植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 19-29.DOI: 10.17521/cjpe.2024.0113 cstr: 32100.14.cjpe.2024.0113
李天琦1,2(), 曹继容1,*(
), 柳小妮2, 田思惠1,3, 兰波兰1,3, 邱颖1, 薛建国1, 张倩4, 褚建民4, 张淑敏1, 黄建辉1, 李凌浩1, 王其兵1
收稿日期:
2024-04-17
接受日期:
2024-12-10
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* (jrcao@ibcas.ac.cn)作者简介:
李天琦: ORCID: 0009-0001-5868-9133
基金资助:
LI Tian-Qi1,2(), CAO Ji-Rong1,*(
), LIU Xiao-Ni2, TIAN Si-Hui1,3, LAN Bo-Lan1,3, QIU Ying1, XUE Jian-Guo1, ZHANG Qian4, CHU Jian-Min4, ZHANG Shu-Min1, HUANG Jian-Hui1, LI Ling-Hao1, WANG Qi-Bing1
Received:
2024-04-17
Accepted:
2024-12-10
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
土壤胞外酶介导有机物分解, 维持生态系统内养分循环, 其活性及化学计量比是反映土壤养分可利用性、解析微生物资源限制的重要指标。然而放牧, 特别是过度放牧引起的内蒙古典型草原退化对土壤胞外酶化学计量和养分限制特征的影响尚不清楚。该研究以内蒙古典型草原为研究对象, 基于放牧强度梯度实验, 分析了不同放牧强度下土壤胞外酶活性及其化学计量比的变化, 并通过矢量模型解析了土壤养分限制特征。结果表明: (1)研究区域土壤水解酶活性在0-300 nmol·g-1·h-1范围内, 与全球土壤酶库中的相应数值相比偏低。放牧强度显著影响α-葡萄糖苷酶、纤维素水解酶、木糖苷酶、纤维素二糖苷酶、β-1,4-N-乙酰氨基葡萄糖苷酶、亮氨酸氨基肽酶、酸性磷酸酶活性。随放牧强度的增加, 酶活性动态呈现“双峰曲线”格局, 分别在推荐放牧(RG)和中度放牧(MG)下出现活性峰值。(2)标准主轴回归分析表明, 碳循环酶活性和氮循环酶活性、磷循环酶活性三者之间存在显著的线性关系。土壤酶碳:氮:磷化学计量比约为1:2.3:1.3, 偏离了全球1:1:1的结果。(3)基于土壤酶化学计量比的矢量模型分析表明内蒙古典型草原放牧草地受到氮磷共同限制, 磷限制更强烈, 且随着放牧强度的增强, 磷限制加剧。
李天琦, 曹继容, 柳小妮, 田思惠, 兰波兰, 邱颖, 薛建国, 张倩, 褚建民, 张淑敏, 黄建辉, 李凌浩, 王其兵. 内蒙古典型草原土壤酶化学计量与限制性养分对放牧的响应. 植物生态学报, 2025, 49(1): 19-29. DOI: 10.17521/cjpe.2024.0113
LI Tian-Qi, CAO Ji-Rong, LIU Xiao-Ni, TIAN Si-Hui, LAN Bo-Lan, QIU Ying, XUE Jian-Guo, ZHANG Qian, CHU Jian-Min, ZHANG Shu-Min, HUANG Jian-Hui, LI Ling-Hao, WANG Qi-Bing. Response of soil enzyme stoichiometry to grazing and identification of soil limiting nutrients in typical steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 2025, 49(1): 19-29. DOI: 10.17521/cjpe.2024.0113
土壤酶 Soil enzyme | 放牧强度 Grazing intensity | ||||
---|---|---|---|---|---|
CK | RG | LG | MG | HG | |
AG | 8.73 ± 0.61a | 8.13 ± 0.40ab | 7.43 ± 0.41ab | 7.75 ± 0.62ab | 6.78 ± 0.43b |
BG | 11.03 ± 0.89a | 11.58 ± 1.06a | 9.47 ± 0.42a | 8.98 ± 1.00a | 9.05 ± 0.61a |
CBH | 1.70 ± 0.25b | 0.79 ± 0.36c | 1.87 ± 0.33ab | 2.01 ± 0.23ab | 2.67 ± 0.23a |
XS | 8.33 ± 0.73ab | 8.82 ± 0.47a | 6.70 ± 0.64bc | 7.55 ± 0.85ab | 4.91 ± 0.58c |
CB | 5.47 ± 0.46a | 5.40 ± 0.29a | 4.60 ± 0.42ab | 5.00 ± 0.52a | 3.48 ± 0.30b |
NAG | 12.40 ± 0.65ab | 14.52 ± 2.53a | 11.21 ± 0.39ab | 10.76 ± 0.69ab | 9.40 ± 0.51b |
