植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 148-158.DOI: 10.17521/cjpe.2024.0148 cstr: 32100.14.cjpe.2024.0148
郝毅晴1,2, 刘伟1,*(), 杨阳1,2, 安冰儿1,2, 范冰3, 李超4, 崔久辉3, 程延彬3, 孙佳美1, 潘庆民1,2,*(
)
收稿日期:
2024-05-09
接受日期:
2024-11-12
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* (刘伟, lw076@ibcas.ac.cn;基金资助:
HAO Yi-Qing1,2, LIU Wei1,*(), YANG Yang1,2, AN Bing-Er1,2, FAN Bing3, LI Chao4, CUI Jiu-Hui3, CHENG Yan-Bin3, SUN Jia-Mei1, PAN Qing-Min1,2,*(
)
Received:
2024-05-09
Accepted:
2024-11-12
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
羊草(Leymus chinensis)草原是中国北方温带草原具代表性的植物群落类型。过度放牧导致羊草种群在群落中的比例大幅度降低。施用有机肥或无机肥可以显著促进羊草种群的恢复, 但其背后的机制迄今尚不清楚。该研究以呼伦贝尔退化羊草草原为对象, 探讨了相同的氮、磷添加水平下, 有机肥和无机肥对植物群落、羊草种群和个体的影响。结果表明: 在植物群落水平, 有机肥和无机肥添加均显著提高了群落地上生物量(2021-2023年), 且有机肥的增产效果显著大于无机肥, 但是, 第2年和第3年, 有机肥处理显著降低了植物物种多样性。在羊草种群水平, 施用有机肥和无机肥均显著提高了羊草种群地上生物量以及羊草在群落中的比例, 且有机肥处理效果优于无机肥。在处理第3年, 无机肥和有机肥处理羊草种群密度分别比对照提高了1.79和8.89倍。在羊草个体水平, 无机肥和有机肥处理的第3年, 羊草个体生物量分别比对照增加了85.3%和69.1%。羊草种群密度可解释其种群生物量变化的81.8%, 而个体生物量只能解释6.2%。以上结果表明, 施用无机肥或有机肥促进羊草种群优势地位的恢复主要是通过密度调节进行的。
郝毅晴, 刘伟, 杨阳, 安冰儿, 范冰, 李超, 崔久辉, 程延彬, 孙佳美, 潘庆民. 有机肥和无机肥对退化草原羊草种群密度和个体生物量的影响. 植物生态学报, 2025, 49(1): 148-158. DOI: 10.17521/cjpe.2024.0148
HAO Yi-Qing, LIU Wei, YANG Yang, AN Bing-Er, FAN Bing, LI Chao, CUI Jiu-Hui, CHENG Yan-Bin, SUN Jia-Mei, PAN Qing-Min. Effects of organic and inorganic fertilizers on density and individual biomass of Leymus chinensis in degraded grasslands. Chinese Journal of Plant Ecology, 2025, 49(1): 148-158. DOI: 10.17521/cjpe.2024.0148
图1 无机肥(IN)和有机肥(ON)添加对呼伦贝尔退化草原群落地上生物量的影响(2021-2023年) (平均值±标准误, n = 6)。CK, 对照。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of inorganic (IN) and organic (ON) fertilization on community aboveground biomass of a degraded grassland in Hulun Buir (2021-2023) (mean ± SE, n = 6). CK, control. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图2 无机肥(IN)和有机肥(ON)添加对呼伦贝尔退化草原群落物种丰富度的影响(2021-2023年) (平均值±标准误, n = 6)。CK, 对照。不同小写字母表示处理间差异显著(p < 0.05), ns代表处理间差异不显著(p > 0.05)。
Fig. 2 Effects of inorganic (IN) and organic (ON) fertilization on species richness of a degraded grassland in Hulun Buir (2021-2023) (mean ± SE, n = 6). CK, control. Different lowercase letters indicate significant differences among treatments (p < 0.05), ns represents non-significant difference among treatments (p > 0.05).
