植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 30-41.DOI: 10.17521/cjpe.2024.0072 cstr: 32100.14.cjpe.2024.0072
杜淑辉1, 褚建民2, 段俊光2, 薛建国3, 徐磊4, 徐晓庆2, 王其兵3, 黄建辉3, 张倩2,*()
收稿日期:
2024-03-14
接受日期:
2024-08-23
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* (langli_zhang@126.com)基金资助:
DU Shu-Hui1, CHU Jian-Min2, DUAN Jun-Guang2, XUE Jian-Guo3, XU Lei4, XU Xiao-Qing2, WANG Qi-Bing3, HUANG Jian-Hui3, ZHANG Qian2,*()
Received:
2024-03-14
Accepted:
2024-08-23
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
退化草地土壤有机碳流失与积累的影响因素亟需深入研究。植物残体来源的木质素酚类物质是土壤有机碳的重要组成部分, 苯环开环导致的木质素酚类物质分解是否是退化草地土壤有机碳流失的重要过程, 尚未见研究报道。该研究针对内蒙古锡林郭勒典型草原4个退化阶段草地, 测定了土壤中木质素酚类物质含量、苯环开环关键功能基因(邻苯二酚-1,2-双加氧酶基因, catA)丰度和分解产物(顺,顺-已二烯二酸)丰度, 分析了其沿退化梯度的变化规律及其与土壤有机碳含量的关系。主要结果: 1)与未退化草地相比, 轻、中、重度退化草地土壤木质素酚类物质含量均显著降低, 且随退化程度加剧呈下降趋势, 木质素酚类物质含量与土壤有机碳含量呈显著正相关关系; 2) catA基因丰度在退化草地中显著升高, 顺,顺-已二烯二酸丰度在中、重度退化草地显著高于轻度和未退化草地; 3)相关性分析结果表明, catA基因丰度和顺,顺-已二烯二酸丰度显著正相关, 而木质素酚类物质含量与catA基因丰度显著负相关, catA基因丰度和顺,顺-已二烯二酸丰度均与土壤有机碳含量显著负相关。该研究发现, 在样地尺度上, 苯环开环导致的木质素酚类物质分解可以用于解释内蒙古退化草地土壤有机碳含量的变化, 土壤木质素酚类物质降解是土壤有机碳流失的重要原因。该研究有望为退化草原土壤有机碳流失、积累特征及驱动机制研究提供新的视角, 为退化草原恢复提供一定的理论依据。
杜淑辉, 褚建民, 段俊光, 薛建国, 徐磊, 徐晓庆, 王其兵, 黄建辉, 张倩. 木质素酚类物质对内蒙古退化草地土壤有机碳的影响. 植物生态学报, 2025, 49(1): 30-41. DOI: 10.17521/cjpe.2024.0072
DU Shu-Hui, CHU Jian-Min, DUAN Jun-Guang, XUE Jian-Guo, XU Lei, XU Xiao-Qing, WANG Qi-Bing, HUANG Jian-Hui, ZHANG Qian. Influence of lignin phenols on soil organic carbon in degraded grassland in Nei Mongol, China. Chinese Journal of Plant Ecology, 2025, 49(1): 30-41. DOI: 10.17521/cjpe.2024.0072
物种丰富度 Species richness | 地上生物量 Above ground biomass (g·m-2) | 盖度 Coverage (%) | 密度(株·m-2) Density (No.·m-2) | |
---|---|---|---|---|
未退化 Non-degradation | 9 ± 1.4ab | 400.13 ± 20.86a | 81.7 ± 6.3a | 799 ± 292.9a |
轻度退化 Lightly degradation | 5 ± 0.8c | 252.55 ± 26.37b | 51.7 ± 2.4b | 402 ± 176.5ab |
中度退化 Moderately degradation | 6 ± 2.1bc | 156.16 ± 10.09c | 37.7 ± 2.0c | 309 ± 31.4b |
重度退化 Severely degradation | 11 ± 1.4a | 65.72 ± 24.46d | 20.0 ± 4.1d | 193 ± 31.4c |
表1 不同退化程度典型草原植物群落特征(平均值±标准差)
Table 1 Plant community characteristics of grasslands with different degradation severities (mean ± SD)
物种丰富度 Species richness | 地上生物量 Above ground biomass (g·m-2) | 盖度 Coverage (%) | 密度(株·m-2) Density (No.·m-2) | |
---|---|---|---|---|
未退化 Non-degradation | 9 ± 1.4ab | 400.13 ± 20.86a | 81.7 ± 6.3a | 799 ± 292.9a |
轻度退化 Lightly degradation | 5 ± 0.8c | 252.55 ± 26.37b | 51.7 ± 2.4b | 402 ± 176.5ab |
中度退化 Moderately degradation | 6 ± 2.1bc | 156.16 ± 10.09c | 37.7 ± 2.0c | 309 ± 31.4b |
重度退化 Severely degradation | 11 ± 1.4a | 65.72 ± 24.46d | 20.0 ± 4.1d | 193 ± 31.4c |
自由度 df | 平方和 Sum of squares | 复相关系数 r | F检验计算值 F value | p | |
