植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 1078-1088.DOI: 10.17521/cjpe.2023.0291 cstr: 32100.14.cjpe.2023.0291
• 研究论文 • 上一篇
彭思瑞1, 张慧玲1, 孙兆林2, 赵学超2, 田鹏2, 陈迪马1, 王清奎2, 刘圣恩3,*()
收稿日期:
2023-10-13
接受日期:
2024-02-08
出版日期:
2024-08-20
发布日期:
2024-04-24
通讯作者:
*刘圣恩(liu_iae@163.com)
基金资助:
PENG Si-Rui1, ZHANG Hui-Ling1, SUN Zhao-Lin2, ZHAO Xue-Chao2, TIAN Peng2, CHEN Di-Ma1, WANG Qing-Kui2, LIU Sheng-En3,*()
Received:
2023-10-13
Accepted:
2024-02-08
Online:
2024-08-20
Published:
2024-04-24
Contact:
*LIU Sheng-En(liu_iae@163.com)
Supported by:
摘要:
凋落叶和根系输入是土壤有机碳(SOC)的重要植物来源, 探讨凋落叶和根系去除对SOC及其组分的影响有利于深入理解森林生态系统SOC的积累机制。该研究依托中国科学院湖南会同森林生态系统国家野外科学观测研究站长达12年的凋落物去除实验(对照、凋落叶去除、根系去除、凋落叶和根系同时去除), 比较了亚热带杉木(Cunninghamia lanceolata)人工林凋落叶和根系对SOC及其组分和各组分对总有机碳碳库相对贡献的影响及季节动态。结果表明: 凋落叶和根系去除均会降低SOC含量, 且不同凋落物去除对碳组分的相对影响各不相同。具体表现为: 凋落叶去除对SOC、土壤矿质结合态有机碳(MAOC)和重组分有机碳(HFOC)含量的负效应显著大于根系去除, 而根系去除对土壤颗粒有机碳(POC)含量的负效应显著大于凋落叶去除, 凋落叶和根系同时去除对轻组分有机碳(LFOC)含量的负效应大于其他处理。相关性分析和冗余分析表明: 碳组分含量与土壤全氮含量、碳氮比均呈正相关关系。此外, 季节对POC和LFOC含量以及不同碳组分对总有机碳碳库的贡献有显著影响。夏季土壤碳组分含量与全磷含量和碳磷比的相关性明显高于冬季。该研究为长期凋落物去除对亚热带杉木林SOC及其组分的影响提供了证据, 有助于探究SOC的积累机制对凋落物去除的响应。
彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响. 植物生态学报, 2024, 48(8): 1078-1088. DOI: 10.17521/cjpe.2023.0291
PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest. Chinese Journal of Plant Ecology, 2024, 48(8): 1078-1088. DOI: 10.17521/cjpe.2023.0291
处理 Treatment | 描述 Description |
---|---|
对照 Control (CK) | 不做任何处理, 保留凋落物原始状态输入 Retain the original litter input without any processing |
凋落叶去除 Leaf litter removal (NL) | 首先彻底清除地上凋落物, 之后在实验小区边缘及中心插入9根PVC管露出地面0.5 m, 在其上放置孔径为1 mm的筛网用以阻绝凋落枝叶, 每月清理筛网 The original aboveground litter was carefully removed at the beginning, and then 9 PVC pipes were inserted at the edge and center of the experimental plot to expose 0.5 m to the ground, and a screen with an aperture of 1 mm was placed on it to prevent the falling litter. The screen was cleaned monthly |
根系去除 Root removal (NR) | 在实验小区四周挖60 cm的深沟, 之后插入0.35 mm厚的聚乙烯板以防止其他根部生长到实验小区内 Trenching the perimeter to 60 cm, inserting a 0.35 mm-thick polyethylene sheet along the bottom and sides of the trench to prevent other roots from growing into the experimental plot |
凋落叶和根系 同时去除 Leaf litter and root removal (NLR) | NL和NR处理组合, 凋落叶和根系输入均去除 NL and NR treatments were combined to remove both leaf litter and root input |
表1 会同杉木林凋落物去除处理描述
Table 1 Description of the litter removal treatment at the Huitong Cunninghamia lanceolata forest
处理 Treatment | 描述 Description |
---|---|
对照 Control (CK) | 不做任何处理, 保留凋落物原始状态输入 Retain the original litter input without any processing |