图3 无机肥(IN)和有机肥(ON)添加对羊草种群地上生物量及其在群落地上生物量占比的影响(2021-2023年) (平均值±标准误, n = 6)。CK, 对照。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 3 Effects of inorganic (IN) and organic (ON) fertilization on aboveground biomass of Leymus chinensis and its proportion in community aboveground biomass (2021-2023) (mean ± SE, n = 6). CK, control. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图4 无机肥(IN)和有机肥(ON)添加对羊草种群密度和羊草个体生物量的影响(2021-2023年) (平均值±标准误, n = 6)。CK, 对照。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 4 Effects of inorganic (IN) and organic (ON) fertilization on population density and individual biomass of Leymus chinensis (2021-2023) (mean ± SE, n = 6). CK, control. Different lowercase letters indicate significant differences among treatments (p < 0.05).
图5 羊草种群密度和个体生物量对羊草种群地上生物量变异的贡献(2021-2023年)。
Fig. 5 Contributions of population density and individual biomass of Leymus chinensis to variation of its aboveground population biomass (2021-2023).
图6 土壤无机氮含量、pH与羊草种群密度、个体生物量的相关性(2022年)。实线和阴影表示具有95%置信区间的回归线。图中显示了两变量间的统计值(R2和显著性水平)和线性回归方程。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 6 Correlation between soil inorganic nitrogen content, pH and population density and individual biomass of Leymus chinensis (2022). The lines and shades represent the regression lines with 95% confidence intervals. Statistics (R2 and p values) and the equations for the linear regression are shown. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] | Bai X, Cheng JH, Zheng SX, Zhan SX, Bai YF (2014). Ecophysiological responses of Leymus chinensis to nitrogen and phosphorus additions in a typical steppe. Chinese Journal of Plant Ecology, 38, 103-115. |
[白雪, 程军回, 郑淑霞, 詹书侠, 白永飞 (2014). 典型草原建群种羊草对氮磷添加的生理生态响应. 植物生态学报, 38, 103-115.]
DOI |
|
[2] | Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372. |
[3] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
PMID |
[4] | Benson EJ, Hartnett DC (2006). The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie. Plant Ecology, 187, 163-178. |
[5] | Chen JB, Dong CC, Yao XD, Wang W (2018). Effects of nitrogen addition on plant biomass and tissue elemental content in different degradation stages of temperate steppe in Northern China. Journal of Plant Ecology, 11, 730-739. |
[6] | Chen ZZ, Huang DH, Zhang HF (1984). The content levels of chemical elements of plants in the castanozems typical steppe zone of Nei Monggol. Acta Botanica Sinica, 26, 209-215. |
[陈佐忠, 黄德华, 张鸿芳 (1984). 内蒙古栗钙土典型草原地带植物化学元素含量的水平及其分组. 植物学报, 26, 209-215.] | |
[7] | Fang JY, Pan QM, Gao SQ, Jing HC, Zhang WH (2016). “Small vs. Large Area” Principle: protecting and restoring a large area of natural grassland by establishing a small area of cultivated pasture. Pratacultural Science, 33, 1913-1916. |
[方精云, 潘庆民, 高树琴, 景海春, 张文浩 (2016). “以小保大”原理: 用小面积人工草地建设换取大面积天然草地的保护与修复. 草业科学, 33, 1913-1916.] | |
[8] | Fang ZM, Wu BW, Ji YY (2021). The amino acid transporter OsAAP4 contributes to rice tillering and grain yield by regulating neutral amino acid allocation through two splicing variants. Rice, 14, 2. DOI: 10.1186/s12284-020-00446-9. |
[9] |
Gravuer K, Gennet S, Throop HL (2019). Organic amendment additions to rangelands: a meta-analysis of multiple ecosystem outcomes. Global Change Biology, 25, 1152-1170.