---|---|---|---|---|---|
退化程度 Degradation severity | 3 | 1.03 | 0.71 | 24.39 | 0.001*** |
土壤深度 Soil depth | 1 | 0.10 | 0.07 | 7.25 | 0.007*** |
交互效应 Interactive effect | 3 | 0.09 | 0.06 | 2.26 | 0.050* |
残差 Residual | 16 | 0.22 | 0.16 | ||
总计 Total | 23 | 1.45 | 1.00 |
表2 不同退化程度草地土壤木质素酚类物质组成的二元置换多元方差分析
Table 2 PERMANOVA analysis on soil lignin phenols composition of grasslands with different degradation severities
自由度 df | 平方和 Sum of squares | 复相关系数 r | F检验计算值 F value | p | |
---|---|---|---|---|---|
退化程度 Degradation severity | 3 | 1.03 | 0.71 | 24.39 | 0.001*** |
土壤深度 Soil depth | 1 | 0.10 | 0.07 | 7.25 | 0.007*** |
交互效应 Interactive effect | 3 | 0.09 | 0.06 | 2.26 | 0.050* |
残差 Residual | 16 | 0.22 | 0.16 | ||
总计 Total | 23 | 1.45 | 1.00 |
图1 不同退化程度草地不同土壤深度中木质素酚类物质含量(平均值±标准差)。不同小写字母表示相同土层不同退化程度之间有显著差异; 不同大写字母表示相同退化程度不同土层之间有显著差异(p < 0.05)。
Fig. 1 Content of lignin phenols in different soil depth of different degradation severity grasslands (mean ± SD). Different lowercase letters indicate significant differences among different degradation severities in the same soil layer; different uppercase letters indicate significant differences between different soil layers at the same degradation severity (p < 0.05).
图2 不同退化程度草地土壤木质素酚类物质归一化含量(平均值±标准差)。不同小写字母表示相同土层不同退化程度之间有显著差异; 不同大写字母表示相同退化程度不同土层之间有显著差异(p < 0.05)。
Fig. 2 Normalized content of lignin phenols of different degradation severity grasslands. SOC, soil organic carbon content (mean ± SD). Different lowercase letters indicate significant differences among different degradation severities in the same soil layer; different uppercase letters indicate significant differences between different soil layers at the same degradation severity (p < 0.05).
图4 不同退化程度草地土壤中catA基因(A)和顺,顺-已二烯二酸(B)丰度(平均值±标准差)。不同小写字母表示相同土层不同退化程度之间有显著差异, 不同大写字母表示相同退化程度不同土层之间有显著差异(p < 0.05)。
Fig. 4 Abundance of catA gene (A) and cis,cis-muconic acid (B) in different degradation severity grasslands (mean ± SD). Different lowercase letters indicate significant differences among different degradation severities in the same soil layer, and different uppercase letters indicate significant differences between different soil layers at the same degradation severity (p < 0.05).
图5 退化草地不同深度土壤中catA基因丰度与顺,顺-已二烯二酸丰度(A)和木质素酚类物质含量(B)相关性。
Fig. 5 Correlation between the abundance of catA and cis,cis-muconic acid (A) and the content of lignin phenols (B) of different degraded grasslands soil depth.
图6 退化草地不同深度土壤中catA基因丰度(A)、顺,顺-已二烯二酸丰度(B)与土壤有机碳含量相关性。
Fig. 6 Correlation between the abundance of catA (A) and cis,cis-muconic acid (B) and the soil organic carbon (SOC) content of different degraded grasslands soil depth.