凋落叶去除 Leaf litter removal (NL) | 首先彻底清除地上凋落物, 之后在实验小区边缘及中心插入9根PVC管露出地面0.5 m, 在其上放置孔径为1 mm的筛网用以阻绝凋落枝叶, 每月清理筛网 The original aboveground litter was carefully removed at the beginning, and then 9 PVC pipes were inserted at the edge and center of the experimental plot to expose 0.5 m to the ground, and a screen with an aperture of 1 mm was placed on it to prevent the falling litter. The screen was cleaned monthly |
根系去除 Root removal (NR) | 在实验小区四周挖60 cm的深沟, 之后插入0.35 mm厚的聚乙烯板以防止其他根部生长到实验小区内 Trenching the perimeter to 60 cm, inserting a 0.35 mm-thick polyethylene sheet along the bottom and sides of the trench to prevent other roots from growing into the experimental plot |
凋落叶和根系 同时去除 Leaf litter and root removal (NLR) | NL和NR处理组合, 凋落叶和根系输入均去除 NL and NR treatments were combined to remove both leaf litter and root input |
![]() |
表2 不同季节凋落物去除对亚热带杉木林壤理化性质的影响(平均值+标准误)
Table 2 Effects of litter removal on soil properties in different seasons in subtropical Cunninghamia lanceolata forest (mean土SE)
![]() |
图1 不同季节凋落物去除对亚热带杉木林土壤有机碳及其组分的影响及多因素方差分析(平均值±标准误)。不同小写、大写字母分别表示夏季、冬季不同处理间差异显著(p < 0.05)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。CK, 对照; NL, 凋落叶去除; NLR, 凋落叶和根系同时去除; NR, 根系去除。Season, 季节。
Fig. 1 Multi-factor analysis reveal the effect of litter removal on soil organic carbon and multiple components in different seasons in subtropical Cunninghamia lanceolata forest (mean ± SE). Different lowercase or uppercase letters indicate significant differences between different treatments in summer or winter (p < 0.05). *, p <0.05; **, p < 0.01; ***, p < 0.001. CK, control; NL, leaf litter removal; NLR, leaf litter and root removal; NR, root removal.
季节 Season | 处理 Treatment | HFOC (%) | LFOC (%) | POC (%) | MAOC (%) | ROC (%) | NROC (%) | DOC (%) | MBC (%) |
---|---|---|---|---|---|---|---|---|---|
夏季 Summer | CK | 87.0 ± 0.2b | 13.0 ± 0.2b | 18.2 ± 1.1ab | 81.8 ± 1.1ab | 27.4 ± 0.8b | 72.6 ± 0.8a | 1.6 ± 0.0a | 0.5 ± 0.2a |
NL | 84.8 ± 0.2c | 15.2 ± 0.2a | 20.4 ± 0.7a | 79.6 ± 0.7b | 29.0 ± 0.7b | 71.0 ± 0.7a | 1.8 ± 0.1a | 0.8 ± 0.2a | |
NR | 88.4 ± 0.6ab | 11.6 ± 0.6bc | 15.6 ± 0.7b | 84.4 ± 0.7a | 47.3 ± 3.5a | 52.7 ± 3.5b | 1.8 ± 0.0a | 0.7 ± 0.2a | |
NLR | 90.0 ± 1.1a | 9.9 ± 1.1c | 18.3 ± 0.7a | 81.7 ± 0.7b | 38.0 ± 5.9a | 56.0 ± 2.4b | 1.7 ± 0.1a | 0.9 ± 0.2a | |
冬季 Winter | CK | 89.5 ± 0.8A | 10.5 ± 0.8A | 15.2 ± 0.8A | 84.8 ± 0.8B | 38.2 ± 2.8A | 56.0 ± 4.9B | 1.7 ± 0.0A | 1.2 ± 0.0A |
NL | 90.0 ± 0.7A | 10.0 ± 0.7A | 15.5 ± 0.8A | 84.5 ± 0.8B | 27.8 ± 4.0B | 66.8 ± 2.3A | 1.9 ± 0.0A | 1.4 ± 0.3A | |
NR | 91.2 ± 0.5A | 8.7 ± 0.5A | 11.8 ± 0.2B | 88.2 ± 0.2A | 26.2 ± 0.2B | 71.9 ± 1.8A | 1.7 ± 0.0A | 1.0 ± 0.1A | |
NLR | 91.5 ± 0.8A | 8.4 ± 0.8A | 15.9 ± 0.9A | 84.1 ± 0.9B | 33.3 ± 0.7AB | 63.8 ± 0.7A | 1.6 ± 0.2A | 1.2 ± 0.6A | |
