植物生态学报 ›› 2024, Vol. 48 ›› Issue (11): 1422-1433.DOI: 10.17521/cjpe.2023.0278 cstr: 32100.14.cjpe.2023.0278
张玉, 杜婷, 陈玉莲, 朱和萌, 谭波, 游成铭, 张丽, 徐振锋, 李晗*()
收稿日期:
2023-09-27
接受日期:
2024-04-08
出版日期:
2024-11-20
发布日期:
2024-04-09
通讯作者:
*李晗(hannahlisc@163.com)
基金资助:
ZHANG Yu, DU Ting, CHEN Yu-Lian, ZHU He-Meng, TAN Bo, YOU Cheng-Ming, ZHANG Li, XU Zhen-Feng, LI Han*()
Received:
2023-09-27
Accepted:
2024-04-08
Online:
2024-11-20
Published:
2024-04-09
Contact:
*LI Han (hannahlisc@163.com)
Supported by:
摘要:
全球变暖对高海拔地区土壤冻融循环作用的影响日益加剧, 而凋落物碳作为森林土壤有机碳的主要来源, 其对土壤各有机碳组分的贡献及如何响应冻融循环作用尚不清晰。该研究通过室内模拟冻融循环实验和稳定同位素示踪技术, 利用13C标记云杉(Picea asperata)凋落物(根、枝、叶), 探究了冻融作用下亚高山森林凋落物源碳对土壤可溶性有机碳(DOC)、微生物生物量碳(MBC)、腐殖质碳(HC)、颗粒有机碳(POC)和矿质结合有机碳(MAOC)的贡献。培养30天后, 凋落物碳对土壤POC和MBC的贡献率分别为13.1%和9.0%, 显著高于其他有机碳组分; 不同类型凋落物对土壤各有机碳组分的贡献差异显著, 其中根对POC、MAOC和HC的贡献率显著低于枝和叶。冻融作用显著提高了土壤DOC和MBC中凋落物源碳的贡献率, 而降低了土壤POC、MAOC和HC中凋落物碳贡献率。相关性分析结果显示, 土壤碳获取相关酶活性与凋落物源碳对土壤有机碳贡献率呈显著正相关关系。表明在亚高山森林凋落物分解初期, 冻融作用的发生有利于凋落物源碳在土壤DOC和MBC等活性有机碳组分中的积累, 但抑制了其在MAOC和HC等土壤稳定有机碳中的固存。研究结果有助于深入理解森林凋落物归还对土壤有机碳固持的贡献, 为全球气候变化背景下亚高山森林土壤碳库的经营管理提供科学依据。
张玉, 杜婷, 陈玉莲, 朱和萌, 谭波, 游成铭, 张丽, 徐振锋, 李晗. 冻融作用对亚高山森林土壤有机碳组分中不同凋落物源碳贡献的影响. 植物生态学报, 2024, 48(11): 1422-1433. DOI: 10.17521/cjpe.2023.0278
ZHANG Yu, DU Ting, CHEN Yu-Lian, ZHU He-Meng, TAN Bo, YOU Cheng-Ming, ZHANG Li, XU Zhen-Feng, LI Han. Contribution of litter-derived carbon to soil organic carbon fractions and its response to freezing-thaw cycling in a subalpine forest. Chinese Journal of Plant Ecology, 2024, 48(11): 1422-1433. DOI: 10.17521/cjpe.2023.0278
分类 Classification | 胞外酶 Extracellular enzyme | 酶底物浓度 Enzyme substrate concentration |
---|---|---|
水解酶 Hydrolase | 酸性磷酸酶 Acid phosphatase | 5 mmol·L-1 pNP-phosphate |
β-葡萄糖苷酶 β-glucosidase | 5 mmol·L-1 pNP-β-glucopyranoside | |
纤维二糖水解酶 Cellobiohydrolase | 5 mmol·L-1 pNP-cellobioside | |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | 5 mmol·L-1 pNP-β-N-acetylglucosaminide | |
亮氨酸氨基肽酶 Leucine aminopeptidase | 5 mmol·L-1 Leucine p-nitroanilide | |
氧化酶 Oxidase | 多酚氧化酶 Polyphenol oxidase | 5 mmol·L-1 Dihydroxy-phenylalanine |
过氧化物酶 Peroxidase | 5 mmol·L-1 Dihydroxy-phenylalanine + 0.3% H2O2 |
表1 土壤胞外酶酶底物浓度
Table 1 Substrate concentration of soil extracellular enzymes
分类 Classification | 胞外酶 Extracellular enzyme | 酶底物浓度 Enzyme substrate concentration |
---|---|---|
水解酶 Hydrolase | 酸性磷酸酶 Acid phosphatase | 5 mmol·L-1 pNP-phosphate |
β-葡萄糖苷酶 β-glucosidase | 5 mmol·L-1 pNP-β-glucopyranoside | |
纤维二糖水解酶 Cellobiohydrolase | 5 mmol·L-1 pNP-cellobioside | |
β-N-乙酰氨基葡萄糖苷酶 β-N-acetylglucosaminidase | 5 mmol·L-1 pNP-β-N-acetylglucosaminide | |
亮氨酸氨基肽酶 Leucine aminopeptidase | 5 mmol·L-1 Leucine p-nitroanilide | |
