植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 159-172.DOI: 10.17521/cjpe.2024.0208 cstr: 32100.14.cjpe.2024.0208
徐嘉昕1, 肖元明2,3, 王小赟4, 王雯莹1, 马玉花1, 李强峰1, 周国英2,3,*()(
)
收稿日期:
2024-06-28
接受日期:
2024-12-24
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* 周国英: ORCID: 0000-0003-2485-6172 (zhougy@nwipb.cas.cn)基金资助:
XU Jia-Xin1, XIAO Yuan-Ming2,3, WANG Xiao-Yun4, WANG Wen-Ying1, MA Yu-Hua1, LI Qiang-Feng1, ZHOU Guo-Ying2,3,*()(
)
Received:
2024-06-28
Accepted:
2024-12-24
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
土壤质量下降是中度退化高寒草甸恢复的一个关键性限制原因, 同时, 不合理的氮磷肥施用对青藏高原生物多样性具有显著的负效应。然而, 目前针对青藏高原中度退化高寒草甸土壤质量提升技术仍缺乏系统研究。因此, 该研究以青藏高原中度退化高寒草甸为研究对象, 在氮磷肥配施耦合微生物菌肥的处理下, 对不同处理的植物群落特征、土壤理化性质及酶活性进行了研究, 以探究最佳的中度退化高寒草甸土壤质量提升技术。结果表明, 氮磷肥和微生物菌肥对土壤pH、酸性磷酸酶活性无显著影响, 但均显著提高了地上生物量, 并对土壤养分相关指标、电导率、碳氮磷循环相关酶活性的影响存在显著的交互作用。综合分析可知, 施用氮磷肥和微生物菌肥均对中度退化高寒草甸有明显的恢复作用, 微生物菌肥施用可改善土壤多功能性, 而氮磷肥配施微生物菌肥的处理效果优于单施氮磷肥。在配施微生物菌肥225 kg·hm-2的处理下, 45 kg·hm-2氮添加量配施20 kg·hm-2磷添加量的处理作用最佳。该研究结果为促进青藏高原中度退化的高寒退化草甸修复, 改善生态系统服务功能提供科学依据。
徐嘉昕, 肖元明, 王小赟, 王雯莹, 马玉花, 李强峰, 周国英. 微生物菌肥与氮磷肥回补对退化高寒草甸土壤理化性质和酶活性的影响. 植物生态学报, 2025, 49(1): 159-172. DOI: 10.17521/cjpe.2024.0208
XU Jia-Xin, XIAO Yuan-Ming, WANG Xiao-Yun, WANG Wen-Ying, MA Yu-Hua, LI Qiang-Feng, ZHOU Guo-Ying. Effects of microbial fertilizer and nitrogen and phosphorus fertilizer backfilling on soil physicochemical properties and enzyme activities in degraded alpine meadows. Chinese Journal of Plant Ecology, 2025, 49(1): 159-172. DOI: 10.17521/cjpe.2024.0208
序号 No. | 处理 Treatment (N+P) | 序号 No. | 处理 Treatment (N+P+M) |
---|---|---|---|
1 | N0P0 | 2 | N0P0+M |
3 | N0P1 | 4 | N0P1+M |
5 | N0P2 | 6 | N0P2+M |
7 | N1P1 | 8 | N1P1+M |
9 | N1P2 | 10 | N1P2+M |
11 | N2P1 | 12 | N2P1+M |
13 | N2P2 | 14 | N2P2+M |
15 | N1P0 | 16 | N1P0+M |
17 | N2P0 | 18 | N2P0+M |
表1 中度退化高寒草甸氮磷配施比例和微生物肥料梯度基本信息
Table 1 Basic information on nitrogen-to-phosphorus application ratio and microbial fertilizer gradient in moderately degraded alpine meadows
序号 No. | 处理 Treatment (N+P) | 序号 No. | 处理 Treatment (N+P+M) |
---|---|---|---|
1 | N0P0 | 2 | N0P0+M |
3 | N0P1 | 4 | N0P1+M |
5 | N0P2 | 6 | N0P2+M |
7 | N1P1 | 8 | N1P1+M |
9 | N1P2 | 10 | N1P2+M |
11 | N2P1 | 12 | N2P1+M |
13 | N2P2 | 14 | N2P2+M |
15 | N1P0 | 16 | N1P0+M |
17 | N2P0 | 18 | N2P0+M |
图1 青藏高原中度退化高寒草甸不同施肥处理下生物量变化(平均值±标准误)。不同小写字母表示各项指标在不同施肥处理之间的差异显著(p < 0.05)。N0, 氮添加(0 kg·hm-2); N1, 氮添加(45 kg·hm-2); N2, 氮添加(90 kg·hm-2); P0, 磷添加(0 kg·hm-2); P1, 磷添加(20 kg·hm-2); P2, 磷添加(40 kg·hm-2)。
Fig. 1 Changes of biomass in moderately degraded alpine meadows of the Qingzang Plateau under different fertilization treatments (mean ± SE). Different lowercase letters indicate significant differences between fertilizer treatments (p < 0.05). N0, nitrogen addition (0 kg·hm-2); N1, nitrogen addition (45 kg·hm-2); N2, nitrogen addition (90 kg·hm-2); P0, phosphorus addition (0 kg·hm-2); P1, phosphorus addition (20 kg·hm-2); P2, phosphorus addition (40 kg·hm-2).