NL | *** | ** | |||||||
NR | *** | *** | ** | ** | ** | ** | |||
Season | ** | ** | *** | *** | * | ||||
NLR | * | ||||||||
NL × Season | |||||||||
NR × Season | *** | ** | |||||||
NLR × Season | * | * | ** | ** |
表3 不同季节凋落物去除对亚热带杉木林土壤有机碳组分占总有机碳比例的影响及多因素方差分析(平均值±标准误)
Table 3 Multi-factor analysis of variance reveal the effect of litter removal on ratios of carbon components to soil organic carbon in subtropical Cunninghamia lanceolata forest (mean ± SE)
季节 Season | 处理 Treatment | HFOC (%) | LFOC (%) | POC (%) | MAOC (%) | ROC (%) | NROC (%) | DOC (%) | MBC (%) |
---|---|---|---|---|---|---|---|---|---|
夏季 Summer | CK | 87.0 ± 0.2b | 13.0 ± 0.2b | 18.2 ± 1.1ab | 81.8 ± 1.1ab | 27.4 ± 0.8b | 72.6 ± 0.8a | 1.6 ± 0.0a | 0.5 ± 0.2a |
NL | 84.8 ± 0.2c | 15.2 ± 0.2a | 20.4 ± 0.7a | 79.6 ± 0.7b | 29.0 ± 0.7b | 71.0 ± 0.7a | 1.8 ± 0.1a | 0.8 ± 0.2a | |
NR | 88.4 ± 0.6ab | 11.6 ± 0.6bc | 15.6 ± 0.7b | 84.4 ± 0.7a | 47.3 ± 3.5a | 52.7 ± 3.5b | 1.8 ± 0.0a | 0.7 ± 0.2a | |
NLR | 90.0 ± 1.1a | 9.9 ± 1.1c | 18.3 ± 0.7a | 81.7 ± 0.7b | 38.0 ± 5.9a | 56.0 ± 2.4b | 1.7 ± 0.1a | 0.9 ± 0.2a | |
冬季 Winter | CK | 89.5 ± 0.8A | 10.5 ± 0.8A | 15.2 ± 0.8A | 84.8 ± 0.8B | 38.2 ± 2.8A | 56.0 ± 4.9B | 1.7 ± 0.0A | 1.2 ± 0.0A |
NL | 90.0 ± 0.7A | 10.0 ± 0.7A | 15.5 ± 0.8A | 84.5 ± 0.8B | 27.8 ± 4.0B | 66.8 ± 2.3A | 1.9 ± 0.0A | 1.4 ± 0.3A | |
NR | 91.2 ± 0.5A | 8.7 ± 0.5A | 11.8 ± 0.2B | 88.2 ± 0.2A | 26.2 ± 0.2B | 71.9 ± 1.8A | 1.7 ± 0.0A | 1.0 ± 0.1A | |
NLR | 91.5 ± 0.8A | 8.4 ± 0.8A | 15.9 ± 0.9A | 84.1 ± 0.9B | 33.3 ± 0.7AB | 63.8 ± 0.7A | 1.6 ± 0.2A | 1.2 ± 0.6A | |
NL | *** | ** | |||||||
NR | *** | *** | ** | ** | ** | ** | |||
Season | ** | ** | *** | *** | * | ||||
NLR | * | ||||||||
NL × Season | |||||||||
NR × Season | *** | ** | |||||||
NLR × Season | * | * | ** | ** |
图2 亚热带杉木林不同季节土壤碳组分与土壤理化因子的相关关系。空心圆表示正相关, 实心圆表示负相关。*, p < 0.05; **, p < 0.01; ***, p < 0.001。C:N, 碳氮比; C:P, 碳磷比; DOC, 可溶性有机碳含量; DON, 可溶性有机氮含量; HFOC, 重组分有机碳含量; LFOC, 轻组分有机碳含量; MAOC, 矿质结合态有机碳含量; MBC, 微生物生物量碳含量; MBN, 微生物生物量氮含量; N:P, 氮磷比; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; NROC, 不易氧化有机碳含量; POC, 颗粒有机碳含量; ROC, 易氧化有机碳含量; SWC, 土壤含水量; TN, 全氮含量; TP, 全磷含量。
Fig. 2 Pearsonʼs correlations between soil organic carbon fractions and soil properties in different seasons in subtropical Cunninghamia lanceolata forest. Hollow circles indicate positive correlation and solid circles indicate negative correlation. *, p < 0.05; **, p < 0.01; ***, p < 0.001. C:N, carbon to nitrogen ratio; C:P, carbon to phosphorus ratio; DOC, dissolved organic carbon content; DON, dissolved organic nitrogen content; HFOC, heavy fraction organic carbon content; LFOC, light fraction organic