氧化酶 Oxidase | 多酚氧化酶 Polyphenol oxidase | 5 mmol·L-1 Dihydroxy-phenylalanine |
过氧化物酶 Peroxidase | 5 mmol·L-1 Dihydroxy-phenylalanine + 0.3% H2O2 |
变异来源 Source of variance | δ13C-DOC (‰) | δ13C-MBC (‰) | δ13C-POC (‰) | δ13C-MAOC (‰) | δ13C-HC (‰) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 2 076.98 | 0.000 | 79.32 | 0.000 | 4.97 | 0.035 | 6.82 | 0.015 | 16.67 | 0.000 |
器官 Organ | 1 156.73 | 0.000 | 286.93 | 0.000 | 1.39 | 0.267 | 0.32 | 0.728 | 1.58 | 0.226 |
培养时间 Period | 0.38 | 0.542 | 1.24 | 0.277 | 27.79 | 0.000 | 3.83 | 0.062 | 59.67 | 0.000 |
冻融×器官 Freeze-thaw × organ | 674.11 | 0.000 | 10.36 | 0.001 | 4.10 | 0.029 | 14.55 | 0.000 | 12.85 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 1 460.01 | 0.000 | 85.15 | 0.000 | 1.26 | 0.273 | 95.91 | 0.000 | 2.62 | 0.119 |
器官×培养时间 Organ × period | 636.85 | 0.000 | 22.63 | 0.000 | 1.24 | 0.306 | 21.60 | 0.000 | 2.78 | 0.082 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 353.77 | 0.000 | 14.85 | 0.000 | 1.76 | 0.194 | 2.61 | 0.094 | 0.34 | 0.716 |
表2 冻融作用、凋落物器官和培养时间对亚高山森林土壤各有机碳组分碳同位素比值(δ13C)的影响
Table 2 Effects of freeze-thaw cycle, litter organ and decomposition period on δ13C of various soil organic carbon fractions in a subalpine forest
变异来源 Source of variance | δ13C-DOC (‰) | δ13C-MBC (‰) | δ13C-POC (‰) | δ13C-MAOC (‰) | δ13C-HC (‰) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 2 076.98 | 0.000 | 79.32 | 0.000 | 4.97 | 0.035 | 6.82 | 0.015 | 16.67 | 0.000 |
器官 Organ | 1 156.73 | 0.000 | 286.93 | 0.000 | 1.39 | 0.267 | 0.32 | 0.728 | 1.58 | 0.226 |
培养时间 Period | 0.38 | 0.542 | 1.24 | 0.277 | 27.79 | 0.000 | 3.83 | 0.062 | 59.67 | 0.000 |
冻融×器官 Freeze-thaw × organ | 674.11 | 0.000 | 10.36 | 0.001 | 4.10 | 0.029 | 14.55 | 0.000 | 12.85 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 1 460.01 | 0.000 | 85.15 | 0.000 | 1.26 | 0.273 | 95.91 | 0.000 | 2.62 | 0.119 |
器官×培养时间 Organ × period | 636.85 | 0.000 | 22.63 | 0.000 | 1.24 | 0.306 | 21.60 | 0.000 | 2.78 | 0.082 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 353.77 | 0.000 | 14.85 | 0.000 | 1.76 | 0.194 | 2.61 | 0.094 | 0.34 | 0.716 |
图1 亚高山森林土壤各有机碳组分碳同位素比值(δ13C) (平均值±标准误)。DOC, 可溶性有机碳; HC, 腐殖质碳; MAOC, 矿质结合有机碳; MBC, 微生物生物量碳; POC, 颗粒有机碳。*, 冻融作用与对照间差异显著(p < 0.05)。
Fig. 1 Carbon isotopic ratio (δ13C) of various soil organic carbon fractions in a subalpine forest (mean ± SE). DOC, dissolved organic carbon; HC, humus carbon; MAOC, mineral associated organic carbon; MBC, microbial biomass carbon; POC, particulate organic carbon. * indicates significant differences between freeze-thaw cycle and control (p < 0.05).