图2 青藏高原中度退化高寒草甸不同施肥处理下物种多样性的变化(平均值±标准误)。不同小写字母表示各项指标在不同施肥处理之间的差异显著(p < 0.05); ns, p > 0.05。N0, 氮添加(0 kg·hm-2); N1, 氮添加(45 kg·hm-2); N2, 氮添加(90 kg·hm-2); P0, 磷添加(0 kg·hm-2); P1, 磷添加(20 kg·hm-2); P2, 磷添加(40 kg·hm-2)。
Fig. 2 Changes of species diversity in moderately degraded alpine meadows of the Qingzang Plateau under different fertilization treatments (mean ± SE). Different lowercase letters indicate significant differences between fertilizer treatments (p < 0.05); ns, p > 0.05. N0, nitrogen addition (0 kg·hm-2); N1, nitrogen addition (45 kg·hm-2); N2, nitrogen addition (90 kg·hm-2); P0, phosphorus addition (0 kg·hm-2); P1, phosphorus addition (20 kg·hm-2); P2, phosphorus addition (40 kg·hm-2).
图3 青藏高原中度退化高寒草甸不同施肥处理下土壤0-30 cm理化性质的变化(平均值±标准误)。不同小写字母表示各项指标在不同施肥处理之间的差异显著(p < 0.05); ns, p > 0.05。N0, 氮添加N0 (0 kg·hm-2); N1, 氮添加(45 kg·hm-2); N2, 氮添加(90 kg·hm-2); P0, 磷添加(0 kg·hm-2); P1, 磷添加(20 kg·hm-2); P2, 磷添加(40 kg·hm-2)。
Fig. 3 Changes of physical and chemical properties of soil 0-30 cm under in moderately degraded alpine meadows of the Qingzang Plateau under different fertilization treatments (mean ± SE). Different lowercase letters indicate significant differences between fertilizer treatments (p < 0.05); ns, p > 0.05. N0, nitrogen addition (0 kg·hm-2); N1, nitrogen addition (45 kg·hm-2); N2, nitrogen addition (90 kg·hm-2); P0, phosphorus addition (0 kg·hm-2); P1, phosphorus addition (20 kg·hm-2); P2, phosphorus addition (40 kg·hm-2).
图4 青藏高原中度退化高寒草甸不同施肥处理下土壤酶活性的变化(平均值±标准误)。不同小写字母表示各项指标在不同施肥处理之间的差异显著(p < 0.05); ns, p > 0.05。N0, 氮添加(0 kg·hm-2); N1, 氮添加(45 kg·hm-2); N2, 氮添加(90 kg·hm-2); P0, 磷添加(0 kg·hm-2); P1, 磷添加(20 kg·hm-2); P2, 磷添加(40 kg·hm-2)。
Fig. 4 Changes of soil enzyme activity in moderately degraded alpine meadows of the Qingzang Plateau under different fertilization treatments (mean ± SE). Different lowercase letters indicate significant differences between fertilizer treatments (p < 0.05); ns, p > 0.05. N0, nitrogen addition (0 kg·hm-2); N1, nitrogen addition (45 kg·hm-2); N2, nitrogen addition (90 kg·hm-2); P0, phosphorus addition (0 kg·hm-2); P1, phosphorus addition (20 kg·hm-2); P2, phosphorus addition (40 kg·hm-2).