carbon content; MAOC, mineral-associated organic carbon content; MBC, microbial biomass carbon content; MBN, microbial biomass nitrogen content; N:P, nitrogen to phosphorus ratio; NH4+-N, ammonia nitrogen content; NO3--N, nitrate nitrogen content; NROC, non-readily oxidizable carbon content; POC, particulate organic carbon content; ROC, readily oxidizable carbon content; SWC, soil water content content; TN, total nitrogen content; TP, total phosphorus content.
图3 亚热带杉木林不同季节凋落物去除处理土壤碳组分差异冗余分析(RDA)。C:N, 碳氮比; C:P, 碳磷比; DON, 可溶性有机氮含量; MBN, 微生物生物量氮含量; N:P, 氮磷比; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; SWC, 土壤含水量; TIN, 总无机氮含量; TN, 全氮含量; TP, 全磷含量。CK, 对照; NL, 凋落叶去除; NLR, 凋落叶和根系去除; NR, 根系去除。
Fig. 3 Redundancy analysis (RDA) reveal the potential mechanisms that litter removal affect soil carbon components by regulating soil properties in different seasons in subtropical Cunninghamia lanceolata forest. C:N, carbon to nitrogen ratio; C:P, carbon to phosphorus ratio; DON, dissolved organic nitrogen content; MBN, microbial biomass nitrogen content; N:P, nitrogen to phosphorus ratio; NH4+-N, ammonia nitrogen content; NO3--N, nitrate nitrogen content; SWC, soil water content; TIN, total inorganic nitrogen content; TN, total nitrogen content; TP, total phosphorus content. CK, control; NL, leaf litter removal; NLR, leaf litter and root removal; NR, root removal.
[1] | Bird JA, Kleber M, Torn MS (2007). 13C and 15N stabilization dynamics in soil organic matter fractions during needle and fine root decomposition. Organic Geochemistry, 39, 465-477. |
[2] | Blair GJ, Lefroy RDB, Lisle L (1995). Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 46, 1459-1466. |
[3] | Bowden RD, Deem L, Plante AF, Peltre C, Nadelhoffer K, Lajtha K (2014). Litter input controls on soil carbon in a temperate deciduous forest. Soil Science Society of America Journal, 78, S66-S75. |
[4] |
Brant JB, Myrold DD, Sulzman EW (2006). Root controls on soil microbial community structure in forest soils. Oecologia, 148, 650-659.
DOI PMID |
[5] | Cambardella CA, Elliott ET (1992). Particulate soil organic- matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56, 777-783. |
[6] | Chen C, Wang GJ, Zhao Y, Zhou GX, Li L, Gao JQ (2016). Seasonal dynamics and allometric growth relationships of C, N, and P stoichiometry in the organs of Cunninghamia lanceolata from Huitong. Acta Ecologica Sinica, 36, 7614-7623. |
[陈婵, 王光军, 赵月, 周国新, 李栎, 高吉权 (2016). 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系. 生态学报, 36, 7614-7623.] | |
[7] |
Chen LY, Fang K, Wei B, Qin SQ, Feng XH, Hu TY, Ji CJ, Yang YH (2021). Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 24, 1018-1028.