图7 退化草地不同深度土壤中catA基因丰度与香草基酚类物质的酸醛比(A)、丁香基酚类的酸醛比(B)相关性。Ad/Al, 酸醛比; s, 丁香基酚类物质; v, 香草基酚类物质。
Fig. 7 Correlation between the abundance of catA and the acid-aldehyde ratio of vanillyl (A) and eugenol (B) of different degraded grasslands in different degraded grasslands soil depth. Ad/Al, acid-aldehyde ratio; s, eugenol; v, vanillyl.
[1] | Abiven S, Heim A, Schmidt MWI (2011). Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: consequences for assessing lignin dynamics in soil. Plant and Soil, 343, 369-378. |
[2] | Akiyama T, Kawamura K (2007). Grassland degradation in China: methods of monitoring, management and restoration. Grassland Science, 53, 1-17. |
[3] | An H, Tang Z, Keesstra S, Shangguan Z (2019). Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Scientific Reports, 9, 9422. DOI: 10.1038/s41598-019-45927-0. |
[4] | Aravind MK, Kappen J, Varalakshmi P, John SA, Ashokkumar B (2020). Bioengineered graphene oxide microcomposites containing metabolically versatile Paracoccus sp. MKU1 for enhanced catechol degradation. ACS Omega, 5, 16752-16761. |
[5] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[6] | Bai YF, Pan QM, Xing Q (2016). Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 61, 201-212. |
[白永飞, 潘庆民, 邢旗 (2016). 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 61, 201-212.] | |
[7] | Bell C, Stromberger M, Wallenstein M (2014). New insights into enzymes in the environment. Biogeochemistry, 117, 1-4. |
[8] |
Benton HP, Wong DM, Trauger SA, Siuzdak G (2008). XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization. Analytical Chemistry, 80, 6382-6389.
DOI PMID |
[9] | Conti G, Kowaljow E, Baptist F, Rumpel C, Cuchietti A, Pérez Harguindeguy N, Díaz S (2016). Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 403, 375-387. |
[10] | de Baets S, van Oost K, Baumann K, Meersmans J, Vanacker V, Rumpel C (2012). Lignin signature as a function of land abandonment and erosion in dry luvisols of SE Spain. Catena, 93, 78-86. |
[11] | Derenne S, Largeau C (2001). A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Science, 166, 833-847. |
[12] | Dong L, Liang C, Li F, Zhao L, Ma W, Wang L, Wen L, Zheng Y, Li Z, Zhao C, Tuvshintogtokh I (2019). Community phylogenetic structure of grasslands and its relationship with environmental factors on the Mongolian Plateau. Journal of Arid Land, 11, 595-607. |
[13] | Du ZY, Cong N (2024). Responses of vegetation and soil characteristics to degraded grassland under different degrees on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 44, 2504-2516. |
[杜志勇, 丛楠 (2024). 植被与土壤特征对青藏高原不同程度退化草地的响应. 生态学报, 44, 2504-2516.] | |
[14] | Feng XJ, Wang YY, Liu T, Jia J, Dai GH, Ma T, Liu ZG (2020). Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 44, 384-394. |
[冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广 (2020). 生物标志物及其在生态系统研究中的应用. 植物生态学报, 44, 384-394.]
DOI |
|
[15] | Han X (2014). Effects of Nitrogen Deposition on the Stoichiometric Characteristics of Dominant Plants in Typical Grassland. PhD dissertation, University of Chinese Academy of Sciences, Beijing. 73-77. |
[韩旭 (2014). 氮沉降对典型草原优势植物化学计量特征的影响. 博士学位论文, 中国科学院大学, 北京. 73-77.] | |
[16] | He W, Wu FZ, Yang WQ, Tan B, Zhao YY, Wu QQ, He M (2016). Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems, 19, 115-128. |
[17] | Hedges JI, Mann DC (1979). The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43, 1803-1807. |
[18] | Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ, Khan SJ, Baker A (2014). Lignin biogeochemistry: from modern processes to Quaternary archives. Quaternary Science Reviews, 87, 46-59. |
[19] | Jiang ZY, Hu ZM, Lai DYF, Han DR, Wang M, Liu M, Zhang M, Guo MY (2020). Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta-analysis. Global Change Biology, 26, 7186-7197. |
[20] |
Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S (2019). Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 56, 179-186.
