植物生态学报 ›› 2024, Vol. 48 ›› Issue (11): 1393-1405.DOI: 10.17521/cjpe.2023.0370 cstr: 32100.14.cjpe.2023.0370
所属专题: 生物多样性
• 综述 • 下一篇
张嘉睿, 段晓洋, 兰天翔, 苏日高格, 刘林, 郭钟阳, 吕浩然, 张炜平*()(
), 李隆
收稿日期:
2023-12-11
接受日期:
2024-06-14
出版日期:
2024-11-20
发布日期:
2024-06-17
通讯作者:
ORCID: *张炜平: 0000-0002-7769-1255(zhangwp@cau.edu.cn)
基金资助:
ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping*()(
), LI Long
Received:
2023-12-11
Accepted:
2024-06-14
Online:
2024-11-20
Published:
2024-06-17
Contact:
ZHANG Wei-Ping (zhangwp@cau.edu.cn)
Supported by:
摘要:
土壤有机碳是陆地生态系统重要的碳(C)库。对森林、草原和农田生态系统的大量研究发现, 植物多样性能够增加土壤有机碳的含量, 并且越来越多的研究开始关注其对有机碳组分及稳定性的影响, 但对相关机制还缺乏系统的综述。为此, 该文系统总结了植物多样性对土壤有机碳含量、组分及稳定性的影响及其机制研究进展, 以期为通过植物多样性种植增加土壤碳氮(N)固持, 缓解全球气候变化提供科学依据。增加植物多样性, 首先可增加土壤中植物凋落物生物量, 改善混合凋落物的质量(如更低的C:N), 促进土壤有机碳的周转和积累; 其次, 可以通过凋落物的输入增加植物来源的碳积累或者通过促进微生物周转增加微生物来源的碳积累; 同时, 该过程还可提高土壤颗粒有机碳(POC)和矿物结合有机碳(MAOC)含量; 另外, 植物多样性的增加可以通过增强团聚体保护、改变土壤矿物离子浓度和改变微生物群落结构增加土壤有机碳的稳定性。该文对今后的研究进行了展望: (1)如何将植物多样性与不同管理措施结合增加土壤有机碳含量; (2)如何通过更多的不同生态系统植物多样性长期定位实验来探究其对土壤有机碳含量及组分的影响; (3)如何通过新的实验方法和手段(如同位素标记等)剖析植物多样性对土壤有机碳组分及其稳定性的影响; (4)探索植物多样性对不同深度土壤碳含量、组分及其稳定性的影响机制。
张嘉睿, 段晓洋, 兰天翔, 苏日高格, 刘林, 郭钟阳, 吕浩然, 张炜平, 李隆. 植物多样性对土壤有机碳及其稳定性影响的研究进展. 植物生态学报, 2024, 48(11): 1393-1405. DOI: 10.17521/cjpe.2023.0370
ZHANG Jia-Rui, DUAN Xiao-Yang, LAN Tian-Xiang, SURIGAOGE Surigaoge, LIU Lin, GUO Zhong-Yang, LÜ Hao-Ran, ZHANG Wei-Ping, LI Long. Advances in the role of plant diversity in soil organic carbon content and stability. Chinese Journal of Plant Ecology, 2024, 48(11): 1393-1405. DOI: 10.17521/cjpe.2023.0370
图1 植物多样性对土壤有机碳含量及组分影响机制的概念框架。[1] Ravenek等(2014), Wu等(2024); [2] Li等(2007, 2016), Panchal等(2022); [3] Fornara和Tilman (2008), Zhang等(2023); [4] Surigaoge等(2024); [5] Prommer等(2020); [6] Tian等(2019); [7] Lange等(2015); [8] Liang等(2017); [9] Engedal等(2023); [10] Lavallee等(2020)。
Fig. 1 Effect of plant diversity on content and components of soil organic carbon. [1] Ravenek et al. (2014), Wu et al. (2024); [2] Li et al. (2007, 2016), Panchal et al. (2022); [3] Fornara & Tilman (2008), Zhang et al. (2023); [4] Surigaoge et al. (2024); [5] Prommer et al. (2020); [6] Tian et al. (2019); [7] Lange et al. (2015); [8] Liang et al. (2017); [9] Engedal et al. (2023); [10] Lavallee et al. (2020).