DOI PMID |
[8] | Christensen BT (1992). Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates. Springer, New York. |
[9] | Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E (2019). Soil carbon storage informed by particulate and mineral- associated organic matter. Nature Geoscience, 12, 989-994. |
[10] | Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009). Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Global Change Biology, 15, 2003-2019. |
[11] | Dai GH, Zhu SS, Cai Y, Zhu ER, Jia YF, Ji CJ, Tang ZY, Fang JY, Feng XJ (2022). Plant-derived lipids play a crucial role in forest soil carbon accumulation. Soil Biology & Biochemistry, 168, 108645. DOI: 10.1016/j.soilbio.2022.108645. |
[12] |
Dijkstra FA, Zhu B, Cheng W (2021). Root effects on soil organic carbon: a double-edged sword. New Phytologist, 230, 60-65.
DOI PMID |
[13] | Dove NC, Stark JM, Newman GS, Hart SC (2019). Carbon control on terrestrial ecosystem function across contrasting site productivities: the carbon connection revisited. Ecology, 100, e02695. DOI: 10.1002/ecy.2695. |
[14] | Fekete I, Halasz J, Kramoperger Z, Krausz E (2008). Study of litter decomposition intensity in litter manipulative trials in sikfokut cambisols. Cereal Research Communications, 36, 1779-1782. |
[15] | Fekete I, Kotroczó Z, Varga C, Nagy PT, Várbíró G, Bowden RD, Tóth JA, Lajtha K (2014). Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest. Soil Biology & Biochemistry, 74, 106-114. |
[16] | Feng JG, He KY, Zhang QF, Han MG, Zhu B (2022). Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Global Change Biology, 28, 3426-3440. |
[17] |
Feng XJ, Wang SM (2023). Plant influences on soil microbial carbon pump efficiency. Global Change Biology, 29, 3854-3856.
DOI PMID |
[18] | Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372-380. |
[19] | Guan X, Huang K, Yan SK, Wang SL (2021). A dataset of litter recovery amount and standing crop dynamics in middle subtropical broad-leaved evergreen forests (2005-2015). China Scientific Data, 6(2), 200-207. |
[关欣, 黄苛, 颜绍馗, 汪思龙 (2021). 2005-2015年中亚热带常绿阔叶林凋落物回收量和现存量月动态数据集. 中国科学数据, 6(2), 200-207.] | |
[20] | Guo CY, Zhang LM, Li SG, Li QK, Dai GH (2020). Comparison of soil greenhouse gas fluxes during the spring freeze-thaw period and the growing season in a temperate broadleaved korean pine forest, Changbai Mountains, China. Forests, 11, 1135. DOI: 10.3390/f11111135. |
[21] | Hao JB, Qiao F, Cai ZL (2019). Seasonal dynamics of soil labile organic carbon and its fractions in subtropical evergreen broadleaved forest. Ecology and Environmental Sciences, 28, 245-251. |
[郝江勃, 乔枫, 蔡子良 (2019). 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征. 生态环境学报, 28, 245-251.]
DOI |
|
[22] | Hicks LC, Lajtha K, Rousk J (2021). Nutrient limitation may induce microbial mining for resources from persistent soil organic matter. Ecology, 102, e03328. DOI: 10.1002/ecy.3328. |
[23] | Janzen HH, Campbell CA, Brandt SA, Lafond GP, Townley-Smith L (1992). Light-fraction organic matter in soils from long-term crop rotations. Soil Science Society of America Journal, 56, 1799-1806. |
[24] | Jenkinson DS, Brookes PC, Powlson DS (2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7. |
[25] | Jia SX, Liu XF, Lin WS, Li XJ, Yang LM, Sun SY, Hui DF, Guo JF, Zou XM, Yang YS (2022). Tree roots exert greater influence on soil microbial necromass carbon than above-ground litter in subtropical natural and plantation forests. Soil Biology & Biochemistry, 173, 108811. DOI: 10.1016/j.soilbio.2022.108811. |
[26] |
Jiang JY, Sun XX, Wang XW, Wang SJ, Ma GB, Chen N, Du Y (2023). Seasonal variation characteristics and influencing factors of dissolved organic carbon of soil water in permafrost peatlands of the Great Hing’an Mountains in summer and autumn. Chinese Journal of Applied Ecology, 34, 2413-2420.
