植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 83-92.DOI: 10.17521/cjpe.2024.0143 cstr: 32100.14.cjpe.2024.0143
牛亚平1,2, 高晓霞1, 姚世庭1,3, 杨元合1,2, 彭云峰1,*()
收稿日期:
2024-05-07
接受日期:
2024-11-12
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* (pengyf@ibcas.ac.cn)基金资助:
NIU Ya-Ping1,2, GAO Xiao-Xia1, YAO Shi-Ting1,3, YANG Yuan-He1,2, PENG Yun-Feng1,*()
Received:
2024-05-07
Accepted:
2024-11-12
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
近半个世纪以来, 气候变化和过度放牧等因素导致全球约50%的天然草地发生不同程度退化。草地退化显著改变了植物多样性和群落组成, 进而影响生态系统生产力。然而, 以往关于退化草地多样性与功能群组成对生产力的影响研究主要来自单点尺度, 仍缺乏大尺度的观测证据。为此, 该研究以青藏高原三江源退化高寒草地为研究对象, 基于不同类型草地(高寒草原、高寒草甸和高寒沼泽化草甸) 15个样点45条退化序列的标准化调查和采样, 解析了高寒草地退化过程中植物多样性与功能群组成的变化及其与地上生产力的关联。结果显示, 随退化程度的加剧, 3种类型草地的物种丰富度、Shannon-Weiner多样性指数、Simpson多样性指数和Pielou均匀度指数整体上均呈“先上升后下降”的变化趋势; 整体而言, 群落中莎草科和禾本科植物盖度沿退化梯度显著降低, 豆科植物盖度没有显著变化, 而杂类草盖度均显著增加。进一步分析发现, 退化过程中所有草地类型地上生产力的下降均主要与原生优势种盖度的降低有关, 而植物多样性对生产力的影响较弱。以上结果表明, 从植被的角度而言, 原生群落中优势种盖度的减少而不是多样性的丧失是退化高寒草地植被生产力下降的主要原因, 这一发现也为退化高寒草地恢复提供重要启示: 植被恢复过程中优先恢复原生优势物种是提升退化草地生产力的有效途径。
牛亚平, 高晓霞, 姚世庭, 杨元合, 彭云峰. 退化高寒草地植物多样性和功能群组成与地上生产力的关系. 植物生态学报, 2025, 49(1): 83-92. DOI: 10.17521/cjpe.2024.0143
NIU Ya-Ping, GAO Xiao-Xia, YAO Shi-Ting, YANG Yuan-He, PENG Yun-Feng. Linkages of plant diversity and functional groups to aboveground productivity upon alpine grassland degradation. Chinese Journal of Plant Ecology, 2025, 49(1): 83-92. DOI: 10.17521/cjpe.2024.0143
图1 三江源高寒草地分布区采样点分布图。植被类型图来源于1:100万中国植被图(中国科学院中国植被图编辑委员会, 2007)。
Fig. 1 Location of sampling sites across the Three-River Source Region. The vegetation map is generated from Vegetation Atlas of China with a scale of 1:1 000 000 (The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, 2007).
图2 不同草地类型植物物种丰富度(A)、Shannon-Weiner多样性指数(B)、Simpson多样性指数(C)和Pielou均匀度指数(D)与不同功能群盖度(E-H)沿退化梯度的变化(平均值±95%置信区间)。不同小写字母表示同一草地类型各项指标在不同退化程度之间的差异显著(p < 0.05); ns, p > 0.05。
Fig. 2 Changes in species richness (A), Shannon-Weiner diversity index (B), Simpson diversity index (C), Pielou evenness index (D) and coverage of different functional groups (E-H) along degradation gradients in various grassland types (mean ± 95%CI). Different lowercase letters represent significant differences among different degradation levels (p < 0.05); ns, p > 0.05. AM, alpine meadow; AS, alpine steppe; ASM, alpine swamp meadow; HD, heavy degradation; MD, moderate degradation; ND, non-degradation; SD, slight degradation.