图2 植物多样性对土壤有机碳稳定性的影响机制。[1] Bronick和Lal (2005); [2] Gould等(2016); [3] Tian等(2023); [4] Li等(2004); [5] Furey和Tilman (2021); [6] Xiao等(2023); [7] Fornara和Tilman (2008), Surigaoge等(2024); [8] Zhang等(2023); [9] Barnes等(2020); [10] Rui等(2022); [11] Liang等(2017)。
Fig. 2 Mechanisms underlying the effects of plant diversity on stability of soil organic carbon. [1] Bronick & Lal (2005); [2] Gould et al. (2016); [3] Tian et al. (2023); [4] Li et al. (2004); [5] Furey & Tilman (2021); [6] Xiao et al. (2023); [7] Fornara & Tilman (2008), Surigaoge et al. (2024); [8] Zhang et al. (2023); [9] Barnes et al. (2020); [10] Rui et al. (2022); [11] Liang et al. (2017).
[1] | Amelung W, Bossio D, de Vries W, Kögel-Knabner I, Lehmann J, Amundson R, Bol R, Collins C, Lal R, Leifeld J, Minasny B, Pan G, Paustian K, Rumpel C, Sanderman J, et al.(2020). Towards a global-scale soil climate mitigation strategy. Nature Communications, 11, 5427. DOI: 10.1038/s41467-020-18887-7. |
[2] | Barnes AD, Scherber C, Brose U, Borer ET, Ebeling A, Gauzens B, Giling DP, Hines J, Isbell F, Ristok C, Tilman D, Weisser WW, Eisenhauer N (2020). Biodiversity enhances the multitrophic control of arthropod herbivory. Science Advances, 6, eabb6603. DOI: 10.1126/sciadv.abb6603. |
[3] | Bronick CJ, Lal R (2005). Soil structure and management: a review. Geoderma, 124, 3-22. |
[4] | Buckeridge KM, La Rosa AF, Mason KE, Whitaker J, McNamara NP, Grant HK, Ostle NJ (2020). Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biology & Biochemistry, 149, 107929. DOI: 10.1016/j.soilbio.2020.107929. |
[5] |
Butchart SHM, Walpole M, Collen B, van Strien A, Scharlemann JPW, Almond REA, Baillie JEM, Bomhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, et al.(2010). Global biodiversity: indicators of recent declines. Science, 328, 1164-1168.
DOI PMID |
[6] | Button ES, Pett-Ridge J, Murphy DV, Kuzyakov Y, Chadwick DR, Jones DL (2022). Deep-C storage: biological, chemical and physical strategies to enhance carbon stocks in agricultural subsoils. Soil Biology & Biochemistry, 170, 108697. DOI: 10.1016/j.soilbio.2022.108697. |
[7] |
Chen S, Wang W, Xu W, Wang Y, Wan H, Chen D, Tang Z, Tang X, Zhou G, Xie Z, Zhou D, Shangguan Z, Huang J, He J, Wang Y, et al.(2018). Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 115, 4027-4032.
DOI PMID |
[8] | Chen X, Chen HYH, Chen C, Ma Z, Searle EB, Yu Z, Huang Z (2020). Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biological Reviews, 95, 167-183. |
[9] | Chen X, Taylor AR, Reich PB, Hisano M, Chen HYH, Chang SX (2023). Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature, 618, 94-101. |
[10] | Cong W, Hoffland E, Li L, Six J, Sun J, Bao X, Zhang F, van der Werf W (2015). Intercropping enhances soil carbon and nitrogen. Global Change Biology, 21, 1715-1726. |
[11] | Corbin AT, Thelen KD, Robertson GP, Leep RH (2010). Influence of cropping systems on soil aggregate and weed seedbank dynamics during the organic transition period. Agronomy Journal, 102, 1632-1640. |
[12] | Cotrufo MF, Haddix ML, Kroeger ME, Stewart CE (2022). The role of plant input physical-chemical properties, and microbial and soil chemical diversity on the formation of particulate and mineral-associated organic matter. Soil Biology & Biochemistry, 168, 108648. DOI: 10.1016/j. soilbio.2022.108648. |
[13] | Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12, 989-994. |
[14] | Dawud SM, Raulund-Rasmussen K, Domisch T, Finér L, Jaroszewicz B, Vesterdal L (2016). Is tree species diversity or species identity the more important driver of soil carbon stocks, C/N ratio, and pH? Ecosystems, 19, 645-660. |
[15] |
Dijkstra FA, Zhu B, Cheng W (2021). Root effects on soil organic carbon: a double-edged sword. New Phytologist, 230, 60-65.