DOI PMID |
[10] | Gu PY, Luo FF, Tao WQ, Li Y, Wang DJ, Wu X, Ju XX, Chao L, Zhang YL (2022). Higher nitrogen content and auxin export from rice tiller enhance low-ammonium-dependent tiller outgrowth. Journal of Plant Physiology, 268, 153562. DOI: 10.1016/j.jplph.2021.153562. |
[11] |
Hautier Y, Niklaus PA, Hector A (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
DOI PMID |
[12] | He F, Tong ZY, Wang LX, Zheng GL, Li XL (2018). Effect of fertilizer additions on plant communities and soil properties in a temperate grassland steppe. Polish Journal of Environmental Studies, 27, 1533-1540. |
[13] | He NP, Yu Q, Wu L, Wang YS, Han XG (2008). Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of Northern China. Soil Biology & Biochemistry, 40, 2952-2959. |
[14] | Ji YY, Huang WT, Wu BW, Fang ZM, Wang XL (2020). The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa. Journal of Experimental Botany, 71, 4763-4777. |
[15] | Jiang S, Qi QH, Kong DZ (1985). A comparative study on production of Leymus chinensis and Stipa grandis steppe communities at Baiinsile livestock farm in Inner Mongolia region//Inner Mongolia Grassland Ecosystem Research Station, Academia Sinica. Research on Grassland Ecosystem: No. 1. Science Press, Beijing. 12-23. |
[姜恕, 戚秋慧, 孔德珍 (1985). 羊草草原群落和大针茅草原群落生物量的初步比较// 中国科学院内蒙古草原生态系统定位研究站, 草原生态系统研究: 第一集. 科学出版社, 北京. 12-23.] | |
[16] | Jiang YD, Liu X, Zheng Y, Guo WX, Zhao TQ (2023). Degradation status of grassland resources and exploration of ecological restoration in Inner Mongolia. Grassland and Prataculture, 35(1), 57-61. |
[姜亚东, 刘鑫, 郑颖, 郭威星, 赵天启 (2023). 内蒙古草地资源退化现状及生态修复探索. 草原与草业, 35(1), 57-61.] | |
[17] | Kang S, Niu JM, Zhang Q, Han GD, Bao HF (2020). State transition and sustainability during grazing-induced degradation of Leymus chinensis grassland. Chinese Journal of Ecology, 39, 3147-3154. |
[康萨如拉, 牛建明, 张庆, 韩国栋, 宝海风 (2020). 羊草草原退化演替中的状态转变和可持续性. 生态学杂志, 39, 3147-3154.] | |
[18] |
Lai JS, Zou Y, Zhang S, Zhang XG, Mao LF (2022). glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology, 15, 1302-1307.
DOI |
[19] | Li B (1997). Grassland degradation in Northern China and its control countermeasures. Scientia Agricultura Sinica, 30(6), 2-10. |
[李博 (1997). 中国北方草地退化及其防治对策. 中国农业科学, 30(6), 2-10.] | |
[20] | Li B, Sun HL, Zeng SD, Pu HX (1980). Discussion on grassland vegetation resources and their utilization direction in Hulunbuir pastoral area. Natural Resources, 2(4), 30-36. |
[李博, 孙鸿良, 曾泗弟, 浦汉昕 (1980). 呼伦贝尔牧区草场植被资源及其利用方向的探讨. 自然资源, 2(4), 30-36.] | |
[21] | Li J, Ma XF, Guo P, Bao GZ (2006). Effects of fertilizer and auxin supply on clonal architectures of Leymus chinensis. Pratacultural Science, 23(1), 18-21. |
[李静, 马小凡, 郭平, 包国章 (2006). 施肥及施加植物激素对羊草克隆构型的影响. 草业科学, 23(1), 18-21.] | |
[22] | Li YH (1988). The divergence and convergence of Aneurolepidium chinense steppe and Stipa grandis steppe under the grazing influence in Xilin River Valley, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica, 12, 189-196. |
[李永宏 (1988). 内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和趋同. 植物生态学与地植物学学报, 12, 189-196.] | |
[23] | Liu Y, Ding YF, Wang QS, Meng DX, Wang SH (2011). Effects of nitrogen and 6-benzylaminopurine on rice tiller bud growth and changes in endogenous hormones and nitrogen. Crop Science, 51, 786-792. |
[24] | Liu YQ, Li WW, Liu XY, Chu CC (2023). Molecular mechanism of tillering response to nitrogen in rice. Hereditas (Beijing), 45(5), 367-378. |
[刘永强, 李威威, 刘昕禹, 储成才 (2023). 水稻分蘖氮响应调控机理研究进展. 遗传, 45(5), 367-378.] | |
[25] | Liu YQ, Wang HR, Jiang ZM, Wang W, Xu RN, Wang QH, Zhang ZH, Li AF, Liang Y, Ou SJ, Liu XJ, Cao SY, Tong HN, Wang YH, Zhou F, et al. (2021). Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 590, 600-605. |
[26] |
Lu K, Wu BW, Wang J, Zhu W, Nie HP, Qian JJ, Huang WT, Fang ZM (2018). Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. Plant Biotechnology Journal, 16, 1710-1722.