图2 亚高山森林凋落物碳对土壤各有机碳组分的贡献率(平均值±标准误)。DOC, 可溶性有机碳; HC, 腐殖质碳; MAOC, 矿质结合有机碳; MBC, 微生物生物量碳; POC, 颗粒有机碳。*, 冻融处理与对照间差异显著; 不同大写字母表示同一处理下不同凋落物器官间差异显著(p < 0.05)。
Fig. 2 Contribution of litter-derived carbon to various soil organic carbon fractions in a subalpine forest (mean ± SE). DOC, dissolved organic carbon; HC, humus carbon; MAOC, mineral associated organic carbon; MBC, microbial biomass carbon; POC, particulate organic carbon. * indicates significant differences between freeze-thaw cycle and control; different uppercase letters indicates significant differences among different litter organs in the same incubation day (p < 0.05).
图3 亚高山森林凋落物碳源平均贡献率(平均值±标准误)。A, 土壤各有机碳组分平均贡献率。B, 凋落物器官平均贡献率。DOC, 可溶性有机碳; HC, 腐殖质碳; MAOC, 矿质结合有机碳; MBC, 微生物生物量碳; POC, 颗粒有机碳。*, 冻融处理与对照间差异显著; 不同大写字母表示同一处理下不同凋落物器官、不同土壤有机碳组分间差异显著(p < 0.05)。
Fig. 3 Average contribution of litter-derived carbon in a subalpine forest (mean ± SE). A, Average contribution of various soil organic carbon fractions. B, Various litter organs average contribution. DOC, dissolved organic carbon; HC, humus carbon; MAOC, mineral associated organic carbon; MBC, microbial biomass carbon; POC, particulate organic carbon. * indicates significant difference between freeze-thaw cycle and control; different uppercase letters indicated significant differences among different litter organs and different soil organic carbon in the same incubation day (p < 0.05).
变异来源 Source of variance | DOC贡献率 Contribution to DOC (%) | MBC贡献率 Contribution to MBC (%) | POC贡献率 Contribution to POC (%) | MAOC贡献率 Contribution to MAOC (%) | HC贡献率 Contribution to HC (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 5 119.84 | 0.000 | 931.05 | 0.000 | 120.60 | 0.000 | 3.76 | 0.132 | 96.44 | 0.000 |
器官 Organ | 229.66 | 0.000 | 848.32 | 0.000 | 110.39 | 0.000 | 190.35 | 0.000 | 87.50 | 0.000 |
培养时间 Period | 462.55 | 0.000 | 4.11 | 0.054 | 5.75 | 0.025 | 42.83 | 0.000 | 8.03 | 0.011 |
冻融×器官 Freeze-thaw × organ | 940.69 | 0.000 | 77.77 | 0.000 | 23.01 | 0.000 | 44.47 | 0.000 | 56.92 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 7 860.27 | 0.000 | 127.08 | 0.000 | 75.22 | 0.000 | 165.64 | 0.000 | 6.56 | 0.006 |