图5 不同施肥处理对青藏高原土壤多功能性的影响(平均值±标准误)。不同小写字母表示各项指标在不同施肥处理之间的差异显著(p < 0.05)。N0, 氮添加(0 kg·hm-2); N1, 氮添加(45 kg·hm-2); N2, 氮添加(90 kg·hm-2); P0, 磷添加(0 kg·hm-2); P1, 磷添加(20 kg·hm-2); P2, 磷添加(40 kg·hm-2)。
Fig. 5 Effect of different fertilization treatments on soil multifunctionality of the Qingzang Plateau (mean ± SE). Different lowercase letters indicate significant differences of the indicators among different fertilizer treatments (p < 0.05). N0, nitrogen (N) addition (0 kg·hm-2); N1, nitrogen addition (45 kg·hm-2); N2, nitrogen addition (90 kg·hm-2); P0, phosphorus (P) addition (0 kg·hm-2); P1, phosphorus addition (20 kg·hm-2); P2, phosphorus addition (40 kg·hm-2).
[1] | Avolio ML, Koerner SE, La Pierre KJ, Wilcox KR, Wilson GWT, Smith MD, Collins SL (2014). Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. Journal of Ecology, 102, 1649-1660. |
[2] | Bao SD (2000). Soil Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] | Baruah G, Molau U, Jägerbrand AK, Alatalo JM (2018). Impacts of seven years of experimental warming and nutrient addition on neighbourhood species interactions and community structure in two contrasting alpine plant communities. Ecological Complexity, 33, 31-40. |
[4] | Bonartsev AP, Zharkova II, Yakovlev SG, Myshkina VL, Mahina TK, Voinova VV, Zernov AL, Zhuikov VA, Akoulina EA, Ivanova EV, Kuznetsova ES, Shaitan KV, Bonartseva GA (2017). Biosynthesis of poly (3-hydroxybutyrate) copolymers by Azotobacter chroococcum 7B: a precursor feeding strategy. Preparative Biochemistry & Biotechnology, 47, 173-184. |
[5] | Bowman WD, Theodose TA, Schardt JC, Conant RT (1993). Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology, 74, 2085-2097. |
[6] | Cerasoli S, Campagnolo M, Faria J, Nogueira C, da Conceição Caldeira M (2018). On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance. Biogeosciences, 15, 5455-5471. |
[7] | Ding WT, Wu XP, Zhang JZ, Jiang Y, Fang JJ, Song XJ, Li JS, Zheng FJ, Zhang MN, Liu XT (2020). Effects of long-term organic-inorganic combined application on enzyme activity of dark brown soil and yield, quality of spring wheat. Soil and Fertilizer Sciences in China, (6), 1-8. |
[丁维婷, 武雪萍, 张继宗, 姜宇, 房静静, 宋霄君, 李婧妤, 郑凤君, 张孟妮, 刘晓彤 (2020). 长期有机无机配施对暗棕壤土壤酶活性及春麦产量品质的影响. 中国土壤与肥料, (6), 1-8.] | |
[8] | Dong S, Shang Z, Gao J, Boone RB (2020). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 287, 106684. DOI: 10.1016/j.agee.2019.106684. |
[9] | Du QF (2017). The Responses of Degraded Typical Steppe Vegetation and Soil to Nitrogen and Phosphorus Fertilizations in Inner Mongolia. Master degree dissertation, Southwest University, Chongqing. |
[杜青峰 (2017). 内蒙古退化典型草原植被和土壤对氮磷肥配施的响应. 硕士学位论文, 西南大学, 重庆.] | |
[10] | Fan K, Delgado-Baquerizo M, Zhu Y, Chu H (2020). Crop production correlates with soil multitrophic communities at the large spatial scale. Soil Biology & Biochemistry, 151, 108047. DOI: 10.1016/j.soilbio.2020.108047. |
[11] | Fang JY, Wang XP, Shen ZH, Tang ZR, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols 321 for plant community inventory. Biodiversity Science, 17, 533-548. |
[方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI |
|