LAP | 257.56 ± 14.78a | 254.98 ± 14.28a | 217.66 ± 13.10ab | 229.61 ± 17.56ab | 198.45 ± 7.94b |
AP | 26.36 ± 3.29ab | 28.56 ± 2.80a | 17.93 ± 3.10b | 22.21 ± 3.47ab | 8.84 ± 1.37c |
表1 放牧强度对土壤胞外酶活性的影响(平均值±标准误, nmol·g-1·h-1, n = 20)
Table 1 Effect of grazing intensity on soil extracellular enzyme activities (mean ± SE, nmol·g-1·h-1, n = 20)
土壤酶 Soil enzyme | 放牧强度 Grazing intensity | ||||
---|---|---|---|---|---|
CK | RG | LG | MG | HG | |
AG | 8.73 ± 0.61a | 8.13 ± 0.40ab | 7.43 ± 0.41ab | 7.75 ± 0.62ab | 6.78 ± 0.43b |
BG | 11.03 ± 0.89a | 11.58 ± 1.06a | 9.47 ± 0.42a | 8.98 ± 1.00a | 9.05 ± 0.61a |
CBH | 1.70 ± 0.25b | 0.79 ± 0.36c | 1.87 ± 0.33ab | 2.01 ± 0.23ab | 2.67 ± 0.23a |
XS | 8.33 ± 0.73ab | 8.82 ± 0.47a | 6.70 ± 0.64bc | 7.55 ± 0.85ab | 4.91 ± 0.58c |
CB | 5.47 ± 0.46a | 5.40 ± 0.29a | 4.60 ± 0.42ab | 5.00 ± 0.52a | 3.48 ± 0.30b |
NAG | 12.40 ± 0.65ab | 14.52 ± 2.53a | 11.21 ± 0.39ab | 10.76 ± 0.69ab | 9.40 ± 0.51b |
LAP | 257.56 ± 14.78a | 254.98 ± 14.28a | 217.66 ± 13.10ab | 229.61 ± 17.56ab | 198.45 ± 7.94b |
AP | 26.36 ± 3.29ab | 28.56 ± 2.80a | 17.93 ± 3.10b | 22.21 ± 3.47ab | 8.84 ± 1.37c |
图1 不同放牧强度下土壤碳氮磷循环相关酶活性的变化(平均值±标准误, n = 20)。不同小写字母表示不同放牧强度间差异显著(p < 0.05)。AP, 酸性磷酸酶; BG, β-葡萄糖苷酶; LAP, 亮氨酸氨基肽酶; NAG, β-1,4-N-乙酰氨基葡萄糖苷酶。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧; RG, 推荐放牧。
Fig. 1 Soil extracellular enzyme activities associated with carbon (C), nitrogen (N) and phosphorus (P) acquisition under different grazing intensities (mean ± SE, n = 20). Significant differences among grazing intensities are indicated by different lowercase letters (p < 0.05). AP, acid phosphatase; BG, β-1,4-glucosidase; LAP, leucine aminopeptidase; NAG, β-N-acetyl glucosaminidas. CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing; RG, recommended grazing.
图2 不同放牧强度下土壤胞外酶化学计量比(平均值±标准误, n = 20)。不同小写字母表示不同放牧强度间差异显著(p < 0.05)。C, 碳; N, 氮; P, 磷。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧; RG, 推荐放牧。
Fig. 2 Soil extracellular enzyme stoichiometric ratios under different grazing intensities (mean ± SE, n = 20). Significant differences among grazing intensities are denoted by different lowercase letters (p < 0.05). C, carbon; N, nitrogen; P, phosphorus. CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing; RG, recommended grazing.