DOI PMID |
[16] |
Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, Smith P, Fang J, Yang Y (2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10, 420-424.
DOI |
[17] |
Duan P, Fu R, Nottingham AT, Domeignoz-Horta LA, Yang X, Du H, Wang K, Li D (2023). Tree species diversity increases soil microbial carbon use efficiency in a subtropical forest. Global Change Biology, 29, 7131-7144.
DOI PMID |
[18] | Engedal T, Magid J, Hansen V, Rasmussen J, Sørensen H, Jensen LS (2023). Cover crop root morphology rather than quality controls the fate of root and rhizodeposition C into distinct soil C pools. Global Change Biology, 29, 5677-5690. |
[19] |
Fang J, Yu G, Liu L, Hu S, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020.
DOI PMID |
[20] | Feng JG, He KY, Zhang QF, Han MG, Zhu B (2022). Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology, 28, 3426-3440. |
[21] | Feng XJ, Wang YY, Liu T, Jia J, Dai GH, Ma T, Liu ZG (2020). Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 44, 384-394. |
[冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广 (2020). 生物标志物及其在生态系统研究中的应用. 植物生态学报, 44, 384-394.]
DOI |
|
[22] | Fornara DA, Tilman D (2008). Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 96, 314-322. |
[23] | Furey GN, Tilman D (2021). Plant biodiversity and the regeneration of soil fertility. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111321118. DOI: 10.1073/pnas.2111321118. |
[24] | Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, et al.(2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. DOI: 10.1038/ncomms2328. |
[25] | Garland G, Bünemann EK, Oberson A, Frossard E, Six J (2017). Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant and Soil, 415, 37-55. |
[26] | Gould IJ, Quinton JN, Weigelt A, de Deyn GB, Bardgett RD (2016). Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 19, 1140-1149. |
[27] | Hättenschwiler S, Tiunov AV, Scheu S (2005). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 191-218. |
[28] | Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007). Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems, 10, 999-1018. |
[29] | Holeplass H, Singh BR, Lal R (2004). Carbon sequestration in soil aggregates under different crop rotations and nitrogen fertilization in an inceptisol in southeastern Norway. Nutrient Cycling in Agroecosystems, 70, 167-177. |
[30] | Hu J, Du M, Chen J, Tie L, Zhou S, Buckeridge KM, Cornelissen JHC, Huang C, Kuzyakov Y (2023a). Microbial necromass under global change and implications for soil organic matter. Global Change Biology, 29, 3503-3515. |
[31] | Hu Q, Thomas BW, Powlson D, Hu Y, Zhang Y, Jun X, Shi X, Zhang Y (2023b). Soil organic carbon fractions in response to soil, environmental and agronomic factors under cover cropping systems: a global meta-analysis. Agriculture, Ecosystems & Environment, 355, 108591. DOI: 10.1016/j.agee.2023.108591. |
[32] | Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, Scherer-Lorenzen M, Schmid B, Tilman D, van Ruijven J, Weigelt A, Wilsey BJ, Zavaleta ES, Loreau M (2011). High plant diversity is needed to maintain ecosystem services. Nature, 477, 199-202. |
[33] | Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annual Review of Ecology, Evolution, and Systematics, 48, 419-445. |
[34] | Jia Y, Zhai G, Zhu S, Liu X, Schmid B, Wang Z, Ma K, Feng X (2021). Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biology & Biochemistry, 161, 108375. DOI: 10.1016/j.soilbio.2021.108375. |
[35] | King AE, Congreves KA, Deen B, Dunfield KE, Voroney RP, Wagner-Riddle C (2019). Quantifying the relationships between soil fraction mass, fraction carbon, and total soil carbon to assess mechanisms of physical protection. Soil Biology & Biochemistry, 135, 95-107. |
[36] | Kou L, Jiang L, Hättenschwiler S, Zhang M, Niu S, Fu X, Dai X, Yan H, Li S, Wang H (2020). Diversity-decomposition relationships in forests worldwide. eLife, 9, e55813. DOI: 10.7554/eLife.55813. |
[37] | Kremer RJ, Kussman RD (2011). Soil quality in a pecan-kura clover alley cropping system in the Midwestern USA. Agroforestry Systems, 83, 213-223. |
[38] | Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6, 6707. DOI: 10.1038/ncomms7707. |
[39] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[40] | Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68. |