[12] | Fang SZ, Gao JR, Wang HQ, Liu J, Yu N, Zhang YL (2021). Effects of combined application of nitrogen fertilizer and manure on the dynamics of net mineralized nitrogen in greenhouse soil. Chinese Journal of Soil Science, 52, 1173-1181. |
[方胜志, 高佳蕊, 王虹桥, 刘杰, 虞娜, 张玉玲 (2021). 氮肥与有机肥配施对设施土壤净矿化氮动态变化的影响. 土壤通报, 52, 1173-1181.] | |
[13] | Fu G, Shen ZX (2016). Response of alpine plants to nitrogen addition on the Tibetan Plateau: a meta-analysis. Journal of Plant Growth Regulation, 35, 974-979. |
[14] | Fu G, Shen ZX (2017). Response of alpine soils to nitrogen addition on the Tibetan Plateau: a meta-analysis. Applied Soil Ecology, 114, 99-104. |
[15] | Fu YL (2012). Study on Evaluation of Soil Quality and Erosion Characteristics in Dry Valley of the Upper Minjiang River. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[伏耀龙 (2012). 岷江上游干旱河谷区土壤质量评价及侵蚀特征研究. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[16] | Ge C (2007). Microbial Fertilizer Production and Its Industrialization. Chemical Industry Press, Beijing. |
[葛诚(2007). 微生物肥料生产及其产业化. 化学工业出版社, 北京.] | |
[17] |
Gong XJ, Qin L, Liu F, Liu DN, Ma WW, Zhang T, Liu X, Luo F (2020). Effects of organic manure on soil nutrient content: a review. Chinese Journal of Applied Ecology, 31, 1403-1416.
DOI |
[龚雪蛟, 秦琳, 刘飞, 刘东娜, 马伟伟, 张厅, 刘晓, 罗凡 (2020). 有机类肥料对土壤养分含量的影响. 应用生态学报, 31, 1403-1416.]
DOI |
|
[18] | He GX, Song JC, Wen YJ, Liu CT, Qi J (2020). Effects of different rhizobium fertilizers on alfalfa productivity and soil fertility. Acta Prataculturae Sinica, 29(5), 109-120. |
[何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟 (2020). 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响. 草业学报, 29(5), 109-120.]
DOI |
|
[19] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.]
DOI |
|
[20] | Huang W, Kuzyakov Y, Niu S, Luo Y, Sun B, Zhang J, Liang Y (2023). Drivers of microbially and plant-derived carbon in topsoil and subsoil. Global Change Biology, 29, 6188-6200. |
[21] | Islam MR, Singh Chauhan P, Kim Y, Kim M, Sa TM (2011). Community level functional diversity and enzyme activities in paddy soils under different long-term fertilizer management practices. Biology and Fertility of Soils, 47, 599-604. |
[22] | Jin X (2021). Effects of Long-term Fertilization and Soil Management on Phosphorus Fractions Distribution and Availability on Loess Soil. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[金欣 (2021). 长期施肥和土壤管理对塿土磷形态分布及有效性的影响. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[23] | Khan MS, Zaidi A, Musarrat J (2014). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms//Khan MS, Zaidi A, Musarrat J. Phosphate Solubilizing Microorganisms. Springer International Publishing, New York. |
[24] |
Korboulewsky N, Dupouyet S, Bonin G (2002). Environmental risks of applying sewage sludge compost to vineyards: carbon, heavy metals, nitrogen, and phosphorus accumulation. Journal of Environmental Quality, 31, 1522-1527.
PMID |
[25] |
Kuerban Z, Tuerhong T, Shan Qimike, Wang H, Tu ZD, Yilahong A (2021). Study on the change of soil nutrient content in the growth period of Sweet Sorghum under different fertilization. Acta Agrestia Sinica, 29(1), 103-113.
DOI |
[再吐尼古丽·库尔班,吐尔逊·吐尔洪, 山其米克, 王卉, 涂振东, 艾克拜尔·伊拉洪 (2021). 施肥对不同生育期甜高粱土壤养分含量的影响. 草地学报, 29(1), 103-113.]
