植物生态学报 ›› 2019, Vol. 43 ›› Issue (7): 624-634.DOI: 10.17521/cjpe.2019.0028
• 研究论文 • 上一篇
收稿日期:
2019-01-30
接受日期:
2019-06-25
出版日期:
2019-07-20
发布日期:
2019-12-12
通讯作者:
韩晓增
基金资助:
LI Na,ZHANG Yi-He,HAN Xiao-Zeng(),YOU Meng-Yang,HAO Xiang-Xiang
Received:
2019-01-30
Accepted:
2019-06-25
Online:
2019-07-20
Published:
2019-12-12
Contact:
HAN Xiao-Zeng
Supported by:
摘要:
为探究黑土团聚体内土壤有机碳(SOC)的“分馏”特征, 揭示不同植被覆盖下土壤团聚体的固碳机制, 该文以中国科学院海伦农业生态系统国家野外综合研究站内不同植被覆盖(草地、农田和裸地)长期定位实验的土样为研究对象, 利用团聚体湿筛分组、有机碳物理和化学分组相结合的方法, 研究了黑土团聚体及其内部的碳密度和腐殖质组分的碳分配特征。研究发现, 黑土经过不同植被覆盖31年后, 长期草地覆盖使土壤表层SOC、全氮(TN)含量显著增加, 农田和无植被覆盖的裸地SOC含量减少, 且在裸地显著降低。3种处理中, 2-0.25 mm (含2 mm, 下同)粒级团聚体均为优粒级。土壤团聚体的稳定性顺序为草地>农田>裸地。草地覆盖使土壤大团聚体的比例和有机碳库增加, 微团聚体和粉黏粒所占比例和碳库均减少, 说明草地覆盖促进了土壤大团聚体形成, 土壤固碳能力显著增强。而农田和裸地因外源碳投入少, 有机碳含量均是微团聚体>大团聚体>粉黏粒, SOC主要分布在微团聚体中。不同植被覆盖处理对土壤团聚体内密度组分和腐殖质各组分碳的富集“分馏”作用很明显, 与农田和裸地相比, 长期草地植被覆盖处理>2 mm和2-0.25 mm粒级团聚体中轻组碳含量富集的较多, 2-0.25 mm粒级团聚体中富里酸、胡敏酸和胡敏素的碳富集均最高, 而农田和裸地促进了微团聚体内腐殖质碳的富集。草地覆盖显著增加了大团聚体内活性有机碳组分, 来源于植物的碳首先进入到大粒径的团聚体中, 使土壤团聚结构显著改善, 农田和无植被覆盖的裸地土壤中轻组碳含量显著降低, 团聚体内有机碳以重组碳和胡敏素为主, 稳定化程度更高。
李娜, 张一鹤, 韩晓增, 尤孟阳, 郝翔翔. 长期不同植被覆盖对黑土团聚体内有机碳组分的影响. 植物生态学报, 2019, 43(7): 624-634. DOI: 10.17521/cjpe.2019.0028
LI Na, ZHANG Yi-He, HAN Xiao-Zeng, YOU Meng-Yang, HAO Xiang-Xiang. Effects of long-term vegetation cover changes on the organic carbon fractions in soil aggregates of mollisols. Chinese Journal of Plant Ecology, 2019, 43(7): 624-634. DOI: 10.17521/cjpe.2019.0028
图1 初始土壤和不同植被覆盖下表层土壤总有机碳和全氮含量(平均值±标准偏差)。不同小写字母表示处理间差异显著(p < 0.05)。BL, 裸地; FL, 农田; GL, 草地。
Fig. 1 Contents of soil organic carbon and total nitrogen in initial soil and soils under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers. BL, bareland; FL, farmland; GL, grassland.
图2 不同植被覆盖下土壤团聚体粒径分布及平均质量直径(平均值±标准偏差)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 2 Distribution of soil aggregates and mean weight diameter (MWD) of aggregates under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
图3 不同植被覆盖下土壤团聚体中有机碳含量(平均值±标准偏差)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Contents of organic carbon in soil aggregates fractions under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
图4 不同植被覆盖下土壤团聚体内密度组分有机碳含量(平均值±标准偏差)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 4 Organic carbon contents in different density fractions of aggregates under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
图5 不同植被覆盖下表层全土腐殖质组分的碳含量和腐殖化指标(平均值±标准偏差)。FA, 富里酸; HA, 胡敏酸; HU, 胡敏素。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 5 Contents of organic carbon in humic substances and humification index in bulk soil under different vegetation covers (mean ± SD). FA, fulvic acid; HA, humic acid; HU, humin. Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
图6 不同植被覆盖下表层土壤团聚体内腐殖质组分碳含量(平均值±标准偏差)。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 6 Contents of organic carbon in soil aggregates under different vegetation covers (mean ± SD). Different lowercase letters above the bar differ at 0.05 levels among different vegetation covers.