图3 酸性磷酸酶(AP)、β-葡萄糖苷酶(BG)、亮氨酸氨基肽酶(LAP)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)活性关系的标准主轴回归分析(n = 100)。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧; RG, 推荐放牧。
Fig. 3 Standard Major Axis (SMA) regression analyses illustrating the relationships between the activities of acid phosphatase (AP), β-1,4-glucosidase (BG), leucine aminopeptidase (LAP) and β-N-acetyl glucosaminidase (NAG) (n = 100). CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing; RG, recommended grazing.
图4 不同放牧强度下土壤酶化学计量的矢量模型分析。A, 矢量长度随放牧强度的变化(平均值±标准误)。B, 矢量角度随放牧强度的变化,其中虚线为45°阈值线(平均值±标准误)。C, 土壤酶碳氮化学计量比与碳磷化学计量比的关系, 虚线为1:1阈值线。D, 矢量长度与矢量角度的线性拟合以甄别限制性养分。不同小写字母表示不同放牧强度间差异显著(p < 0.05)。CK, 对照; HG, 重度放牧; LG, 轻度放牧; MG, 中度放牧; RG, 推荐放牧。
Fig. 4 Vector model analysis based on soil extracellular enzyme stoichiometric ratios under different grazing intensities. A, Variation of vector length with grazing intensity (mean ± SE). B, Variation of vector angle with grazing intensity, the dotted 45° threshold line distinguishes nitrogen (N) and phosphorus (P) limitation (mean ± SE). C, Relationship between soil enzyme carbon (C):N and C:P stoichiometric ratios, with the dashed line indicating the 1:1 threshold. D, Linear regression analysis of vector length and angle, highlighting patterns of nutrient limitation. Different lowercase letters denote significant differences among grazing intensities (p < 0.05). CK, control; HG, heavy grazing; LG, light grazing; MG, moderate grazing; RG, recommended grazing.
[1] | Ågren GI, Andersson FO (2011). Terrestrial Ecosystem Ecology: Principles and Applications. Cambridge University Press, Cambridge. |
[2] | Ajorlo M, Abdullah RB, Hanif AHM, Halim RA, Yusoff MK (2010). How cattle grazing influences heavy metal concentrations in tropical pasture soils. Polish Journal of Environmental Studies, 19, 895-902. |
[3] | Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources, 29, 261-299. |
[4] | Bai WM, Fang Y, Zhou M, Xie T, Li LH, Zhang WH (2015). Heavily intensified grazing reduces root production in an Inner Mongolia temperate steppe. Agriculture, Ecosystems & Environment, 200, 143-150. |
[5] | Bell C, Carrillo Y, Boot CM, Rocca JD, Pendall E, Wallenstein MD (2014). Rhizosphere stoichiometry: Are C:N:P ratios of plants, soils, and enzymes conserved at the plant species-level? New Phytologist, 201, 505-517. |
[6] | Borase DN, Nath CP, Hazra KK, Senthilkumar M, Singh SS, Praharaj CS, Singh U, Kumar N (2020). Long-term impact of diversified crop rotations and nutrient management practices on soil microbial functions and soil enzymes activity. Ecological Indicators, 114, 106322. DOI: 10.1016/j.ecolind.2020.106322. |
[7] | Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology & Biochemistry, 58, 216-234. |
[8] | Butcher KR, Nasto MK, Norton JM, Stark JM (2020). Physical mechanisms for soil moisture effects on microbial carbon-use efficiency in a sandy loam soil in the western United States. Soil Biology & Biochemistry, 150, 107969. DOI: 10.1016/j.soilbio.2020.107969. |
[9] |
Byrnes RC, Eastburn DJ, Tate KW, Roche LM (2018). A global meta-analysis of grazing impacts on soil health indicators. Journal of Environmental Quality, 47, 758-765.