DOI |
|
[26] | Li J, Yang Y, Li B, Li W, Wang G, Knops JMH (2014). Effects of nitrogen and phosphorus fertilization on soil carbon fractions in alpine meadows on the Qinghai-Tibetan Plateau. PLoS ONE, 9, e103266. DOI: 10.1371/ournal.one.0103266. |
[27] | Li Y, Wei JL, Ma L, Wu XB, Zheng FL, Cui RZ, Tan DS (2024). Enhancing wheat yield through microbial organic fertilizer substitution for partial chemical fertilization: regulation of nitrogen conversion and utilization. Journal of Soil Science and Plant Nutrition, 24, 935-943. |
[28] | Lin L, Zhang DG, Cao GM, Ouyang JZ, Liu SL, Zhang FW, Li YK, Guo XW (2015). Soil nutrient variation at using microbial fertilizer on alpine meadow in Qing-Tibet Plateau. Grassland and Turf, 35(4), 12-16. |
[林丽, 张德罡, 曹广民, 欧阳经政, 刘淑丽, 张法伟, 李以康, 郭小伟 (2015). 微生物菌肥对高寒草甸土壤养分的影响. 草原与草坪, 35(4), 12-16.] | |
[29] | Lin XC, Song BQ, Adil MF, Lal MK, Jia QE, Wang QH, Song X (2023). Response of the rhizospheric soil microbial community of sugar beet to nitrogen application: a case of black soil in Northeast China. Applied Soil Ecology, 191, 105050. DOI: 10.1016/j.apsoil.2023.105050. |
[30] | Liu L, Zhu X, Sun G, Luo P, Wang B (2011). Effects of simulated warming and fertilization on activities of soil enzymes in alpine meadow. Pratacultural Science, 28, 1405-1410. |
[刘琳, 朱霞, 孙庚, 罗鹏, 王蓓 (2011). 模拟增温与施肥对高寒草甸土壤酶活性的影响. 草业科学, 28, 1405-1410.] | |
[31] | Liu S, Zamanian K, Schleuss PM, Zarebanadkouki M, Kuzyakov Y (2018). Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles. Agriculture, Ecosystems & Environment, 252, 93-104. |
[32] | Liu YW, Bai W, Yin PS, Feng Y, Zhang JR (2020). Effects of exogenous nitrogen addition on soil nutrients and plant community biomass in alpine swamp meadow in the headwaters region of the Yangtze River. Acta Agrestia Sinica, 28, 483-491. |
[刘永万, 白炜, 尹鹏松, 冯月, 张景然 (2020). 外源氮素添加对长江源区高寒沼泽草甸土壤养分及植物群落生物量的影响. 草地学报, 28, 483-491.]
DOI |
|
[33] | Lu JL, Jia P, Feng SW, Wang YT, Zheng J, Ou SN, Wu ZH, Liao B, Shu WS, Liang JL, Li JT (2022). Remarkable effects of microbial factors on soil phosphorus bioavailability: a country-scale study. Global Change Biology, 28, 4459-4471. |
[34] | Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R (2012). Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. Journal of Ecology, 100, 317-330. |
[35] | Mathieu C, Hagmann D, Krumins J, Goodey N (2014). Leucine-aminopeptidase activities in heavy-metal contaminated soils from brownfields of Liberty State Park. The FASEB Journal, 28, 583.6. DOI: 10.1096/fasebj.28.1_supplement.583.6. |
[36] | Mbuthia LW, Acosta-Martínez V, de Bruyn J, Schaeffer S, Tyler D, Odoi E, Mpheshea M, Walker F, Eash N (2015). Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality. Soil Biology & Biochemistry, 89, 24-34. |
[37] | Qu J, Liu Y, Xu X, Meng X, Sun Y (2020). Effects of application of microbial and organic fertilizer on soil fertility and crop yield of a black soil in China. Agrochimica, 64, 223-238. |
[38] | Quan GL, Xie KY, Tong ZY, Li XL, Wan LQ, Bi SY, Wan XF (2016). The effect of compound bio-fertilizers on soil physical and chemical properties and soil enzyme activity in Leymus chinensis steppe. Acta Prataculturae Sinica, 25(2), 27-36. |
[权国玲, 谢开云, 仝宗永, 李向林, 万里强, 毕舒贻, 万修福 (2016). 复合微生物肥料对羊草草原土壤理化性质及酶活性的影响. 草业学报, 25(2), 27-36.]
DOI |
|
[39] |
Ramakrishna W, Yadav R, Li KF (2019). Plant growth promoting bacteria in agriculture: two sides of a coin. Applied Soil Ecology, 138, 10-18.
DOI |
[40] | Ren ZR, Shao XQ, Li JS, Li H, He YX, Gu WN, Wang RY, Yang LJ, Liu KS (2021). Effects of microbial fertilizer on aboveground biomass and soil physiochemical properties of degraded alpine meadow. Acta Agrestia Sinica, 29, 2265-2273. |
[任卓然, 邵新庆, 李金升, 李慧, 何宜璇, 古维娜, 王茹颖, 杨灵婧, 刘克思 (2021). 微生物菌肥对退化高寒草甸地上生物量和土壤理化性质的影响. 草地学报, 29, 2265-2273.]