[1] |
Beare MH, Hendrix PF, Cabrera ML, Coleman DC ( 1994). Aggregate-protected and unprotected organic matter pools in conventional- and no-tillage soils. Soil Science Society of America Journal, 58, 787-795.
DOI URL |
[2] |
Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K ( 2001). Influence of microbial populations and residue quality on aggregate stability. Applied Soil Ecology, 16, 195-208.
DOI URL |
[3] |
Bronick CJ, Lal R ( 2005). Soil structure and management: A review. Geoderma, 124, 3-22.
DOI URL PMID |
[4] |
Chaney K, Swift RS ( 1986). Studies on aggregate stability. II. The effect of humic substances on the stability of reformed soil aggregates. Journal of Soil Science, 37, 337-343.
DOI URL |
[5] | Chenu C, Stotzky G ( 2002). Interactions between microorganisms and soil particles: An overview. In: Interactions between Soil Particles and Microorganisms: Impact on Terrestrial Ecosystem. John Wiley & Sons, Chichester, UK. 3-40. |
[6] | Dou S ( 2010). Soil Organic Matter. Science Press, Beijing. |
[ 窦森 ( 2010). 土壤有机质. 科学出版社, 北京.] | |
[7] |
Eynard A, Schumacher TE, Lindstrom MJ, Malo DD ( 2004). Aggregate sizes and stability in cultivated South Dakota prairie ustolls and usterts. Soil Science Society of America Journal, 68, 1360-1365.
DOI URL |
[8] |
Golchin A, Oades JM, Skjemstad JO, Clarke P ( 1994). Soil structure and carbon cycling. Australian Journal of Soil Research, 32, 1043-1068.
DOI URL PMID |
[9] |
Han XZ, Wang SY, Veneman PLM, Xing BS ( 2006). Change of organic carbon content and its fractions in black soil under long-term application of chemical fertilizers and recycled organic manure. Communications in Soil Science and Plant Analysis, 37, 1127-1137.
DOI URL |
[10] | Hao XX ( 2017). Change Characteristic of Soil Organic Matter in Mollisol Profile Under Different Ecosystems. PhD dissertation, University of Chinese Academy of Sciences (Northeast Institute of Geography and Agro-ecology, Chinese Academy of Sciences), Changchun. |
[ 郝翔翔 ( 2017). 不同生态系统下黑土剖面有机质变化特征. 博士学位论文, 中国科学院大学(中国科学院东北地理与农业生态研究所), 长春.] | |
[11] | Hao XX, Dou S, An FH, Li MM ( 2010). Humus composition and structural characteristics of humic acid in soil aggregates under different utilization of land. Journal of Soil and Water Conservation, 24(5), 248-252. |
[ 郝翔翔, 窦森, 安丰华, 李明敏 ( 2010). 不同利用方式下土壤团聚体腐殖质组成及胡敏酸结构特征. 水土保持学报, 24(5), 248-252.] | |
[12] | Hao XX, Dou S, Han XZ, Li MM, An FH ( 2014). Structure of humic acid in soil aggregates under different ecosystems in typical black soil region of northeast China. Acta Pedologica Sinica, 51, 824-833. |
[ 郝翔翔, 窦森, 韩晓增, 李明敏, 安丰华 ( 2014). 典型黑土区不同生态系统下土壤团聚体中胡敏酸的结构特征. 土壤学报, 51, 824-833.] | |
[13] |
John B, Yamashita T, Ludwig B, Flessa H ( 2005). Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma, 128, 63-79.
DOI URL |
[14] |
Lal R ( 2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 815-830.