DOI PMID |
[10] | Chapin III FS, Matson PA, Mooney HA (2002). Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York. |
[11] | Cui Y, Moorhead DL, Guo X, Peng S, Wang Y, Zhang X, Fang L (2021). Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecology and Biogeography, 30, 2297-2311. |
[12] | Cui YX, Fang LC, Guo XB, Wang X, Zhang YJ, Li PF, Zhang XC (2018). Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biology & Biochemistry, 116, 11-21. |
[13] | Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020). Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology & Biochemistry, 147, 107814. DOI: 10.1016/j.soilbio.2020.107814. |
[14] | de Mazancourt C, Loreau M, Abbadie L (1998). Grazing optimization and nutrient cycling: When do herbivores enhance plant production? Ecology, 79, 2242-2252. |
[15] | Dong CC, Wang W, Liu HY, Xu XT, Zeng H (2019). Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: evidence from soil extracellular enzyme stoichiometry. Ecological Indicators, 101, 453-464. |
[16] |
Dun SS, Cao JR, Jia X, Pang S (2017). Effects of grazing and mowing on extractable carbon and nitrogen in typical grassland of Inner Mongolia, China. Chinese Journal of Applied Ecology, 28, 3235-3242.
DOI |
[顿沙沙, 曹继容, 贾秀, 庞爽 (2017). 放牧和刈割对内蒙古典型草原土壤可提取碳和氮的影响. 应用生态学报, 28, 3235-3242.]
DOI |
|
[17] | Gao YQ, Dai XQ, Wang JL, Fu XL, Kou L, Wang HM (2019). Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations. Chinese Journal of Plant Ecology, 43, 258-272. |
[高雨秋, 戴晓琴, 王建雷, 付晓莉, 寇亮, 王辉民 (2019). 亚热带人工林下植被根际土壤酶化学计量特征. 植物生态学报, 43, 258-272.]
DOI |
|
[18] | Hamilton EW, Frank DA (2001). Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397-2402. |
[19] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI PMID |
[20] | Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR (2014). Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry, 120, 203-224. |
[21] | Ladwig LM, Sinsabaugh RL, Collins SL, Thomey ML (2015). Soil enzyme responses to varying rainfall regimes in Chihuahuan Desert soils. Ecosphere, 6(3), 1-10. |
[22] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
PMID |
[23] | Li LH, Chen JQ, Han XG, Zhang WH, Shao CL (2020). Grassland Ecosystems of China. Springer, Singapore. |
[24] | Li S, Zhang B, Li Y, Zhao T, Zheng J, Qiao J, Zhang F, Fadda C, Jarvis D, Bergamini N, Bai K, Zhang Z, Han G, Zhao M (2024). Long-term grazing exacerbates soil microbial carbon and phosphorus limitations in the desert steppe of Inner Mongolia—A study based on enzyme kinetics. Applied Soil Ecology, 194, 105192. DOI: 10.1016/j.apsoil.2023.105192. |
[25] |
Li Y, Niu SL, Yu GR (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22, 934-943.
DOI PMID |
[26] | Lü YX, Qi ZY, Liu W, Sun JM, Pan QM (2021). Effects of nitrogen and phosphorus addition at early-spring and middle-summer on ecosystem carbon exchanges of a degraded community in Nei Mongol typical steppe. Chinese Journal of Plant Ecology, 45, 334-344. |
[吕亚香, 戚智彦, 刘伟, 孙佳美, 潘庆民 (2021). 早春和夏季氮磷添加对内蒙古典型草原退化群落碳交换的影响. 植物生态学报, 45, 334-344.]