DOI |
|
[41] |
Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Ai D, Yang YB, Wang G (2010). Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25-31.
DOI |
[42] | Shapiro SS, Wilk MB (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591-611. |
[43] | Sun YN, Li Q, Li YK, Lin L, Du YG, Cao GM (2016). The effect of nitrogen and phosphorus applications on soil enzyme activities in Qinghai-Tibetan alpine meadows. Acta Prataculturae Sinica, 25(2), 18-26. |
[孙亚男, 李茜, 李以康, 林丽, 杜岩功, 曹广民 (2016). 氮、磷养分添加对高寒草甸土壤酶活性的影响. 草业学报, 25(2), 18-26.]
DOI |
|
[44] | Tian L, Liu JH, Zhao BP, Mi JZ, Li YH, Wang Y, Fei N (2020). Effects of combination of super absorbent polymer and microbial fertilizer on soil microbial biomass carbon, nitrogen and enzymes activities of oat farmland in dry area. Journal of Soil and Water Conservation, 34(5), 361-368. |
[田露, 刘景辉, 赵宝平, 米俊珍, 李英浩, 王英, 费楠 (2020). 保水剂和微生物菌肥配施对旱作燕麦土壤微生物生物量碳、氮含量及酶活性的影响. 水土保持学报, 34(5), 361-368.] | |
[45] | Trivedi P, Leach JE, Tringe SG, Sa TM, Singh BK (2020). Plant-microbiome interactions: from community assembly to plant health. Nature Reviews: Microbiology, 18, 607-621. |
[46] | Wang CT, Long RJ, Wang QL, Liu W, Jing ZC, Zhang L (2010). Fertilization and litter effects on the functional group biomass, species diversity of plants, microbial biomass, and enzyme activity of two alpine meadow communities. Plant and Soil, 331, 377-389. |
[47] | Wang DJ, Zhou HK, Yao BQ, Wang WY, Dong SK, Shang ZH, She YD, Ma L, Huang XT, Zhang ZH, Zhang Q, Zhao FY, Zuo J, Mao Z (2020). Effects of nutrient addition on degraded alpine grasslands of the Qinghai-Tibetan Plateau: a meta-analysis. Agriculture, Ecosystems & Environment, 301, 106970. DOI: 10.1016/j.gee.2020.106970. |
[48] | Wang GH, Hu XJ, Yu ZH, Chen XL, Liu JJ (2024). Effects of fertilization on soil microbial community diversity in Chinese arable black soils: research progress and prospects. Soils and Crops, 13(2), 127-139. |
[王光华, 胡晓婧, 于镇华, 陈雪丽, 刘俊杰 (2024). 施肥对我国黑土农田土壤微生物群落多样性影响的研究及展望. 土壤与作物, 13(2), 127-139.] | |
[49] | Wang GZ, Burrill HM, Podzikowski LY, Eppinga MB, Zhang FS, Zhang JL, Schultz PA, Bever JD (2023). Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures. Nature Communications, 14, 8417. DOI: 10.1038/s41467-023-44253-4. |
[50] | Wang JB, Zhang DG, Cao GM, Tian Q (2013). Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 22(2), 1-10. |
[王建兵, 张德罡, 曹广民, 田青 (2013). 青藏高原高寒草甸退化演替的分区特征. 草业学报, 22(2), 1-10.] | |
[51] | Wang LJ, Sheng MY, Du JY, Wen PC (2017). Distribution characteristics of soil organic carbon and its influence factors in the karst rocky desertification ecosystem of Southwest China. Acta Ecologica Sinica, 37, 1358-1365. |
[王霖娇, 盛茂银, 杜家颖, 温培才 (2017). 西南喀斯特石漠化生态系统土壤有机碳分布特征及其影响因素. 生态学报, 37, 1358-1365.] | |
[52] | Wang Z, Zhang Y, Yang Y, Zhou W, Gang C, Zhang Y, Li J, An R, Wang K, Odeh I, Qi J (2016). Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China. Ecological Informatics, 33, 32-44. |