DOI |
[姜静宜, 孙晓新, 王宪伟, 王淑洁, 马国宝, 陈宁, 杜宇 (2023). 大兴安岭多年冻土泥炭地土壤水可溶性有机碳夏秋季节变化特征及其影响因素. 应用生态学报, 34, 2413-2420.]
DOI |
|
[27] | Lajtha K, Bowden RD, Nadelhoffer K (2014). Litter and root manipulations provide insights into soil organic matter dynamics and stability. Soil Science Society of America Journal, 78, S261-S269. |
[28] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[29] | Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105. |
[30] | Liu Y, Han SJ (2009). Factors controlling soil respiration in four types of forest of Changbai Mountains, China. Ecology and Environmental Sciences, 18, 1061-1065. |
[刘颖, 韩士杰 (2009). 长白山四种森林土壤呼吸的影响因素. 生态环境学报, 18, 1061-1065.]
DOI |
|
[31] | Lu RK (2000). Methods for Agrochemical Analysis of Soil. Hohai University Press, Nanjing. |
[鲁如坤 (2000). 土壤农业化学分析方法. 河海大学出版社, 南京.] | |
[32] | Luo YJ, Zhang XQ (2007). The assessment of soil degradation in successive rotations of Chinese fir plantation and the soil amelioration of mixed plantation of Chinese fir and broad-leaved. Acta Ecologica Sinica, 27, 715-724. |
[罗云建, 张小全 (2007). 杉木(Cunninghamia lanceolata)连栽地力退化和杉阔混交林的土壤改良作用. 生态学报, 27, 715-724.] | |
[33] | Ma N, Ji YK, Yue K, Peng Y, Li CH, Zhang H, Ma YD, Wu QQ, Li Y (2023). Effect of the seasonal precipitation regime on shrub litter decomposition in a subtropical forest. Forest Ecology and Management, 548, 121423. DOI: 10.1016/j.foreco.2023.121423. |
[34] | Nadelhoffer KJ, Boone RD, Bowden RD, Canary JD, Kaye J, Micks P, Ricca A, Aitkenhead JA, Lajtha K, Mcdowell WH (2004). The Dirt Experiment: Litter and Root Influences on Forest Soil Organic Matter Stocks and Function. Oxford University Press, Oxford. |
[35] | Ni XY, Lin CF, Chen GS, Xie JS, Yang ZJ, Liu XF, Xiong DC, Xu C, Yue K, Wu FZ, Yang YS (2021). Decline in nutrient inputs from litterfall following forest plantation in subtropical China. Forest Ecology and Management, 496, 119445. DOI: 10.1016/j.foreco.2021.119445. |
[36] | Sayer EJ (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81, 1-31. |
[37] | Six J, Conant RT, Paul EA, Paustian K (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176. |
[38] |
Sokol NW, Kuebbing SE, Karlsen-Ayala E, Bradford MA (2019). Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 221, 233-246.
DOI PMID |
[39] | Sterkenburg E, Clemmensen KE, Ekblad A, Finlay RD, Lindahl BD (2018). Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. The ISME Journal, 12, 2187-2197. |
[40] | Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S (2018). Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proceedings of the National Academy of Sciences of the United States of America, 115, 10392-10397. |
[41] | Tian DL, Shen Y, Kang WX, Xiang WH, Yan WD, Deng XW (2011). Characteristics of nutrient cycling in first and second rotations of Chinese fir plantations. Acta Ecologica Sinica, 31, 5025-5032. |
[田大伦, 沈燕, 康文星, 项文化, 闫文德, 邓湘雯 (2011). 连栽第1和第2代杉木人工林养分循环的比较. 生态学报, 31, 5025-5032.] | |
[42] | Veres Z, Kotroczó Z, Fekete I, Tóth JA, Lajtha K, Townsend K, Tóthmérész B (2015). Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 92, 18-23. |
[43] | von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007). SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology & Biochemistry, 39, 2183-2207. |
[44] | Wan X, Huang Z, He Z, Yu Z, Wang M, Davis MR, Yang Y (2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387, 103-116. |
[45] |
Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039-2048.