DOI PMID |
[21] |
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai EJ (2017). Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environmental Microbiology Reports, 9, 679-705.
DOI PMID |
[22] |
Keller AA, Goldstein RA (1998). Impact of carbon storage through restoration of drylands on the global carbon cycle. Environmental Management, 22, 757-766.
PMID |
[23] |
Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008). ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics, 24, 2534-2536.
DOI PMID |
[24] | Kiem R, Kögel-Knabner I (2003). Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology & Biochemistry, 35, 101-118. |
[25] |
Kirk TK, Farrell RL (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annual Review of Microbiology, 41, 465-505.
PMID |
[26] | Klotzbücher T, Kalbitz K, Cerli C, Hernes PJ, Kaiser K (2016). Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. Soil, 2, 325-335. |
[27] | Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008). Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61-82. |
[28] | Kong YH, Yao FJ, Peng S, Liu Y, Dong WX, Bai L (2010). Study on the characteristics of soil carbon accumulation and conversion of carbon sink and source of grassland under different land use types. Pratacultural Science, 27(4), 40-45. |
[孔玉华, 姚风军, 鹏爽, 刘艳, 董文轩, 白龙 (2010). 不同利用方式下草地土壤碳积累及汇/源功能转换特征研究. 草业科学, 27(4), 40-45.] | |
[29] | Kumar A, Kumar S, Kumar S (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151-159. |
[30] |
Langmead B, Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-359.
DOI PMID |
[31] | Larralde M (2022). Pyrodigal: Python bindings and interface to Prodigal, an efficient method for gene prediction in prokaryotes. Journal of Open Source Software, 72, 4296. DOI: 10.21105/joss.04296. |
[32] |
Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31, 1674-1676.
DOI PMID |
[33] | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Tan B, Hu Y (2016a). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7, 27. DOI: 10.3390/f7020027. |
[34] | Li MY (2021). Study on Sensitive Indices to Vegetation and Soil and Succession Characteristics in Degradation Grass/White Clover Grasslands. Master degree dissertation, Lanzhou University, Lanzhou. 28-29. |
[李梦瑶 (2021). 退化禾草/白三叶草地敏感草土指标及演变特征研究. 硕士学位论文, 兰州大学, 兰州. 28-29.] | |
[35] |
Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184.
DOI |
[李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.]
DOI |
|
[36] | Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XE, Zhou Y (2016b). Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222. |
[37] | Liu KQ, Zhang YH (2023). Biological degradation and utilization of lignin. Synthetic Biology Journal, 5, 1264-1278. |
[刘宽庆, 张以恒 (2023). 木质素的生物降解和生物利用. 合成生物学, 5, 1264-1278.] | |
[38] | Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1. |
[39] | Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366. |
[40] | Murakami A (1997). Quantitative analysis of 77K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynthesis Research, 53, 141-148. |
[41] | Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, Wagai R, Bowden RD (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96, 209-231. |
[42] | Thevenot M, Dignac MF, Rumpel C (2010). Fate of lignins in soils: a review. Soil Biology & Biochemistry, 42, 1200-1211. |
[43] | Wang MM, Liu XP, He YH, Zhang TH, Wei J, Che LMG, Sun SS (2019). How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land. Chinese Journal of Plant Ecology, 43, 672-684. |
[王明明, 刘新平, 何玉惠, 张铜会, 魏静, 车力木格, 孙姗姗 (2019). 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素. 植物生态学报, 43, 672-684.]