[53] | Wu CX, Gao XF, Yan BS, Liang CQ, Chen JR, Wang GL, Liu GB (2022). Effects of long-term fertilization on soil nutrient characteristics and microbial resource restrictions in a terrace on the Loess Plateau. Environmental Science, 43, 521-529. |
[吴春晓, 高小峰, 闫本帅, 梁彩群, 陈佳瑞, 王国梁, 刘国彬 (2022). 长期施肥对黄土高原梯田土壤养分特征和微生物资源限制的影响. 环境科学, 43, 521-529.] | |
[54] | Wu JF, Liu JS, Li ZM, Wang DL (2021). Grassland soil phosphorus cycle and its response to global change. Chinese Journal of Grassland, 43(6), 102-111. |
[吴金凤, 刘鞠善, 李梓萌, 王德利 (2021). 草地土壤磷循环及其对全球变化的响应. 中国草地学报, 43(6), 102-111.] | |
[55] | Xia ZW, Yang JY, Sang CP, Wang X, Sun LF, Jiang P, Wang C, Bai E (2020). Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms, 8, 1828. DOI: 10.3390/microorganisms8111828. |
[56] | Xu TZ, Zou ZY, Ye CH, Zhang G, Zhang ZR, Zhu HY, He Q, Ding XG (2022). Distribution characteristics of soil carbon, nitrogen and phosphorus storage in three subtropical stand types in Jiangmen City. Forestry and Environmental Science, 38(3), 34-38. |
[许窕孜, 邹祖有, 叶彩红, 张耕, 张中瑞, 朱航勇, 何茜, 丁晓纲 (2022). 江门市3种亚热带林分类型土壤碳氮磷储量分布特征. 林业与环境科学, 38(3), 34-38.] | |
[57] | Xu YL, Tang HM, Xiao XP, Guo LJ, Li WY, Sun JM (2016). Effects of different long-term fertilization regimes on the soil microbiological properties of a paddy field. Acta Ecologica Sinica, 36, 5847-5855. |
[徐一兰, 唐海明, 肖小平, 郭立君, 李微艳, 孙继民 (2016). 长期施肥对双季稻田土壤微生物学特性的影响. 生态学报, 36, 5847-5855.] | |
[58] | Yan X, Levine JM, Kandlikar GS (2022). A quantitative synthesis of soil microbial effects on plant species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 119, e2122088119. DOI: 10.1073/pnas.2122088119. |
[59] | Yao J, Chen JQ, Xin XP, Wei ZJ, Wu R, Yan RR, Bai YT, Dai JZ (2017). Effect of microbial fertilizer on plant species diversity and biomass of common species in the Hulunbuir Leymus chinensis meadow steppe. Acta Prataculturae Sinica, 26(10), 108-117. |
[姚静, 陈金强, 辛晓平, 卫智军, 乌仁其其格, 闫瑞瑞, 白玉婷, 代景忠 (2017). 复合微生物肥料对羊草草原植物群落物种多样性和生物量的影响. 草业学报, 26(10), 108-117.]
DOI |
|
[60] | Yao T, Long RJ, Wang G, Hu ZZ (2004). Isolation and characteristics of associative symbiotic nitrogen bacteria from rhizosphere of wheat in saline soil in Lanzhou area. Acta Pedologica Sinica, 41, 444-448. |
[姚拓, 龙瑞军, 王刚, 胡自治 (2004). 兰州地区盐碱地小麦根际联合固氮菌分离及部分特性研究. 土壤学报, 41, 444-448.] | |
[61] | You QG, Xue X, Peng F, Xu MH, Duan HC, Dong SY (2014). Comparison of ecosystem characteristics between degraded and intact alpine meadow in the Qinghai-Tibetan Plateau, China. Ecological Engineering, 71, 133-143. |
[62] | Zeng C, Zhang F, Wang Q, Chen Y, Joswiak DR (2013). Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau. Journal of Hydrology, 478, 148-156. |
[63] | Zhang CH (2014). Effects of grazing and fertilization on community productivity and species richness in eastern alpine meadow of Tibetan Plateau. Pratacultural Science, 31, 2293-2300. |
[张春花 (2014). 放牧方式和施肥梯度对高寒草甸群落生产力和物种丰富度的影响. 草业科学, 31, 2293-2300.] | |
[64] | Zhang JQ, Li Q, Ren ZW, Yang X, Wang G (2010). Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 34, 1125-1131. |
[张杰琦, 李奇, 任正炜, 杨雪, 王刚 (2010). 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 34, 1125-1131.]