器官×培养时间 Organ × period | 1 601.80 | 0.000 | 677.13 | 0.000 | 5.60 | 0.010 | 58.45 | 0.000 | 7.67 | 0.003 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 57.48 | 0.000 | 133.02 | 0.000 | 24.35 | 0.000 | 26.40 | 0.000 | 2.80 | 0.074 |
表3 冻融作用、凋落物器官和培养时间对亚高山森林土壤各有机碳组分中凋落物碳贡献率的影响
Table 3 Effects of freeze-thaw cycle, litter organ and decomposition period on contribution of litter-derived carbon to different soil organic carbon fractions in a subalpine forest
变异来源 Source of variance | DOC贡献率 Contribution to DOC (%) | MBC贡献率 Contribution to MBC (%) | POC贡献率 Contribution to POC (%) | MAOC贡献率 Contribution to MAOC (%) | HC贡献率 Contribution to HC (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | |
冻融 Freeze-thaw | 5 119.84 | 0.000 | 931.05 | 0.000 | 120.60 | 0.000 | 3.76 | 0.132 | 96.44 | 0.000 |
器官 Organ | 229.66 | 0.000 | 848.32 | 0.000 | 110.39 | 0.000 | 190.35 | 0.000 | 87.50 | 0.000 |
培养时间 Period | 462.55 | 0.000 | 4.11 | 0.054 | 5.75 | 0.025 | 42.83 | 0.000 | 8.03 | 0.011 |
冻融×器官 Freeze-thaw × organ | 940.69 | 0.000 | 77.77 | 0.000 | 23.01 | 0.000 | 44.47 | 0.000 | 56.92 | 0.000 |
冻融×培养时间 Freeze-thaw × period | 7 860.27 | 0.000 | 127.08 | 0.000 | 75.22 | 0.000 | 165.64 | 0.000 | 6.56 | 0.006 |
器官×培养时间 Organ × period | 1 601.80 | 0.000 | 677.13 | 0.000 | 5.60 | 0.010 | 58.45 | 0.000 | 7.67 | 0.003 |
冻融×器官×培养时间 Freeze-thaw × organ × period | 57.48 | 0.000 | 133.02 | 0.000 | 24.35 | 0.000 | 26.40 | 0.000 | 2.80 | 0.074 |
图4 亚高山森林凋落物碳对土壤各有机碳组分贡献率与土壤胞外酶活性、微生物生物量元素含量的相关性分析。AP, 酸性磷酸酶; BG, β-葡萄糖苷酶; CBH, 纤维素水解酶; LAP, 亮氨酸氨基肽酶; MBC, 微生物生物量碳; MBN, 微生物生物量氮; NAG, β-N-乙酰氨基葡萄糖苷酶; POD, 过氧化物酶; PPO, 多酚氧化酶。*, p < 0.05; **, p < 0.01。
Fig. 4 Correlation analysis of contribution of litter-derived carbon to various soil organic carbon fractions with soil extracellular enzymes activity and microbial biomass in a subalpine forest. AP, acid phosphatase; BG, β-Glucosidase; CBH, cellulose hydrolase; LAP, leucine aminopeptidase; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; NAG, β-N-Acetylglucosaminidase; POD, peroxidase; PPO, polyphenol oxidase. *, p < 0.05; **, p < 0.01.