DOI |
|
[27] | Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, et al. (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 22, GB4026. DOI: 10.1029/2008GB003240. |
[28] | Maschinski J, Whitham TG (1989). The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. The American Naturalist, 134, 1-19. |
[29] | McNaughton SJ (1979). Grazing as an optimization process: grass-ungulate relationships in the Serengeti. The American Naturalist, 113, 691-703. |
[30] | Moorhead D, Cui YX, Sinsabaugh R, Schimel J (2023). Interpreting patterns of ecoenzymatic stoichiometry. Soil Biology & Biochemistry, 180, 108997. DOI: 10.1016/j.soilbio.2023.108997. |
[31] | Moorhead DL, Sinsabaugh RL (2006). A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151-174. |
[32] | Mori T, Rosinger C, Margenot AJ (2023). Enzymatic C:N:P stoichiometry: questionable assumptions and inconsistencies to infer soil microbial nutrient limitation. Geoderma, 429, 116242. DOI: 10.1016/j.geoderma.2022.116242. |
[33] | Pan QM, Yang YH, Huang JH (2023). Limiting factors of degraded grassland restoration in China and related basic scientific issues. Bulletin of National Natural Science Foundation of China, 37, 571-579. |
[潘庆民, 杨元合, 黄建辉 (2023). 我国退化草原恢复的限制因子及需要解决的基础科学问题. 中国科学基金, 37, 571-579.] | |
[34] |
Pan S, Bu JW, Gan AQ, Shang ZY, Guo D, Yang XX, Dong QM, Niu DC (2023). Effect of grazing intensities on extracellular enzyme stoichiometry of soil microorganisms in alpine grassland. Acta Agrestia Sinica, 31, 1780-1787.
DOI |
[潘森, 卜嘉玮, 甘安琪, 尚振艳, 郭丁, 杨晓霞, 董全民, 牛得草 (2023). 放牧强度对高寒草地土壤微生物胞外酶化学计量的影响. 草地学报, 31, 1780-1787.]
DOI |
|
[35] | Peng XQ, Wang W (2016). Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology & Biochemistry, 98, 74-84. |
[36] | Peñuelas J, Sardans J, Rivas-Ubach A, Janssens IA (2012). The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology, 18, 3-6. |
[37] | Ritchie ME, Tilman D, Knops JMH (1998). Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology, 79, 165-177. |
[38] |
Ru JY, Zhou YQ, Hui DF, Zheng MM, Wan SQ (2018). Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Global Change Biology, 24, 1001-1011.
DOI PMID |
[39] | Schönbach P, Wan HW, Gierus M, Bai YF, Müller K, Lin LJ, Susenbeth A, Taube F (2011). Grassland responses to grazing: effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant and Soil, 340, 103-115. |
[40] | Sinsabaugh RL, Follstad Shah JJ (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. |
[41] | Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-798. |
[42] |
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252-1264.
DOI PMID |
[43] | Stark S, Männistö MK, Eskelinen A (2014). Nutrient availability and pH jointly constrain microbial extracellular enzyme activities in nutrient-poor tundra soils. Plant and Soil, 383, 373-385. |
[44] | Steinweg JM, Dukes JS, Paul EA, Wallenstein MD (2013). Microbial responses to multi-factor climate change: effects on soil enzymes. Frontiers in Microbiology, 4, 146. DOI: 10.3389/fmicb.2013.00146. |
[45] | Tabatabai MA (1994). Methods of Soil Analysis. Part 2: Microbiological and Biochemical Properties. Soil Science Society of America, Madison, USA. |
[46] | Tapia-Torres Y, Elser JJ, Souza V, García-Oliva F (2015). Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biology & Biochemistry, 87, 34-42. |
[47] | Tiemann LK, Billings SA (2011). Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biology & Biochemistry, 43, 1837-1847. |
[48] | van Syoc E, Albeke SE, Scasta JD, 2022). Quantifying the immediate response of the soil microbial community to different grazing intensities on irrigated pastures. Agriculture, Ecosystems & Environment, 326, 107805. DOI: 10.1016/j.agee.2021.107805. |