[41] | Li B, Li Y, Wu H, Zhang F, Li C, Li X, Lambers H, Li L (2016). Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 113, 6496-6501. |
[42] | Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS (2007). Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus- deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 104, 11192-11196. |
[43] | Li L, Li XF, Zhang WP, Zhang Y, Zhang LZ, Zhang FS (2024). Crop mixtures, ecosystem functioning, and mechanisms. //Scheiner Samuel M. Encyclopedia of Biodiversity. 3rd ed. Elsevier, Oxford. 495-513. |
[44] | Li L, Tang C, Rengel Z, Zhang FS (2004). Calcium, magnesium and microelement uptake as affected by phosphorus sources and interspecific root interactions between wheat and chickpea. Plant and Soil, 261, 29-37. |
[45] | Li XF, Wang ZG, Bao XG, Sun JH, Yang SC, Wang P, Wang CB, Wu JP, Liu XR, Tian XL, Wang Y, Li JP, Wang Y, Xia HY, Mei PP, et al.(2021). Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 4, 943-950. |
[46] | Liang C, Balser TC (2011). Microbial production of recalcitrant organic matter in global soils: implications for productivity and climate policy. Nature Reviews Microbiology, 9, 75. DOI: 10.1038/nrmicro2386-c1. |
[47] | Liang C, Balser TC (2012). Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nature Communications, 3, 1222. DOI: 10.1038/ncomms2224. |
[48] | Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105. |
[49] |
Liu J, Liu X, Song Q, Compson ZG, LeRoy CJ, Luan F, Wang H, Hu Y, Yang Q (2020). Synergistic effects: a common theme in mixed-species litter decomposition. New Phytologist, 227, 757-765.
DOI PMID |
[50] | Liu MQ, Hu F, Chen XY (2007). A review on mechanisms of soil organic carbon stabilization. Acta Ecologica Sinica, 27, 2642-2650. |
[刘满强, 胡锋, 陈小云 (2007). 土壤有机碳稳定机制研究进展. 生态学报, 27, 2642-2650.] | |
[51] | Liu X, Trogisch S, He JS, Niklaus PA, Bruelheide H, Tang Z, Erfmeier A, Scherer-Lorenzen M, Pietsch KA, Yang B, Kühn P, Scholten T, Huang Y, Wang C, Staab M, et al. (2018). Tree species richness increases ecosystem carbon storage in subtropical forests. Proceedings of the Royal Society B: Biological Sciences, 285, 20181240. DOI: 10.1098/rspb.2018.1240. |
[52] | Liu Y, Miao HT, Chang XF, Wu GL (2019). Higher species diversity improves soil water infiltration capacity by increasing soil organic matter content in semiarid grasslands. Land Degradation & Development, 30, 1599-1606. |
[53] | Ludwig M, Achtenhagen J, Miltner A, Eckhardt KU, Leinweber P, Emmerling C, Thiele-Bruhn S (2015). Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biology & Biochemistry, 81, 311-322. |
[54] | Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1. |
[55] | Ma Y, Woolf D, Fan M, Qiao L, Li R, Lehmann J (2023). Global crop production increase by soil organic carbon. Nature Geoscience, 16, 1159-1165. |
[56] | Ma ZL, Chen HYH (2017). Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest. Journal of Ecology, 105, 237-245. |
[57] | Messaoudi H, Gérard F, Dokukin P, Djamai H, Rebouh NY, Latati M (2020). Effects of intercropping on field-scale phosphorus acquisition processes in a calcareous soil. Plant and Soil, 449, 331-341. |
[58] | Navrátilová D, Tláskalová P, Kohout P, Drevojan P, Fajmon K, Chytrý M, Baldrian P (2019). Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiology Ecology, 95. DOI: 10.1093/femsec/fiy208. |
[59] | Pan G, Smith P, Pan W (2009). The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems & Environment, 129, 344-348. |
[60] | Panchal P, Preece C, Peñuelas J, Giri J (2022). Soil carbon sequestration by root exudates. Trends in Plant Science, 27, 749-757. |
[61] | Pérès G, Cluzeau D, Menasseri S, Soussana JF, Bessler H, Engels C, Habekost M, Gleixner G, Weigelt A, Weisser WW, Scheu S, Eisenhauer N (2013). Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gradient. Plant and Soil, 373, 285-299. |
[62] | Prairie AM, King AE, Cotrufo MF (2023). Restoring particulate and mineral-associated organic carbon through regenerative agriculture. Proceedings of the National Academy of Sciences of the United States of America, 120, e2217481120. DOI: 10.1073/pnas.2217481120. |
[63] |
Prommer J, Walker TWN, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A (2020). Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology, 26, 669-681.