DOI PMID |
[27] | Pan QM, Bai YF, Han XG, Yang JC (2004). Studies on the fate of labelled nitrogen applied to a Leymus chinensis community of typical steppe in Inner Mongolia grassland. Acta Phytoecologica Sinica, 28, 665-671. |
[潘庆民, 白永飞, 韩兴国, 杨景成 (2004). 内蒙古典型草原羊草群落氮素去向的示踪研究. 植物生态学报, 28, 665-671.]
DOI |
|
[28] | Pan QM, Bai YF, Han XG, Yang JC (2005). Effects of nitrogen additions on a Leymus chinensis population in typical steppe of Inner Mongolia. Acta Phytoecologica Sinica, 29, 311-317. |
[潘庆民, 白永飞, 韩兴国, 杨景成 (2005). 氮素对内蒙古典型草原羊草种群的影响. 植物生态学报, 29, 311-317.]
DOI |
|
[29] | Pan QM, Sun JM, Yang YH, Liu W, Li A, Peng YF, Xue JG, Xia H, Huang JH (2021). Issues and solutions on grassland restoration and conservation in China. Bulletin of Chinese Academy of Sciences, 36, 666-674. |
[潘庆民, 孙佳美, 杨元合, 刘伟, 李昂, 彭云峰, 薛建国, 夏昊, 黄建辉 (2021). 我国草原恢复与保护的问题与对策. 中国科学院院刊, 36, 666-674.] | |
[30] | Pan QM, Yang YH, Huang JH (2023). Limiting factors of degraded grassland restoration in China and related basic scientific issues. Bulletin of National Natural Science Foundation of China, 37, 571-579. |
[潘庆民, 杨元合, 黄建辉 (2023). 我国退化草原恢复的限制因子及需要解决的基础科学问题. 中国科学基金, 37, 571-579.] | |
[31] | Qi ZY, Lv YX, Liu W, Sun JM, Wang J, Pan QM (2023). Mechanism for the restoration of degraded typical steppe by nitrogen and phosphorus co-addition. Chinese Journal of Applied Ecology, 34, 75-82. |
[戚智彦, 吕亚香, 刘伟, 孙佳美, 王璟, 潘庆民 (2023). 氮磷养分共同添加促进退化典型草原恢复的机制. 应用生态学报, 34, 75-82.]
DOI |
|
[32] | Qie TZ, Wu D, Zhang DJ, Li J, Liu LY, Qiao X, Wang HW, Jia SH (2023). Effects of different years of application of organic fertilizer on physical and chemical properties of soil. Journal of Anhui Agricultural Sciences, 51(12), 135-141. |
[且天真, 武迪, 张德建, 李娟, 刘凌悦, 乔旭, 王宏伟, 贾赛红 (2023). 不同年限施用有机肥对土壤理化性质的影响. 安徽农业科学, 51(12), 135-141.] | |
[33] | Ryals R, Kaiser M, Torn MS, Berhe AA, Silver WL (2014). Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biology & Biochemistry, 68, 52-61. |
[34] | Seabloom EW, Adler PB, Alberti J, Biederman L, Buckley YM, Cadotte MW, Collins SL, Dee L, Fay PA, Firn J, Hagenah N, Harpole WS, Hautier Y, Hector A, Hobbie SE, et al. (2021). Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 102, e03218. DOI: 10.1002/ecy.3218. |
[35] | Shang LR, Wan LQ, Zhou XX, Li S, Li XL (2020). Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE, 15, e0240559. DOI: 10.1371/journal.pone.0240559. |
[36] | Wan HW, Yang Y, Bai SQ, Xu YH, Bai YF (2008). Variations in leaf functional traits of six species along a nitrogen addition gradient in Leymus chinensis steppe in Inner Mongolia. Journal of Plant Ecology (Chinese Version), 32, 611-621. |
[万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞 (2008). 羊草草原群落6种植物叶片功能特性对氮素添加的响应. 植物生态学报, 32, 611-621.]
DOI |
|
[37] |
Wang J, Wu BW, Lu K, Wei Q, Qian JJ, Chen YP, Fang ZM (2019). The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiology, 180, 1031-1045.