[49] | Wang JW, Cai YQ (1988). Study on genesis, types and characteristics of the soils of the Xilin River Basin//Inner Mongolia Grassland Ecosystem Research Station, Academia Sinica. Research on Grassland Ecosystem: No. 3. Science Press, Beijing. 24-83. |
[汪久文, 蔡蔚祺 (1988). 锡林河流域土壤的发生类型及其性质的研究// 中国科学院内蒙古草原生态系统定位站. 草原生态系统研究: 第三集. 科学出版社, 北京. 24-83.] | |
[50] | Wang X, Cui YX, Zhang XC, Ju WL, Duan CJ, Wang YQ, Fang LC (2020). A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: evidence derived from microbial metabolic limitation. Science of the Total Environment, 738, 139709. DOI: 10.1016/j.scitotenv.2020.139709. |
[51] | Waring BG, Weintraub SR, Sinsabaugh RL (2014). Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, 117, 101-113. |
[52] | Wu LJ, Li X, Zhao ML, Bai YF (2020). Grazing regulation of phosphorus cycling in grassland ecosystems: advances and prospects. Chinese Science Bulletin, 65, 2469-2482. |
[乌力吉, 李响, 赵萌莉, 白永飞 (2020). 放牧对草地生态系统磷循环调控机制的研究进展与展望. 科学通报, 65, 2469-2482.] | |
[53] | Xu H, Qu Q, Li G, Liu G, Geissen V, Ritsema CJ, Xue S (2022). Impact of nitrogen addition on plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation. Soil Biology & Biochemistry, 170, 108714. DOI: 10.1016/j.soilbio.2022.108714. |
[54] | Xu H, You C, Tan B, Xu L, Liu Y, Wang M, Xu Z, Sardans J, Peñuelas J (2023). Effects of livestock grazing on the relationships between soil microbial community and soil carbon in grassland ecosystems. Science of the Total Environment, 881, 163416. DOI: 10.1016/j.scitotenv.2023.163416. |
[55] | Xu XT, Liu HY, Song ZL, Wang W, Hu GZ, Qi ZH (2015). Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China. Scientific Reports, 5, 10284. DOI: 10.1038/srep10284. |
[56] | Yang Y, Liang C, Wang YQ, Cheng H, An SS, Chang SX (2020). Soil extracellular enzyme stoichiometry reflects the shift from P-to N-limitation of microorganisms with grassland restoration. Soil Biology & Biochemistry, 149, 107928. DOI: 10.1016/j.soilbio.2020.107928. |
[57] |
Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, Hu Y, Duan J, Li X, He Z, Xue K, van Nostrand J, Wang S, Zhou J (2013). Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Global Change Biology, 19, 637-648.
DOI PMID |
[58] |
Zhang D, Wang L, Qin S, Kou D, Wang S, Zheng Z, Peñuelas J, Yang Y (2023). Microbial nitrogen and phosphorus co-limitation across permafrost region. Global Change Biology, 29, 3910-3923.
DOI PMID |
[59] | Zhang W, Xu YD, Gao DX, Wang X, Liu WC, Deng J, Han XH, Yang GH, Feng YZ, Ren GX (2019). Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology & Biochemistry, 134, 1-14. |
[60] | Zuo YP, Li JP, Zeng H, Wang W (2018). Vertical pattern and its driving factors in soil extracellular enzyme activity and stoichiometry along mountain grassland belts. Biogeochemistry, 141, 23-39. |
[1] | 房凯, 王迎新, 黄建辉, 段俊光, 张琦, 张倩, 甘红豪, 褚建民. 内蒙古典型草原不同退化阶段植被恢复的养分限制因子解析[J]. 植物生态学报, 2025, 49(1): 7-18. |
[2] | 许梦真, 卢正宽, 谭星儒, 王彦兵, 苏天成, 窦山德, 潘庆民, 陈世苹. 呼伦贝尔草甸草原退化特征因子识别与快速诊断指标体系构建[J]. 植物生态学报, 2025, 49(1): 42-58. |
[3] | 牛亚平, 高晓霞, 姚世庭, 杨元合, 彭云峰. 退化高寒草地植物多样性和功能群组成与地上生产力的关系[J]. 植物生态学报, 2025, 49(1): 83-92. |
[4] | 秦嘉晨, 王欢, 朱江, 王扬, 田晨, 白永飞, 杨培志, 郑淑霞. 基于种内与种间性状变异的放牧过滤作用及其尺度效应[J]. 植物生态学报, 2024, 48(7): 858-871. |
[5] | 江康威, 张青青, 王亚菲, 李宏, 丁雨, 杨永强, 吐尔逊娜依•热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 701-718. |
[6] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[7] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[8] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[9] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[10] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[11] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[12] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[13] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[14] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[15] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19