DOI |
|
[65] | Zhang LJ, Qu JS, Guo WZ, Yang DY, Feng HP (2014). Effects of the microbial fertilizers on microorganism and enzymic activity in greenhouse soil on upper reaches of the Yellow River. Soil and Fertilizer Sciences in China, (5), 32-36. |
[张丽娟, 曲继松, 郭文忠, 杨冬艳, 冯海萍 (2014). 微生物菌肥对黄河上游地区设施土壤微生物及酶活性的影响. 中国土壤与肥料, (5), 32-36.] | |
[66] | Zhang TA, Chen HYH, Ruan HH (2018). Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 12, 1817-1825. |
[67] | Zhang WT, Li CQ, Yu L, Shao XQ (2021). Study on the effect of the plant growth-promoting rhizobacteria bio-fertilizer instead of chemical fertilizer in alpine meadow. Acta Agrestia Sinica, 29, 1423-1429. |
[张万通, 李超群, 于露, 邵新庆 (2021). 植物根际促生菌菌肥在高寒草甸替代化肥效应研究. 草地学报, 29, 1423-1429.]
DOI |
|
[68] | Zhao HY, Wang HY (2024). Soil multifunctionality and its driving factors: a review. Chinese Journal of Applied and Environmental Biology, 30, 615-622. |
[赵慧英, 王海燕 (2024). 土壤多功能性及其驱动因素研究进展. 应用与环境生物学报, 30, 615-622.] | |
[69] | Zhao YF, Wang X, Jiang SL, Zhou XH, Liu HY, Xiao JJ, Hao ZG, Wang KC (2021). Climate and geochemistry interactions at different altitudes influence soil organic carbon turnover times in alpine grasslands. Agriculture, Ecosystems & Environment, 320, 107591. DOI: 10.1016/j.gee.2021.107591. |
[70] | Zheng HP, Chen ZX, Wang SR, Niu JY (2007). Effects of fertilizer on plant diversity and productivity of desertified alpine grassland at Maqu, Gansu. Acta Prataculturae Sinica, 16(5), 34-39. |
[郑华平, 陈子萱, 王生荣, 牛俊义 (2007). 施肥对玛曲高寒沙化草地植物多样性和生产力的影响. 草业学报, 16(5), 34-39.] | |
[71] | Zhou HK, Zhao XQ, Zhou L, Liu W, Li YN, Tang YH (2005). Vegetation degradation and soil degradation characteristics of alpine meadows on the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 14(3), 31-40. |
[周华坤, 赵新全, 周立, 刘伟, 李英年, 唐艳鸿 (2005). 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 14(3), 31-40.] |
[1] | 马东峰, 贾存智, 王学朋, 赵鹏鹏, 胡小文. 甘南高寒退化草甸多物种组配的修复效果评估[J]. 植物生态学报, 2025, 49(1): 93-102. |
[2] | 李天琦, 曹继容, 柳小妮, 田思惠, 兰波兰, 邱颖, 薛建国, 张倩, 褚建民, 张淑敏, 黄建辉, 李凌浩, 王其兵. 内蒙古典型草原土壤酶化学计量与限制性养分对放牧的响应[J]. 植物生态学报, 2025, 49(1): 19-29. |
[3] | 王雯莹, 肖元明, 王小赟, 徐嘉昕, 马玉花, 李强峰, 周国英. 多功能群物种配置模式下退化高寒草甸植物多样性与生态系统多功能性的关联[J]. 植物生态学报, 2025, 49(1): 103-117. |
[4] | 张辉, 赵赟鹏, 刘晓琛, 郭增鹏, 胡国瑞, 冯彦皓, 马妙君. 高寒草甸退化过程中土壤种子库的变化及其在植物群落更新中的潜在作用[J]. 植物生态学报, 2025, 49(1): 74-82. |
[5] | 刘瑶, 钟全林, 徐朝斌, 程栋梁, 郑跃芳, 邹宇星, 张雪, 郑新杰, 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(6): 744-759. |
[6] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[7] | 刘位会, 宋小艳, 才仁多杰, 丁路明, 王长庭. 退化程度对高寒草甸不同优势植物根系形态性状和生物量的影响[J]. 植物生态学报, 2024, 48(12): 1666-1682. |
[8] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[9] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[10] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[11] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[12] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[13] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[14] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[15] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19