[1] | Abiven S, Recous S, Reyes V, Oliver R (2005). Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biology and Fertility of Soils, 42, 119-128. |
[2] | Ahrens B, Braakhekke MC, Guggenberger G, Schrumpf M, Reichstein M (2015). Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model. Soil Biology & Biochemistry, 88, 390-402. |
[3] | Allison SD, Vitousek PM (2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944. |
[4] | Atere CT, Gunina A, Zhu Z, Xiao M, Liu S, Kuzyakov Y, Chen L, Deng Y, Wu J, Ge T (2020). Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: tracing of pathways by 13C natural abundance. Soil Biology & Biochemistry, 149, 107931. DOI: 10.1016/j.soilbio.2020.107931. |
[5] | Bird JA, Torn MS (2006). Fine roots vs. needles: a comparison of 13C and 15N dynamics in a ponderosa pine forest soil. Biogeochemistry, 79, 361-382. |
[6] | Chen XY, Zhang HJ, Yao XD, Zeng WJ, Wang W (2021). Latitudinal and depth patterns of soil microbial biomass carbon, nitrogen, and phosphorus in grasslands of an agro-pastoral ecotone. Land Degradation and Development, 32, 3833-3846. |
[7] | Chivenge P, Vanlauwe B, Gentile R, Six J (2011). Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology & Biochemistry, 43, 657-666. |
[8] | Clemente JS, Simpson MJ, Simpson AJ, Yanni SF, Whalen JK (2013). Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems. Geoderma, 192, 86-96. |
[9] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
DOI PMID |
[10] | Dang N, Ma W, Dai ZC, Hu YX, Wang ZR, Wang ZW, Jiang Y, Li H (2024). Impact of changes in snow cover characteristics on plant community and soil carbon and nitrogen processes. Acta Ecologica Sinica, 44, 18-35. |
[党宁, 马望, 代泽成, 胡玉香, 王志瑞, 王正文, 姜勇, 李慧 (2024). 积雪变化对陆地生态系统植被特征和土壤碳氮过程的影响. 生态学报, 44, 18-35.] | |
[11] | Diao HY, Wang AZ, Yuan FH, Guan DX, Yin H, Wu JB (2019). Stable carbon isotopic characteristics of plant- litter-soil continuum along a successional gradient of broadleaved Korean pine forests in Changbai Mountain, China. Chinese Journal of Applied Ecology, 30, 1435-1444. |
[刁浩宇, 王安志, 袁凤辉, 关德新, 尹航, 吴家兵 (2019). 长白山阔叶红松林演替序列植物-凋落物-土壤碳同位素特征. 应用生态学报, 30, 1435-1444.]
DOI |
|
[12] |
Du T, Chen YL, Bi JH, Yang YT, Zhang L, You CM, Tan B, Xu ZF, Wang LX, Liu SN, Li H (2023). Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China. Chinese Journal of Plant Ecology, 47, 660-671.
DOI |
[杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗 (2023). 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响. 植物生态学报, 47, 660-671.]
DOI |
|
[13] | Du T, Liu YL, Yang YT, Zhang Y, You CM, Zhang L, Tan B, Xu ZF, Li H (2021). Effects of forest gaps on cellulose degradation during foliar litter decomposition in a subalpine forest of western Sichuan. Chinese Journal of Applied and Environmental Biology, 27, 617-624. |
[杜婷, 刘一霖, 杨玉婷, 张玉, 游成铭, 张丽, 谭波, 徐振锋, 李晗 (2021). 林窗对川西亚高山6种植物凋落叶纤维素降解的影响. 应用与环境生物学报, 27, 617-624.] | |
[14] | Gan ZY, Wang H, Ding C, Lei M, Yang XG, Cai JY, Qiu QY, Hu YL (2022). Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms. Chinese Journal of Plant Ecology, 46, 797-810. |
[甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林 (2022). 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理. 植物生态学报, 46, 797-810.]
DOI |
|
[15] | Hansson K, Kleja DB, Kalbitz K, Larsson H (2010). Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots. Soil Biology & Biochemistry, 42, 178-185. |
[16] | Huang WZ, Schoenau JJ (1996). Distribution of water-soluble organic carbon in an aspen forest soil. Canadian Journal of Forest Research, 26, 1266-1272. |
[17] | IPCC The Intergovernmental Panel on Climate Change (2022). Climate change 2022:impacts, adaptation and vulnerability// The Working Group II Contribution to the IPCC Sixth Assessment Report. Cambridge University Press, Cambridge. |
[18] | Jia BR (2019). Litter decomposition and its underlying mechanisms. Chinese Journal of Plant Ecology, 43, 648-657. |
[贾丙瑞 (2019). 凋落物分解及其影响机制. 植物生态学报, 43, 648-657.]