DOI PMID |
[64] | Qian ZY, Gu R, Gao K, Li DJ (2023a). High plant species diversity enhances lignin accumulation in a subtropical forest of southwest China. Science of the Total Environment, 865, 161113. DOI: 10.1016/j.scitotenv.2022.161113. |
[65] | Qian ZY, Li YN, Du H, Wang KL, Li DJ (2023b). Increasing plant species diversity enhances microbial necromass carbon content but does not alter its contribution to soil organic carbon pool in a subtropical forest. Soil Biology & Biochemistry, 187, 109183. DOI: 10.1016/j.soilbio.2023.109183. |
[66] | Qin ZF, Xie MX, Zhang YL, Li X, Li HG, Zhang JL (2023). Research progress in soil organic carbon stabilization mediated by arbuscular mycorrhizal fungi. Journal of Plant Nutrition and Fertilizers, 29, 756-766. |
[秦泽峰, 谢沐希, 张运龙, 李侠, 李海港, 张俊伶 (2023). 丛枝菌根真菌介导的土壤有机碳稳定机制研究进展. 植物营养与肥料学报, 29, 756-766.] | |
[67] | Ravenek JM, Bessler H, Engels C, Scherer-Lorenzen M, Gessler A, Gockele A, De Luca E, Temperton VM, Ebeling A, Roscher C, Schmid B, Weisser WW, Wirth C, de Kroon H, Weigelt A, Mommer L (2014). Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos, 123, 1528-1536. |
[68] | Rui Z, Lu X, Li Z, Lin Z, Lu H, Zhang D, Shen S, Liu X, Zheng J, Drosos M, Cheng K, Bian R, Zhang X, Li L, Pan G (2022). Macroaggregates serve as micro-hotspots enriched with functional and networked microbial communities and enhanced under organic/inorganic fertilization in a paddy topsoil from Southeastern China. Frontiers in Microbiology, 13, 831746. DOI: 10.3389/fmicb.2022.831746. |
[69] | Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Bessler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, et al. (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556. |
[70] | Schittko C, Onandia G, Bernard-Verdier M, Heger T, Jeschke JM, Kowarik I, Maaß S, Joshi J (2022). Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology, 110, 916-934. |
[71] | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
[72] | Schwendenmann L, Pendall E (2006). Effects of forest conversion into grassland on soil aggregate structure and carbon storage in Panama: evidence from soil carbon fractionation and stable isotopes. Plant and Soil, 288, 217-232. |
[73] | Situ GM, Zhao YL, Zhang L, Yang XQ, Chen D, Li SH, Wu QF, Xu QF, Chen JH, Qin H (2022). Linking the chemical nature of soil organic carbon and biological binding agent in aggregates to soil aggregate stability following biochar amendment in a rice paddy. Science of the Total Environment, 847, 157460. DOI: 10.1016/j.scitotenv.2022.157460. |
[74] | Six J, Conant RT, Paul EA, Paustian K (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176. |
[75] | Six J, Elliott ET, Paustian K (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099-2103. |
[76] |
Sokol NW, Bradford MA (2019). Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 12, 46-53.
DOI |
[77] |
Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, Brodie EL, Firestone MK, Foley MM, Hestrin R, Hungate BA, Koch BJ, Stone BW, Sullivan MB, Zablocki O, Soil Microbiome Consortium LLNL, Pett-Ridge J (2022). Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology, 20, 415-430.
