秦树高 张宇清. 氮素和水分添加对黑沙蒿(Artemisia ordosica)种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[8] | 张学渊, 高翠萍, 汤靖磊, 朱毅, 田磊, 韩国栋, 任海燕. 内蒙古荒漠草原土壤CH4和CO2通量在不同冻融 阶段对增温和氮添加的响应[J]. 植物生态学报, 2024, 48(10): 1291-1301. |
[9] | 陆啸飞, 覃张芬, 王斌, 旷远文. 氮添加对南亚热带常绿阔叶林林下植物-土壤植硅体碳的影响[J]. 植物生态学报, 2024, 48(10): 1302-1311. |
[10] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[11] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[12] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[13] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[14] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[15] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19