DOI URL PMID |
[15] | Li HB, Han XZ, Xu YL, Hou XY ( 2008). Aggregate stability of rhizosphere soil as affected by land management in black soil. Journal of Soil and Water Conservation, 22(3), 110-115. |
[ 李海波, 韩晓增, 许艳丽, 侯雪莹 ( 2008). 不同管理方式对黑土农田根据土壤团聚体稳定性的影响. 水土保持学报, 22(3), 110-115.] | |
[16] | Li K, Dou S, Han XZ, Chen H, Zhou GY ( 2010). Effects of long-term fertilization on composition of humic substances in black soil aggregates. Acta Pedologica Sinica, 47, 579-583. |
[ 李凯, 窦森, 韩晓增, 陈辉, 周桂玉 ( 2010). 长期施肥对黑土团聚体中腐殖物质组成的影响. 土壤学报, 47, 579-583.] | |
[17] | Li N, Han XZ, You MY, Xu YZ ( 2013). Research review on soil aggregates and microbes. Ecology and Environmental Sciences, 22, 1625-1632. |
[ 李娜, 韩晓增, 尤孟阳, 许玉芝 ( 2013). 土壤团聚体与微生物相互作用研究. 生态环境学报, 22, 1625-1632.] | |
[18] | Li XY ( 2001). Soil Chemistry. Higher Education Press, Beijing. |
[ 李学垣 ( 2001). 土壤化学. 高等教育出版社, 北京.] | |
[19] | Liang Y, Han XZ, Ding XL ( 2012). Review of soil organic matter fractions and structure of black soil in northeast China. Soils, 44, 888-897. |
[ 梁尧, 韩晓增, 丁雪丽 ( 2012). 东北黑土有机质组分与结构的研究进展. 土壤, 44, 888-897.] | |
[20] |
Lugato E, Simonetti G, Morari F, Nardi S, Berti A, Giardini L ( 2010). Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment. Geoderma, 157(3-4), 80-85.
DOI URL |
[21] |
Oades JM ( 1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76, 319-337.
DOI URL |
[22] |
Pérez MG, Martin-Neto L, Saab SC, Novotny EH, Milori DMBP, Bagnato VS, Colnago LA, Melo WJ, Knicker H ( 2004). Characterization of humic acids from a Brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy . Geoderma, 118(3-4), 181-190.
DOI URL PMID |
[23] |
Puget P, Angers DA, Chenu C ( 1998). Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology & Biochemistry, 31, 55-63.
DOI URL PMID |
[24] |
Seddaiu G, Porcu G, Ledda L, Roggero PP, Agnelli A, Corti G ( 2013). Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agriculture, Ecosystems & Environment, 167, 1-11.
DOI URL PMID |
[25] |
Six J, Bossuyt H, Degryze S, Denef K ( 2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil & Tillage Research, 79, 7-31.
DOI URL PMID |
[26] |
Six J, Elliott ET, Paustian K, Doran JW ( 1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62, 1367-1377.
DOI URL |
[27] |
Six J, Elliott ET, Paustian K ( 2000). Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099-2103.
DOI URL PMID |
[28] |
Six J, Gregorich EG, Kögel-Knabner I ( 2012). Commentary on the impact of Tisdall & Oades (1982). European Journal of Soil Science, 63, 1-21.
DOI URL |
[29] |
Spaccini R, Mbagwu JSC, Conte P, Piccolo A ( 2006). Changes of humic substances characteristics from forested to cultivated soils in Ethiopia. Geoderma, 132(1-2), 9-19.
DOI URL |
[30] |
Spaccini R, Piccolo A, Haberhauer GF, Gerzabek MH ( 2000). Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by 13C distribution and CPMAS-NMR Spectra . European Journal of Soil Science, 51, 583-594.
DOI URL |
[31] |
Stumpf L, Pauletto EA, Pinto LFS ( 2016). Soil aggregation and root growth of perennial grasses in a constructed clay minesoil. Soil & Tillage Research, 161, 71-78.
DOI URL PMID |
[32] |
Tisdall JM, Oades JM ( 1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141-163.
DOI URL PMID |
[33] |
Wang T, Xu S, Zhao MY, Li H, Kou D, Fang JY, Hu HF ( 2017). Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands. Chinese Journal of Plant Ecology, 41, 1168-1176.
DOI URL |
[ 王甜, 徐姗, 赵梦颖, 李贺, 寇丹, 方精云, 胡会峰 ( 2017). 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性. 植物生态学报, 41, 1168-1176.]
DOI URL |
|
[34] | Yuan YR, Li N, Zou WX, You MY, Han XZ, Ma DL ( 2018). Distribution characteristics of organic carbon in aggregates of soils of three ecosystems in typical Mollisols of Northeast China. Acta Ecologica Sinica, 38, 6025-6032. |
[ 苑亚茹, 李娜, 邹文秀, 尤孟阳, 韩晓增, 马大龙 ( 2018). 典型黑土区不同生态系统土壤团聚体有机碳分布特征. 生态学报, 38, 6025-6032.] | |
[35] |
Zhu GY, Shangguan ZP, Deng L ( 2017). Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. Catena, 149, 253-260.
DOI URL |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[4] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[5] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[6] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[7] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[8] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[9] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[10] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[11] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[12] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[13] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[14] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[15] | 杨昊天, 王增如, 贾荣亮. 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征[J]. 植物生态学报, 2018, 42(3): 288-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19