草地类型 Grassland type | 退化程度 Degradation level | 土壤pH Soil pH | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水率 Soil moisture (%) | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) |
---|---|---|---|---|---|---|
高寒草原 AS | 未退化 ND | 8.51 ± 0.19b | 1.14 ± 0.17b | 12.34 ± 3.93a | 4.81 ± 1.43a | 4.71 ± 1.90a |
轻度退化 SD | 8.58 ± 0.20a | 1.19 ± 0.15ab | 12.44 ± 3.58a | 4.79 ± 2.02a | 4.18 ± 1.83ab | |
中度退化 MD | 8.57 ± 0.17a | 1.24 ± 0.18ab | 11.86 ± 3.37a | 4.32 ± 1.67a | 3.71 ± 1.67b | |
重度退化 HD | 8.60 ± 0.18a | 1.26 ± 0.19a | 12.31 ± 2.85a | 3.12 ± 1.47b | 3.54 ± 1.93b | |
高寒草甸 AM | 未退化 ND | 6.71 ± 0.74b | 0.75 ± 0.18b | 48.29 ± 16.05a | 25.44 ± 14.91a | 4.63 ± 3.41b |
轻度退化 SD | 6.77 ± 0.78b | 0.81 ± 0.21b | 45.75 ± 18.23a | 17.03 ± 7.13b | 4.71 ± 3.53b | |
中度退化 MD | 7.11 ± 0.78a | 0.93 ± 0.22a | 34.07 ± 11.24b | 13.00 ± 8.13c | 6.41 ± 3.71a | |
重度退化 HD | 7.21 ± 0.83a | 0.98 ± 0.22a | 25.47 ± 8.74c | 5.37 ± 3.84d | 7.15 ± 3.74a | |
高寒沼泽化草甸 ASM | 未退化 ND | 6.94 ± 0.72c | 0.44 ± 0.11c | 143.34 ± 28.84a | 23.50 ± 7.61a | 3.10 ± 1.56b |
轻度退化 SD | 7.06 ± 0.81bc | 0.59 ± 0.22b | 109.39 ± 37.27b | 22.77 ± 7.54a | 5.87 ± 5.14ab | |
中度退化 MD | 7.17 ± 0.84b | 0.75 ± 0.30a | 83.29 ± 49.36c | 13.69 ± 4.33b | 8.71 ± 9.18a | |
重度退化 HD | 7.37 ± 0.74a | 0.89 ± 0.24a | 47.22 ± 34.12d | 4.27 ± 1.32c | 10.18 ± 6.25a |
表1 不同高寒草地类型土壤理化性质沿退化梯度的变化规律(平均值±标准差)
Table 1 Changes in soil properties along degradation gradients in various alpine grassland types (mean ± SD)
草地类型 Grassland type | 退化程度 Degradation level | 土壤pH Soil pH | 土壤容重 Soil bulk density (g·cm-3) | 土壤含水率 Soil moisture (%) | 铵态氮含量 NH4+-N content (mg·kg-1) | 硝态氮含量 NO3--N content (mg·kg-1) |
---|---|---|---|---|---|---|
高寒草原 AS | 未退化 ND | 8.51 ± 0.19b | 1.14 ± 0.17b | 12.34 ± 3.93a | 4.81 ± 1.43a | 4.71 ± 1.90a |
轻度退化 SD | 8.58 ± 0.20a | 1.19 ± 0.15ab | 12.44 ± 3.58a | 4.79 ± 2.02a | 4.18 ± 1.83ab | |
中度退化 MD | 8.57 ± 0.17a | 1.24 ± 0.18ab | 11.86 ± 3.37a | 4.32 ± 1.67a | 3.71 ± 1.67b | |
重度退化 HD | 8.60 ± 0.18a | 1.26 ± 0.19a | 12.31 ± 2.85a | 3.12 ± 1.47b | 3.54 ± 1.93b | |
高寒草甸 AM | 未退化 ND | 6.71 ± 0.74b | 0.75 ± 0.18b | 48.29 ± 16.05a | 25.44 ± 14.91a | 4.63 ± 3.41b |
轻度退化 SD | 6.77 ± 0.78b | 0.81 ± 0.21b | 45.75 ± 18.23a | 17.03 ± 7.13b | 4.71 ± 3.53b | |
中度退化 MD | 7.11 ± 0.78a | 0.93 ± 0.22a | 34.07 ± 11.24b | 13.00 ± 8.13c | 6.41 ± 3.71a | |
重度退化 HD | 7.21 ± 0.83a | 0.98 ± 0.22a | 25.47 ± 8.74c | 5.37 ± 3.84d | 7.15 ± 3.74a | |
高寒沼泽化草甸 ASM | 未退化 ND | 6.94 ± 0.72c | 0.44 ± 0.11c | 143.34 ± 28.84a | 23.50 ± 7.61a | 3.10 ± 1.56b |
轻度退化 SD | 7.06 ± 0.81bc | 0.59 ± 0.22b | 109.39 ± 37.27b | 22.77 ± 7.54a | 5.87 ± 5.14ab | |
中度退化 MD | 7.17 ± 0.84b | 0.75 ± 0.30a | 83.29 ± 49.36c | 13.69 ± 4.33b | 8.71 ± 9.18a | |
重度退化 HD | 7.37 ± 0.74a | 0.89 ± 0.24a | 47.22 ± 34.12d | 4.27 ± 1.32c | 10.18 ± 6.25a |
图3 不同草地类型植物多样性和不同功能群盖度与环境因子的关系。为了消除样点之间的空间异质性, 采用因变量和自变量的响应比(退化与未退化样点比值的自然对数)进行回归分析。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3 Relationships of plant diversity and coverage of functional groups with environmental factors along degradation gradients in different grassland types. The response ratio, which was calculated as the natural logarithm of the ratio of degradation plots to non-degradation plots, was used in regression analysis to account for spatial heterogeneity among different sampling sites. AM, alpine meadow; AS, alpine steppe; ASM, alpine swamp meadow; MAP, mean annual precipitation; MAT, mean annual air temperature. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图4 不同草地类型地上生产力沿退化梯度的变化(A, 平均值±95%置信区间), 地上生产力与多样性和不同功能群盖度的关系(B)和基于随机森林分析的解释变量对植物多样性和功能群盖度影响的相对重要性(C)。A中不同小写字母表示地上生产力在不同退化程度之间的差异显著性(p < 0.05)。B中实心圈表示两个变量之间相关性显著, 空心圈表示相关不显著, 误差线表示95%置信区间。C中为了消除样点之间的空间异质性, 采用因变量和自变量的响应比(退化与未退化样点比值的自然对数)进行回归分析和随机森林分析。