DOI |
|
[19] | Kammer A, Hagedorn F (2011). Mineralisation, leaching and stabilisation of 13C-labelled leaf and twig litter in a beech forest soil. Biogeosciences, 8, 2195-2208. |
[20] | Lei LG, Jiang CS, Hao QJ (2015). Impacts of land use changes on soil light fraction and particulate organic carbon and nitrogen in Jinyun Mountain. Environmental Science, 36, 2669-2677. |
[雷利国, 江长胜, 郝庆菊 (2015). 缙云山土地利用方式对土壤轻组及颗粒态有机碳氮的影响. 环境科学, 36, 2669-2677.] | |
[21] | Li F, Zang SY, Liu YN, Wu XW, Ni HW (2019). Effects of freezing and thawing on soil active organic carbon and enzyme activity in the Sanjiang Plain wetlands. Acta Ecologica Sinica, 39, 7938-7949. |
[李富, 臧淑英, 刘赢男, 吴祥文, 倪红伟 (2019). 冻融作用对三江平原湿地土壤活性有机碳及酶活性的影响. 生态学报, 39, 7938-7949.] | |
[22] | Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105. |
[23] | Liu B, Yang WQ, Wu FZ (2010). Advances in the subalpine forest ecosystem processes. Acta Ecologica Sinica, 30, 4476-4483. |
[刘彬, 杨万勤, 吴福忠 (2010). 亚高山森林生态系统过程研究进展. 生态学报, 30, 4476-4483.] | |
[24] |
Liu Q, Zhuang LY, Yang WQ, Ni XY, Li TT, Xu ZF (2017). Accumulation of humic acid and fulvic acid during root humification of three diameters of two dominant subalpine trees in western Sichuan, China. Chinese Journal of Plant Ecology, 41, 1251-1261.
DOI |
[刘群, 庄丽燕, 杨万勤, 倪祥银, 李婷婷, 徐振锋 (2017). 川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征. 植物生态学报, 41, 1251-1261.]
DOI |
|
[25] |
Liu Y, Jiao ZB, Tan B, Li H, Wang LX, Liu SN, You CM, Xu ZF, Zhang L (2022). Litter removal effects on dynamics of soil humic substances in subalpine forests of western Sichuan, China. Chinese Journal of Plant Ecology, 46, 330-339.
DOI |
[刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽 (2022). 川西亚高山森林凋落物去除对土壤腐殖质动态的影响. 植物生态学报, 46, 330-339.]
DOI |
|
[26] | Luo XZ, Hou EQ, Zhang LL, Zang XW, Yi YF, Zhang GH, Wen DZ (2019). Effects of forest conversion on carbon-degrading enzyme activities in subtropical China. Science of the Total Environment, 696, 133968. DOI: 10.1016/j.scitotenv.2019.133968. |
[27] | Park HJ, Baek N, Lim SS, Jeong YJ, Seo BS, Kwak JH, Lee SM, Yun SI, Kim HY, Arshad MA, Choi WJ (2023). Coupling of δ13C and δ15N to understand soil organic matter sources and C and N cycling under different land-uses and management: a review and data analysis. Biology and Fertility of Soils, 59, 487-499. |
[28] | Parton WJ, Schimel DS, Cole CV, Ojima DS (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173-1179. |
[29] | Paul EA (2016). The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology & Biochemistry, 98, 109-126. |
[30] | Sang CP, Xia ZW, Sun LF, Sun H, Jiang P, Wang C, Bai E (2021). Responses of soil microbial communities to freeze-thaw cycles in a Chinese temperate forest. Ecological Processes, 10, 66. DOI: 10.1186/s13717-021-00337-x. |
[31] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al.(2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[32] |
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221, 233-246.
DOI PMID |
[33] | Steffens C, Helfrich M, Joergensen RG, Eissfeller V, Flessa H (2015). Translocation of 13C-labeled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash (Fraxinus excelsior L.) during decomposition—A laboratory incubation experiment. Soil Biology & Biochemistry, 83, 125-137. |
[34] | Strosser E (2010). Methods for determination of labile soil organic matter: an overview. Journal of Agrobiology, 27, 49-60. |
[35] | Su ZX, Su BQ, Shangguan ZP (2022). Advances in effects of plant litter decomposition on the stability of soil organic carbon. Research of Soil and Water Conservation, 29, 406-413. |
[苏卓侠, 苏冰倩, 上官周平 (2022). 植物凋落物分解对土壤有机碳稳定性影响的研究进展. 水土保持研究, 29, 406-413.] | |
[36] |
Wang HY, Wu JQ, Li G, Yan LJ (2020). Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecology and Evolution, 10, 12211-12223.