DOI PMID |
[38] | Wang JF (2007). Effects of Fertilizing and Shading on Sexual Reproduction in Leymus chinensis. Master degree dissertation, Northeast Normal University, Changchun. |
[王俊峰 (2007). 施肥及遮光对羊草有性生殖的影响. 硕士学位论文, 东北师范大学, 长春.] | |
[39] | Wang JF (2011). Sexual Reproduction and Clonal Growth of Leymus chinensis in Response to Nitrogen Application, Waters, and Warming. PhD dissertation, Northeast Normal University, Changchun. |
[王俊峰 (2011). 氮、水和温度对羊草有性生殖及克隆生长的影响. 博士学位论文, 东北师范大学, 长春.] | |
[40] |
Wang J, Knops JMH, Brassil CE, Mu C (2017). Increased productivity in wet years drives a decline in ecosystem stability with nitrogen additions in arid grasslands. Ecology, 98, 1779-1786.
DOI PMID |
[41] | Wang RZ, Zu YG (2001). Biomass and energy allocation in Leymus chinensis population. Bulletin of Botanical Research, 21, 299-303. |
[王仁忠, 祖元刚 (2001). 羊草种群生物量和能量生殖分配的研究. 植物研究, 21, 299-303.] | |
[42] | Wang YS (1993). Dynamics of a clonal Leymus chinensis population in the Songnen steppe in Northeastern China. Acta Ecologica Sinica, 13, 291-299. |
[王昱生 (1993). 羊草(Leymus chinensis)种群无性系种群动态的初步研究. 生态学报, 13, 291-299.] | |
[43] | Wang YS, Gai XC (1995). Study on the growth pattern and resource allocation of Leymus chinensis clonal plant population. Acta Phytoecologica Sinica, 19, 293-301. |
[王昱生, 盖晓春 (1995). 羊草无性系植物种群觅养生长格局与资源分配的研究. 植物生态学报, 19, 293-301.] | |
[44] | Xu JX, Zha MR, Li Y, Ding YF, Chen L, Ding CQ, Wang SH (2015). The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Reports, 34, 1647-1662. |
[45] | Xu ZW, Wan SQ, Ren HY, Han XG, Jiang Y (2012). Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands. Journal of Arid Environments, 87, 103-109. |
[46] | Yang GP, Qi SW (2015). Research advances about effects of organic fertilizer on soil environment and tobacco leaf quality. Journal of Anhui Agricultural Sciences, 43(14), 171-175. |
[杨国萍, 齐绍武 (2015). 有机肥对土壤环境及烟叶品质影响的研究进展. 安徽农业科学, 43(14), 171-175.] | |
[47] | Yang G, Lü X, Stevens CJ, Zhang G, Wang H, Wang Z, Zhang Z, Liu Z, Han X (2019). Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 189, 769-779. |
[48] | Yang Y (2010). Nitrogen Application Effects on Belowground Bud, Aboveground Shoot or Ramet Density and Biomass of Leymus chinensis in Songnen Plains. Master degree dissertation, Northeast Normal University, Changchun. |
[杨宇 (2010). 氮肥对羊草地下芽和地上植株密度及生物量的影响. 硕士学位论文, 东北师范大学, 长春.] | |
[49] | Yu L, Song XL, Zhao JN, Wang H, Bai L, Yang DL (2015). Responses of plant diversity and primary productivity to nutrient addition in a Stipa baicalensis grassland, China. Journal of Integrative Agriculture, 14, 2099-2108. |
[50] | Zhang MH, Hu DP, Zhang DC (2022). Advances in molecular mechanism of rice tillering. Biotic Resources, 44(1), 26-35. |
[张米欢, 胡东坡, 张德春 (2022). 水稻分蘖的分子机理研究进展. 生物资源, 44(1), 26-35.] |
[1] | 夏敏菖, 李倩倩, 钱清清, 任淑君, 梁应冲, 陈亭颖, 李映佳, 牟宗敏, 陈穗云. 青霉菌灭活菌丝体对白车轴草和黑麦草生长及生理特性的影响[J]. 植物生态学报, 2025, 49(1): 189-198. |
[2] | 马东峰, 贾存智, 王学朋, 赵鹏鹏, 胡小文. 甘南高寒退化草甸多物种组配的修复效果评估[J]. 植物生态学报, 2025, 49(1): 93-102. |
[3] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[4] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[5] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[6] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[7] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[10] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[11] | 于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制[J]. 植物生态学报, 2022, 46(6): 632-641. |
[12] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[13] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[14] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[15] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19