DOI PMID |
[78] | Surigaoge S, Yang H, Fornara D, Su Y, Du Y, Ren S, Zhang W, Li L (2024). Litter functional dissimilarity accelerates carbon and nitrogen release from the decomposition of straw but not root in maize/legume intercropping. Plant and Soil. DOI: 10.1007/s11104-024-06616-8. |
[79] | Surigaoge S, Yang H, Su Y, Du Y, Ren S, Fornara D, Christie P, Zhang W, Li L (2023). Maize/peanut intercropping has greater synergistic effects and home-field advantages than maize/soybean on straw decomposition. Frontiers in Plant Science, 14, 1100842. DOI: 10.3389/fpls.2023.1100842. |
[80] | Tamburini G, Bommarco R, Wanger TC, Kremen C, van der Heijden MGA, Liebman M, Hallin S (2020). Agricultural diversification promotes multiple ecosystem services without compromising yield. Science Advances, 6, eaba1715. DOI: 10.1126/sciadv.aba1715. |
[81] | Tang R, Zhao J, Liu Y, Huang X, Zhang Y, Zhou D, Ding A, Nielsen CP, Wang H (2022). Air quality and health co-benefits of China’s carbon dioxide emissions peaking before 2030. Nature Communications, 13, 1008. DOI: 10.1038/s41467-022-28672-3. |
[82] | Tian QL, Zhang XP, Yi HJ, Li YY, Xu XM, He J, He L (2023). Plant diversity drives soil carbon sequestration: evidence from 150 years of vegetation restoration in the temperate zone. Frontiers in Plant Science, 14, 1191704. DOI: 10.3389/fpls.2023.1191704. |
[83] | Tian X, Wang C, Bao X, Wang P, Li X, Yang S, Ding G, Christie P, Li L (2019). Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 436, 173-192. |
[84] | Tilman D, Isbell F, Cowles JM (2014). Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 45, 471-493. |
[85] | Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, et al.(2000). Respiration as the main determinant of carbon balance in European forests. Nature, 404, 861-865. |
[86] | Wang B, An S, Liang C, Liu Y, Kuzyakov Y (2021a). Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology & Biochemistry, 162, 108422. DOI: 10.1016/j.soilbio.2021.108422. |
[87] | Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021b). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039-2048. |
[88] |
Wang H, Ding Y, Zhang Y, Wang J, Freedman ZB, Liu P, Cong W, Wang J, Zang R, Liu S (2023). Evenness of soil organic carbon chemical components changes with tree species richness, composition and functional diversity across forests in China. Global Change Biology, 29, 2852-2864.
DOI PMID |
[89] | Wang JK, Xu YD, Ding F, Gao XD, Li SY, Sun LJ, An TT, Pei JB, Li M, Wang Y, Zhang WJ, Ge Z (2019). Process of plant residue transforming into soil organic matter and mechanism of its stabilization: a review. Acta Pedologica Sinica, 56, 528-540. |
[汪景宽, 徐英德, 丁凡, 高晓丹, 李双异, 孙良杰, 安婷婷, 裴久渤, 李明, 王阳, 张维俊, 葛壮 (2019). 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 56, 528-540.] | |
[90] | Wang MM, Guo XW, Zhang S, Xiao LJ, Mishra U, Yang YH, Zhu B, Wang GC, Mao XL, Qian T, Jiang T, Shi Z, Luo ZK (2022). Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nature Communications, 13, 5514. DOI: 10.1038/s41467-022-33278-w |
[91] | Wooliver R, Jagadamma S (2023). Response of soil organic carbon fractions to cover cropping: a meta-analysis of agroecosystems. Agriculture, Ecosystems & Environment, 351, 108497. DOI: 10.1016/j.agee.2023.108497. |
[92] | Wu J, Bao X, Zhang J, Lu B, Callaway RM, Fornara DA, Li L (2024). Temporal and spatial effects of crop diversity on soil carbon and nitrogen storage and vertical distribution. Soil and Tillage Research, 235, 105913. DOI: 10.1016/j.still.2023.105913. |