DOI PMID |
[37] | Wang JY, Song CC, Hou AX, Miao YQ, Yang GS, Zhang J (2014). Effects of freezing-thawing cycle on peatland active organic carbon fractions and enzyme activities in the Da Xingʼanling Mountains, Northeast China. Environmental Earth Sciences, 72, 1853-1860. |
[38] | Wang LX, Deng DZ, Feng QH, Xu ZJR, Pan HL, Li HC (2022). Changes in litter input exert divergent effects on the soil microbial community and function in stands of different densities. Science of the Total Environment, 845, 157297. DOI: 10.1016/j.scitotenv.2022.157297. |
[39] | Wang SJ, Guo YF, Cui XY (2021). Changes of active organic carbon in frozen thawed soil under different forest types in cold temperate forest region. Journal of Beijing Forestry University, 43(12), 65-72. |
[王世佳, 郭亚芬, 崔晓阳 (2021). 寒温带林区不同林型下冻融土壤活性有机碳的变化. 北京林业大学学报, 43(12), 65-72.] | |
[40] | Wei XY, Ni XY, Shen Y, Chen ZH, Yang YL, Wu FZ (2021). Effects of litterfall on soil humification in three subalpine forests. Acta Ecologica Sinica, 41, 8266-8275. |
[卫芯宇, 倪祥银, 谌亚, 陈子豪, 杨玉莲, 吴福忠 (2021). 三种不同类型亚高山森林凋落物输入对土壤腐殖化的影响. 生态学报, 41, 8266-8275.] | |
[41] | Witzgall K, Vidal A, Schubert DI, Höschen C, Schweizer SA, Buegger F, Pouteau V, Chenu C, Mueller CW (2021). Particulate organic matter as a functional soil component for persistent soil organic carbon. Nature Communications, 12, 4115. DOI: 10.1038/s41467-021-24192-8. |
[42] | Wu GH, Chen ZH, Jiang DQ, Jiang N, Jiang H, Chen LJ (2021). Oxidases and hydrolases mediate soil organic matter accumulation in chernozem of northeastern China. Geoderma, 403, 115206. DOI: 10.1016/j.geoderma.2021.115206. |
[43] | Wu QQ, Wu FZ, Yang WQ, Zhao YY, He W, He M, Zhu JX (2015). Effect of snow cover on phosphorus release from leaf litter in the alpine forest in eastern Qinghai-Tibet Plateau. Acta Ecologica Sinica, 35, 4115-4127. |
[武启骞, 吴福忠, 杨万勤, 赵野逸, 何伟, 何敏, 朱剑霄 (2015). 冬季雪被对青藏高原东缘高海拔森林凋落叶P元素释放的影响. 生态学报, 35, 4115-4127.] | |
[44] | Xiong J, Wang GX, Sun SQ (2023). Roots exert greater influence on soil respiration than aboveground litter in a subalpine Cambisol. Geoderma Regional, 34, e00705. DOI: 10.1016/j.geodrs.2023.e00705. |
[45] | Xu CY, Du C, Jian JS, Hou L, Wang ZK, Wang Q, Geng ZC (2021). The interplay of labile organic carbon, enzyme activities and microbial communities of two forest soils across seasons. Scientific Reports, 11, 5002. DOI: 10.1038/s41598-021-84217-6. |
[46] | Xu MP, Zhi RC, Jian JN, Feng YZ, Han XH, Zhang W (2023). Changes in soil organic C fractions and C pool stability are mediated by C-degrading enzymes in litter decomposition of Robinia pseudoacacia plantations. Microbial Ecology, 86, 1189-1199. |
[47] | Xu YD, Sun LJ, Wang Y, Gao XD, Li SY, Wang JK (2020). Characteristics of microbial utilization of maize root and straw derived carbon. China Environmental Science, 40, 4504-4513. |
[徐英德, 孙良杰, 王阳, 高晓丹, 李双异, 汪景宽 (2020). 土壤微生物群落对玉米根茬和茎叶残体碳的利用特征. 中国环境科学, 40, 4504-4513.] | |
[48] | Yang WQ, Wang KY, Seppo KK (2003). Relationships between biodiversity and processes of coniferous1 forest ecosystem. World Sciences-Technology Research & Development, 25(5), 47-55. |