Fig. 4 Changes in aboveground net primary productivity (ANPP) along degradation gradients in various grassland types (A, mean ± 95% CI), relationships of ANPP with plant diversity and coverage of functional groups (B), and moderators of ANPP based on relative influence of predictor variables in the random forest model (C). In A, different lowercase letters represent significant difference among different degradation levels (p < 0.05). In B, the solid circles indicate significant effects (p < 0.05), the hollow circles indicate non-significant effects (p > 0.05) and the error bars denote 95% confidence intervals. In C, the response ratio, which was calculated as the natural logarithm of the ratio of degradation plots to non-degradation plots, was used in univariate regression and random forest analyses to account for spatial heterogeneity among different sampling sites. AM, alpine meadow; AS, alpine steppe; ASM, alpine swamp meadow; HD, heavy degradation; MAP, mean annual precipitation; MAT, mean annual air temperature; MD, moderate degradation; ND, non-degradation; SD, slight degradation.
[1] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[2] | Bai Y, Ma L, Degen AA, Rafiq MK, Kuzyakov Y, Zhao J, Zhang R, Zhang T, Wang W, Li X, Long R, Shang Z (2020). Long-term active restoration of extremely degraded alpine grassland accelerated turnover and increased stability of soil carbon. Global Change Biology, 26, 7217-7228. |
[3] | Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[4] | Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, et al. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735. |
[5] | Bates D, Mächler M, Bolker B, Walker S (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[6] | Breidenbach A, Schleuss PM, Liu S, Schneider D, Dippold MA, de la Haye T, Miehe G, Heitkamp F, Seeber E, Mason-Jones K, Xu X, Yang H, Xu J, Dorji T, Gube M, et al. (2022). Microbial functional changes mark irreversible course of Tibetan grassland degradation. Nature Communications, 13, 2681. DOI: 10.1038/s41467-022-30047-7. |
[7] | Breiman L (2001). Random forests. Machine Learning, 45(1), 5-32. |
[8] | Dong QM, Zhou HK, Shi JJ, Dong SK, Shang ZH, Wang XC, Shang YC, Zhao ZZ, Li SX, Wang YL (2018). Quantitative health assessment and production of alpine grassland: integration and demonstration of ecological function improvement technology. Qinghai Science and Technology, 25(1), 15-24. |
[董全民, 周华坤, 施建军, 董世魁, 尚占环, 汪新川, 尚永成, 赵之重, 李世雄, 王彦龙 (2018). 高寒草地健康定量评价及生产——生态功能提升技术集成与示范. 青海科技, 25(1), 15-24.] | |
[9] | Dong S, Shang Z, Gao J, Boone RB (2020). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 287, 106684. DOI: 10.1016/j.agee.2019.106684. |
[10] | Fang JY, Geng XQ, Zhao X, Shen HH, Hu HF (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63, 1731-1739. |
[方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰 (2018). 我国草地面积有多大? 科学通报, 63, 1731-1739.] | |
[11] | Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80, 1150-1156. |
[12] | Hurlbert SH (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187-211. |