[93] | Xiao K, Zhao Y, Liang C, Zhao M, Moore OW, Otero-Fariña A, Zhu Y, Johnson K, Peacock CL (2023). Introducing the soil mineral carbon pump. Nature Reviews Earth & Environment, 4, 135-136. |
[94] | Yang Y, Tilman D, Furey G, Lehman C (2019). Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nature Communications, 10, 718. DOI: 10.1038/s41467-019-08636-w. |
[95] | Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, et al.(2022). Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 65, 861-895. |
[96] | Zhang S, Meng L, Hou J, Liu X, Ogundeji AO, Cheng Z, Yin T, Clarke N, Hu B, Li S (2022). Maize/soybean intercropping improves stability of soil aggregates driven by arbuscular mycorrhizal fungi in a black soil of northeast China. Plant and Soil, 481, 63-82. |
[97] | Zhang W, Fornara D, Yang H, Yu R, Callaway RM, Li L (2023). Plant litter strengthens positive biodiversity- ecosystem functioning relationships over time. Trends in Ecology & Evolution, 38, 473-484. |
[98] | Zhang W, Gao S, Li Z, Xu H, Yang H, Yang X, Fan H, Su Y, Fornara D, Li L (2021). Shifts from complementarity to selection effects maintain high productivity in maize/legume intercropping systems. Journal of Applied Ecology, 58, 2603-2613. |
[99] | Zhang WP, Liu GC, Sun JH, Fornara D, Zhang LZ, Zhang FF, Li L (2017). Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology, 31, 469-479. |
[100] | Zhang WP, Surigaoge S, Yang H, Yu RP, Wu JP, Xing Y, Chen Y, Li L (2024). Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant and Soil, 502, 7-30. |
[101] | Zhao X, Hao C, Zhang R, Jiao N, Tian J, Lambers H, Liang C, Cong W, Zhang F (2023). Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation. Soil Biology & Biochemistry, 185, 109146. DOI: 10.1016/j.soilbio.2023.109146. |
[102] | Zheng FJ, Liu XT, Ding WT, Song XJ, Li SP, Wu XP (2023). Positive effects of crop rotation on soil aggregation and associated organic carbon are mainly controlled by climate and initial soil carbon content: a meta-analysis. Agriculture, Ecosystems & Environment, 355, 108600. DOI: 10.1016/j.soilbio.2023.109146. |
[103] |
Zhou G, Xu S, Ciais P, Manzoni S, Fang J, Yu G, Tang X, Zhou P, Wang W, Yan J, Wang G, Ma K, Li S, Du S, Han S, et al.(2019). Climate and litter C/N ratio constrain soil organic carbon accumulation. National Science Review, 6, 746-757.
DOI |
[104] | Zuo Y, Zhang F (2009). Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review. Agronomy for Sustainable Development, 29, 63-71. |
[1] | 牛亚平 高晓霞 姚世庭 杨元合 彭云峰. 高寒草地退化过程中植物多样性和功能群组成与地上生产力的关系[J]. 植物生态学报, 2025, 49(1): 0-0. |
[2] | 王雯莹 肖元明 王小赟 徐嘉昕 马玉花 李强峰 周国英. 多功能群物种配置模式下重度退化高寒草甸植物多样性与生态系统多功能性[J]. 植物生态学报, 2025, 49(1): 1-0. |
[3] | 杜淑辉 褚建民 段俊光 薛建国 徐磊 徐晓庆 王其兵 黄建辉 张倩. 不同退化程度典型草原土壤木质素酚对有机碳的影响[J]. 植物生态学报, 2025, 49(1): 1-0. |
[4] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[5] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[6] | 张玉, 杜婷, 陈玉莲, 朱和萌, 谭波, 游成铭, 张丽, 徐振锋, 李晗. 冻融作用对亚高山森林土壤有机碳组分中不同凋落物源碳贡献的影响[J]. 植物生态学报, 2024, 48(11): 1422-1433. |
[7] | 王梁, 赵学超, 杨少博, 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[9] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[10] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[11] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[12] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[13] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[14] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[15] | 范敏, 卢奕曈, 王照华, 黄颖琪, 彭羽, 尚佳欣, 张杨. 浑善达克沙地中部斑块格局影响植物多样性及功能性状[J]. 植物生态学报, 2022, 46(1): 51-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19