[杨万勤, 王开运, Seppo KK (2003). 生物多样性与针叶林生态系统过程的关系. 世界科技研究与发展, 25(5), 47-55.] | |
[49] | Yang YT, Yang HY, Liu JC, Qu WC, Du T, Zhang Y, Zhang L, You CM, Tan B, Xu ZF, Li H (2023). A study on 13C distribution characteristics of Picea asperata and Larix masteriana seedlings using pulse labeling. Journal of Sichuan Agricultural University, 41, 225-229. |
[杨玉婷, 杨红艳, 刘金超, 曲炜辰, 杜婷, 张玉, 张丽, 游成铭, 谭波, 徐振锋, 李晗 (2023). 应用脉冲标记粗枝云杉和四川红杉幼苗的13C分配特征研究. 四川农业大学学报, 41, 225-229.] | |
[50] | Yao YF, Shao MA, Fu XL, Wang X, Wei XR (2019). Effect of grassland afforestation on soil N mineralization and its response to soil texture and slope position. Agriculture, Ecosystems & Environment, 276, 64-72. |
[51] | Yao Z, Jiao PY, Wu XS, Yan Q, Liu X, Hu YL, Wang YZ (2023). Effect of fire-deposited charcoal on soil organic carbon pools and associated enzyme activities in a recently harvested Pinus massoniana plantation subjected to broadcast burning. Environmental Science, 44, 4201-4210. |
[姚智, 焦鹏宇, 吴晓生, 严强, 刘先, 胡亚林, 王玉哲 (2023). 马尾松采伐迹地火烧黑炭对土壤有机碳组分和碳转化酶活性的影响. 环境科学, 44, 4201-4210.] | |
[52] |
Yu H, Xu C, Zhang WQ, Zhou JC, Chen SD, Xiong DC, Liu XF, Yang ZJ (2022). Effects of management on the content and spectral characteristics of soil dissolved organic carbon in a subtropical forest. Chinese Journal of Applied Ecology, 33, 2146-2152.
DOI |
[余恒, 胥超, 张文强, 周嘉聪, 陈仕东, 熊德成, 刘小飞, 杨智杰 (2022). 经营方式对亚热带森林土壤可溶性有机碳含量和光谱学特征的影响. 应用生态学报, 33, 2146-2152.]
DOI |
|
[53] | Zhang BG, Cai YJ, Hu SJ, Chang SX (2021). Plant mixture effects on carbon-degrading enzymes promote soil organic carbon accumulation. Soil Biology & Biochemistry, 163, 108478. DOI: 10.1016/j.soilbio.2021.108457. |
[54] | Zhang CF, Cai YM, Zhang T, He TB, Li J, Li XY, Zhao QX (2022). Litter removal increases the plant carbon input to soil in a Pinus massoniana plantation. European Journal of Forest Research, 141, 833-843. |
[55] | Zhang TL, Cai ZL, Zhao HB, Wu ZM, Zhou GY, Qiu ZJ (2021). Priming effect on soil organic carbon by abnormal litter following 13C pulse-labeling. Ecology and Environmental Sciences, 30, 1797-1804. |
[张天霖, 蔡章林, 赵厚本, 吴仲民, 周光益, 邱治军 (2021). 13C脉冲标记法研究非正常凋落物对土壤有机碳的激发效应. 生态环境学报, 30, 1797-1804.]
DOI |
[1] | 杜淑辉 褚建民 段俊光 薛建国 徐磊 徐晓庆 王其兵 黄建辉 张倩. 不同退化程度典型草原土壤木质素酚对有机碳的影响[J]. 植物生态学报, 2025, 49(1): 1-0. |
[2] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[3] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[4] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[5] | 张嘉睿, 段晓洋, 兰天翔, 苏日高格, 刘林, 郭钟阳, 吕浩然, 张炜平, 李隆. 植物多样性对土壤有机碳及其稳定性影响的研究进展[J]. 植物生态学报, 2024, 48(11): 1393-1405. |
[6] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[7] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[8] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[9] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[12] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[13] | 王晶苑, 魏杰, 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
[14] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[15] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19