[13] | Institute of Soil Science, Chinese Academy of Sciences (1980). Soils of China. Science Press, Beijing. |
[中国科学院南京土壤研究所 (1980). 中国土壤. 科学出版社, 北京.] | |
[14] | Jing HY, Xiong XS, Jiang F, Pu XC, Ma WH, Li DJ, Liu ZL, Wang ZH (2024). Climate change filtered out resource-acquisitive plants in a temperate grassland in Inner Mongolia, China. Science China-Life Sciences, 67, 403-413. |
[15] | Ma YS, Lang BN, Li QY, Shi JJ, Dong QM (2002). Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow River source region. Pratacultural Science, 19(9), 1-5. |
[马玉寿, 郎百宁, 李青云, 施建军, 董全民 (2002). 江河源区高寒草甸退化草地恢复与重建技术研究. 草业科学, 19(9), 1-5.] | |
[16] | Miehe G, Miehe S, Kaiser K, Liu J, Zhao X (2008). Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio, 37, 272-279. |
[17] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in northern China. Chinese Science Bulletin, 63, 1642-1650. |
[潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[18] | Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016). Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817-827. |
[19] | R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
[20] | Ren JZ, Xu G, Li XL, Lin HL, Tang Z (2016). Development track and prospect of pratacultural science in China. Chinese Science Bulletin, 61, 178-192. |
[任继周, 胥刚, 李向林, 林慧龙, 唐增 (2016). 中国草业科学的发展轨迹与展望. 科学通报, 61, 178-192.] | |
[21] | Ren S, Terrer C, Li J, Cao Y, Yang S, Liu D (2024). Historical impacts of grazing on carbon stocks and climate mitigation opportunities. Nature Climate Change, 14, 380-386. |
[22] | Shang ZH, Dong QM, Shi JJ, Zhou HK, Dong SK, Shao XQ, Li SX, Wang YL, Ma YS, Ding LM, Cao GM, Long RJ (2018). Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau——Concurrently discuss of ecological restoration in Sangjiangyuan region. Acta Agrestia Sinica, 26(1), 1-21. |
[尚占环, 董全民, 施建军, 周华坤, 董世魁, 邵新庆, 李世雄, 王彦龙, 马玉寿, 丁路明, 曹广民, 龙瑞军 (2018). 青藏高原“黑土滩”退化草地及其生态恢复近10年研究进展——兼论三江源生态恢复问题. 草地学报, 26(1), 1-21.]
DOI |
|
[23] |
Strömberg CAE, Staver AC (2022). The history and challenge of grassy biomes. Science, 377, 592-593.
DOI PMID |
[24] | Su PX, Zhou ZJ, Shi R, Xie TT (2018). Variation in basic properties and carbon sequestration capacity of an alpine sod layer along moisture and elevation gradients. Acta Ecologica Sinica, 38, 1040-1052. |
[苏培玺, 周紫鹃, 侍瑞, 解婷婷 (2018). 高寒草毡层基本属性与固碳能力沿水分和海拔梯度的变化. 生态学报, 38, 1040-1052.] | |
[25] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences(2007). 1:1 000 000 Vegetation Map of the People’s Republic of China. Geological Publishing House, Beijing. |
[中国科学院中国植被图编辑委员会 (2007). 1:1 000 000中国植被图集. 地质出版社, 北京.] | |
[26] | Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.agee.2020.106970. |
[27] | Wang L, Wang DL (2007). Research advances in diet selection mechanisms of grazing herbivores. Chinese Journal of Applied Ecology, 18, 205-211. |
[王岭, 王德利 (2007). 放牧家畜食性选择机制研究进展. 应用生态学报, 18, 205-211.] | |
[28] | Wang XX, Dong SK, Sherman R, Liu QR, Liu SL, Li YY, Wu Y (2015). A comparison of biodiversity-ecosystem function relationships in alpine grasslands across a degradation gradient on the Qinghai-Tibetan Plateau. Rangeland Journal, 37(1), 45-55. |
[29] |
Wu Z, Peng YF, Yang GB, Li QL, Liu Y, Ma LH, Yang YH, Jiang XJ (2022). Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands. Chinese Journal of Plant Ecology, 46, 461-472.
DOI |
[吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军 (2022). 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响. 植物生态学报, 46, 461-472.]