DOI PMID |
[46] | Wang JB, Yang YH, Zuo C, Gu FX, He HL (2021). Impacts of human activities and climate change on gross primary productivity of the terrestrial ecosystems in China. Acta Ecologica Sinica, 41, 7085-7099. |
[王军邦, 杨屹涵, 左婵, 顾峰雪, 何洪林 (2021). 气候变化和人类活动对中国陆地生态系统总初级生产力的影响厘定研究. 生态学报, 41, 7085-7099.] | |
[47] | Wang QK (2011). Responses of forest soil carbon pool and carbon cycle to the changes of carbon input. Chinese Journal of Applied Ecology, 22, 1075-1081. |
[王清奎 (2011). 碳输入方式对森林土壤碳库和碳循环的影响研究进展. 应用生态学报, 22, 1075-1081.] | |
[48] | Wang QK, He TX, Wang SL, Liu L (2013). Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest. Agricultural and Forest Meteorology, 178- 179, 152-160. |
[49] | Wang QK, Wang SL, Gao H, Yu XJ (2005). Dynamics of soil active organic matter in Chinese fir plantations. Chinese Journal of Applied Ecology, 16, 1270-1274. |
[王清奎, 汪思龙, 高洪, 于小军 (2005). 杉木人工林土壤活性有机质变化特征. 应用生态学报, 16, 1270-1274.] | |
[50] | Wang QK, Yu YZ, He TX, Wang YP (2017). Aboveground and belowground litter have equal contributions to soil CO2 emission: an evidence from a 4-year measurement in a subtropical forest. Plant and Soil, 421, 7-17. |
[51] | Wu JJ, Zhang DD, Chen Q, Feng J, Li QX, Yang F, Zhang Q, Cheng XL (2018). Shifts in soil organic carbon dynamics under detritus input manipulations in a coniferous forest ecosystem in subtropical China. Soil Biology & Biochemistry, 126, 1-10. |
[52] | Wu JJ, Zhang Q, Zhang DD, Jia W, Chen J, Liu GH, Cheng XL (2022). The ratio of ligninase to cellulase increased with the reduction of plant detritus input in a coniferous forest in subtropical China. Applied Soil Ecology, 170, 104269. DOI: 10.1016/j.apsoil.2021.104269. |
[53] | Wu QX, Wu FZ, Zhu JJ, Ni XY (2023). Leaf and root inputs additively contribute to soil organic carbon formation in various forest types. Journal of Soils and Sediments, 23, 1135-1145. |
[54] | Xia M, Talhelm AF, Pregitzer KS (2015). Fine roots are the dominant source of recalcitrant plant litter in sugar maple- dominated northern hardwood forests. New Phytologist, 208, 715-726. |
[55] | Yin R, Qin WK, Zhao HY, Wang XD, Cao GM, Zhu B (2022). Climate warming in an alpine meadow: differential responses of soil faunal vs. microbial effects on litter decomposition. Biology and Fertility of Soils, 58, 509-514. |
[56] | Zhang YX, Tang ZX, You YM, Guo XW, Wu CJ, Liu SR, Sun OJ (2023). Differential effects of forest-floor litter and roots on soil organic carbon formation in a temperate oak forest. Soil Biology & Biochemistry, 180, 109017. DOI: 10.1016/j.soilbio.2023.109017. |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[3] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[4] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[5] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[6] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[7] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[8] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[9] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[10] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[11] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[12] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[13] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[14] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[15] | 李娜, 张一鹤, 韩晓增, 尤孟阳, 郝翔翔. 长期不同植被覆盖对黑土团聚体内有机碳组分的影响[J]. 植物生态学报, 2019, 43(7): 624-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19