DOI |
|
[44] | Wang XX, Dong SK, Yang B, Li YY, Su XK (2014). The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring and Assessment, 186, 6903-6917. |
[45] | Xu XQ (2023). Evaluation and Influencing Factors of Vegetation Degradation in Typical Steppe of Xilin Gol. Master degree dissertation, Chinese Academy of Forestry, Beijing. 37. |
[徐晓庆 (2023). 锡林郭勒典型草原植被退化状况及影响因素. 硕士学位论文, 中国林业科学研究院, 北京. 37.] | |
[46] | Yang LM, Han M, Li JD (2001). Plant diversity change in grassland communities along a grazing disturbance gradient in the Northeast China transect. Acta Phytoecologica Sinica, 25, 110-114. |
[杨利民, 韩梅, 李建东 (2001). 中国东北样带草地群落放牧干扰植物多样性的变化. 植物生态学报, 25, 110-114.] | |
[47] | Zeng XH, Du H, Zhao HM, Xiang L, Feng NX, Li H, Li YW, Cai QY, Mo CH, Wong MH, He ZL (2020). Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view. Journal of Hazardous Materials, 391, 122211. DOI: 10.1016/j.jhazmat.2020.122211. |
[48] | Zhang G, Kang Y, Han G, Mei H, Sakurai K (2011). Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 61, 356-364. |
[49] | Zhang JH (2023). Microbial Regulation Mechanism of Soil Organic Carbon in Grassland of Different Restoration Years on the Loess Plateau. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. 5-6. |
[张君红 (2023). 黄土高原不同退耕恢复年限草地土壤有机碳的微生物调控机制. 硕士学位论文, 西北农林科技大学, 陕西杨凌. 5-6.] | |
[50] | Zhang Q, Xu X, Duan J, Koide RT, Xu L, Chu J (2023). Variation in microbial CAZyme families across degradation severity in a steppe grassland in northern China. Frontiers in Environmental Science, 11, 1080505. DOI: 10.3389/fenvs.2023.1080505. |
[51] | Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564. |
[张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.]
DOI |
|
[52] | Zhang YL (2022). Effects of Different Mowing Intensities on Soil Srganic Carbon Dynamics of Stipa grandis Steppe. Master degree dissertation, Inner Mongolia University, Hohhot. 35-38. |
[张艳丽 (2022). 不同刈割强度对大针茅草原土壤有机碳动态的影响. 硕士学位论文, 内蒙古大学, 呼和浩特. 35-38.] | |
[53] | Zheng DF, Qiu XQ, Lou HM (2005). The structure of lignin and its chemical modification. Fine Chemicals, 22, 249-252. |
[郑大锋, 邱学青, 楼宏铭 (2005). 木质素的结构及其化学改性进展. 精细化工, 22, 249-252.] | |
[54] | Zhou XH (2023). Characteristics and Influencing Factors of Soil Organic Carbon Turnover and Molecular Composition in Alpine Grassland of Southwest Tibetan Plateau. Master degree dissertation, Lanzhou University, Lanzhou. 11-13. |
[周晓荷 (2023). 藏西南高寒草地土壤有机碳周转和分子组成特征及其影响因素. 硕士学位论文, 兰州大学, 兰州. 11-13.] | |
[55] | Zou LG, Yao YT, Wen FF, Zhang X, Liu BT, Li DW, Yang YF, Yang WD, Balamurugan S, Li HY (2023). Bioremediation of catechol and concurrent accumulation of biocompounds by the microalga Crypthecodinium cohnii. Journal of Agricultural and Food Chemistry, 71, 10065-10074. |
[1] | 夏敏菖, 李倩倩, 钱清清, 任淑君, 梁应冲, 陈亭颖, 李映佳, 牟宗敏, 陈穗云. 青霉菌灭活菌丝体对白车轴草和黑麦草生长及生理特性的影响[J]. 植物生态学报, 2025, 49(1): 189-198. |
[2] | 郝毅晴, 刘伟, 杨阳, 安冰儿, 范冰, 李超, 崔久辉, 程延彬, 孙佳美, 潘庆民. 有机肥和无机肥对退化草原羊草种群密度和个体生物量的影响[J]. 植物生态学报, 2025, 49(1): 148-158. |
[3] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[5] | 张玉, 杜婷, 陈玉莲, 朱和萌, 谭波, 游成铭, 张丽, 徐振锋, 李晗. 冻融作用对亚高山森林土壤有机碳组分中不同凋落物源碳贡献的影响[J]. 植物生态学报, 2024, 48(11): 1422-1433. |
[6] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[7] | 张嘉睿, 段晓洋, 兰天翔, 苏日高格, 刘林, 郭钟阳, 吕浩然, 张炜平, 李隆. 植物多样性对土壤有机碳及其稳定性影响的研究进展[J]. 植物生态学报, 2024, 48(11): 1393-1405. |
[8] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[9] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[10] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[11] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[12] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[13] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[14] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[15] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19