DOI |
|
[30] | Yu LF, Sun WJ, Zhang HY, Cong N, Chen Y, Hu JJ, Jing X (2024). Grazing exclusion jeopardizes plant biodiversity effect but enhances dryness effect on multifunctionality in arid grasslands. Agriculture, Ecosystems & Environment, 363, 108883. DOI: 10.1016/j.agee.2024.108883. |
[31] | Zhang HJ, Chen WL, Dong LZ, Wang W (2024). Grassland degradation amplifies the negative effect of nitrogen enrichment on soil microbial community stability. Global Change Biology, 30, e17217. DOI: 10.1111/gcb.17217. |
[32] | Zhang M, Delgado-Baquerizo M, Li G, Isbell F, Wang Y, Hautier Y, Wang Y, Xiao Y, Cai J, Pan X, Wang L (2023). Experimental impacts of grazing on grassland biodiversity and function are explained by aridity. Nature Communications, 14, 5040. DOI: 10.1038/s41467-023-40809-6. |
[33] | Zhang WJ, Xue X, Peng F, You QG, Hao AH (2019). Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Global Ecology and Conservation, 20, e00774. DOI: 10.1016/j.gecco.2019.e00774. |
[34] | Zhao XQ (2011). Degraded Grassland Ecosystem Restoration and Sustainable Management for Three-River Source Area. Science Press, Beijing. |
[赵新全 (2011). 三江源区退化草地生态系统恢复与可持续管理. 科学出版社, 北京.] | |
[35] | Zhou HK, Yao BQ, Yu L (2016). Degraded Succession and Ecological Restoration of Alpine Grassland in the Three-River Source Region. Science Press, Beijing. |
[周华坤, 姚步青, 于龙 (2016). 三江源区高寒草地退化演替与生态恢复. 科学出版社, 北京.] | |
[36] | Zhou TC, Hou G, Sun J, Zong N, Shi PL (2021). Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Science of the Total Environment, 800, 149572. DOI: 10.1016/j.scitotenv.2021.149572. |
[37] | Zhu QA, Chen H, Peng CH, Liu JX, Piao SL, He JS, Wang SP, Zhao XQ, Zhang J, Fang XQ, Jin JX, Yang QE, Ren LL, Wang YF (2023). An early warning signal for grassland degradation on the Qinghai-Tibetan Plateau. Nature Communications, 14, 6406. DOI: 10.1038/s41467-023-42099-4. |
[1] | 李冬梅 孙龙 韩宇 胡同欣 杨光 蔡慧颖. 计划火烧对红松人工林生物多样性与生态系统多功能性关系的影响[J]. 植物生态学报, 2025, 49(3): 0-0. |
[2] | 李天琦, 曹继容, 柳小妮, 田思惠, 兰波兰, 邱颖, 薛建国, 张倩, 褚建民, 张淑敏, 黄建辉, 李凌浩, 王其兵. 内蒙古典型草原土壤酶化学计量与限制性养分对放牧的响应[J]. 植物生态学报, 2025, 49(1): 19-29. |
[3] | 王雯莹, 肖元明, 王小赟, 徐嘉昕, 马玉花, 李强峰, 周国英. 多功能群物种配置模式下退化高寒草甸植物多样性与生态系统多功能性的关联[J]. 植物生态学报, 2025, 49(1): 103-117. |
[4] | 房凯, 王迎新, 黄建辉, 段俊光, 张琦, 张倩, 甘红豪, 褚建民. 内蒙古典型草原不同退化阶段植被恢复的养分限制因子解析[J]. 植物生态学报, 2025, 49(1): 7-18. |
[5] | 许梦真, 卢正宽, 谭星儒, 王彦兵, 苏天成, 窦山德, 潘庆民, 陈世苹. 呼伦贝尔草甸草原退化特征因子识别与快速诊断指标体系构建[J]. 植物生态学报, 2025, 49(1): 42-58. |
[6] | 张嘉睿, 段晓洋, 兰天翔, 苏日高格, 刘林, 郭钟阳, 吕浩然, 张炜平, 李隆. 植物多样性对土壤有机碳及其稳定性影响的研究进展[J]. 植物生态学报, 2024, 48(11): 1393-1405. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[9] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[10] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[11] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 王姝文, 李文怀, 李艳龙, 严慧, 李永宏. 放牧家畜类型对内蒙古典型草原植物多样性和群落结构的影响[J]. 植物生态学报, 2022, 46(8): 941-950. |
[14] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[15] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19