植物生态学报 ›› 2024, Vol. 48 ›› Issue (12): 1666-1682.DOI: 10.17521/cjpe.2024.0019 cstr: 32100.14.cjpe.2024.0019
刘位会1, 宋小艳1, 才仁多杰2, 丁路明1, 王长庭1,*()
收稿日期:
2024-01-23
接受日期:
2024-09-28
出版日期:
2024-12-20
发布日期:
2024-12-20
通讯作者:
*王长庭(wangct@swun.edu.cn)基金资助:
LIU Wei-Hui1, SONG Xiao-Yan1, CAIRENDUOJIE 2, DING Lu-Ming1, WANG Chang-Ting1,*()
Received:
2024-01-23
Accepted:
2024-09-28
Online:
2024-12-20
Published:
2024-12-20
Contact:
*WANG Chang-Ting(wangct@swun.edu.cn)Supported by:
摘要: 了解高寒草甸植物根系形态性状和生物量分配对退化生境的适应性策略, 有助于探索植物根系形态可塑性机制与生物量分配的协同关系, 对深入了解退化高寒草甸植物的生境耐逆性策略具有重要意义。该研究以不同退化程度(未退化、轻度、中度和重度退化)高寒草甸为研究对象, 分析了禾本科(草地早熟禾(Poa pratensis)和垂穗披碱草(Elymus nutans))、莎草科(矮生嵩草(Carex alatauensis)和青藏薹草(Carex moorcroftii))和杂类草(草玉梅(Anemone rivularis)和钝苞雪莲(Saussurea nigrescens))的生物量、根系形态性状以及生物量与根系形态性状之间的关联性。结果表明: 1)与其他物种相比, 矮生嵩草地上生物量在中度退化下降幅最大(71.44%), 根冠比在轻度退化下增幅最大(216.92%)。草地早熟禾和草玉梅地上和地下生物量在中度退化下增加, 根冠比随退化程度增加无显著变化。草玉梅相对地上生物量和垂穗披碱草相对地下生物量在重度退化下增幅最大(384.90%和299.57%)。2)重度退化下矮生嵩草的总根长降幅最大(72.81%), 青藏薹草总根长在轻度退化下增幅最大(14.81%); 退化增加了草地早熟禾、矮生嵩草、青藏薹草和草玉梅的根平均直径, 降低了其比根长。草地早熟禾、垂穗披碱草、矮生嵩草、草玉梅和钝苞雪莲根尖数和分叉数随退化程度增加而降低。3)草地早熟禾相对地下生物量与根尖数显著相关。垂穗披碱草和矮生嵩草相对地下生物量取决于总根长和分叉数。青藏薹草相对地上生物量与总根表面积显著相关, 相对地下生物量取决于根体积和比根长。草玉梅和钝苞雪莲相对地上生物量与总根长显著相关, 相对地下生物量取决于比根长的变化。总之, 不同优势植物通过调整其生物量分配和根系形态特征来适应退化引起的土壤微环境, 且这种适应性策略在不同物种间是不同的, 体现了高寒草甸植物对逆境响应策略的多样性。
刘位会, 宋小艳, 才仁多杰, 丁路明, 王长庭. 退化程度对高寒草甸不同优势植物根系形态性状和生物量的影响. 植物生态学报, 2024, 48(12): 1666-1682. DOI: 10.17521/cjpe.2024.0019
LIU Wei-Hui, SONG Xiao-Yan, CAIRENDUOJIE , DING Lu-Ming, WANG Chang-Ting. Effects of degradation degree on the root morphological traits and biomass of dominant plant species in alpine meadows. Chinese Journal of Plant Ecology, 2024, 48(12): 1666-1682. DOI: 10.17521/cjpe.2024.0019
退化梯度 Degradation degree | 群落盖度 Coverage (%) | 平均高度 Average height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | 物种丰富度 Species richness |
---|---|---|---|---|---|
未退化 ND | 0.87 ± 0.01a | 31.00 ± 2.33a | 457.93 ± 68.18a | 519.96 ± 69.59ab | 20.80 ± 0.63a |
轻度退化 LD | 0.76 ± 0.01b | 14.17 ± 1.42b | 364.56 ± 93.09ab | 627.41 ± 113.33ab | 19.27 ± 0.50ab |
中度退化 MD | 0.65 ± 0.01c | 16.63 ± 4.10b | 206.25 ± 23.78b | 908.18 ± 192.67a | 16.40 ± 0.05c |
重度退化 SD | 0.62 ± 0.01c | 3.26 ± 0.24c | 127.04 ± 9.06b | 248.42 ± 35.03b | 17.43 ± 0.73bc |
表1 青藏高原不同退化程度高寒草甸植被特征(平均值±标准误)
Table 1 Vegetation characteristics of alpine meadow at varying degrees of degradation on the Qingzang Plateau (mean ± SE)
退化梯度 Degradation degree | 群落盖度 Coverage (%) | 平均高度 Average height (cm) | 地上生物量 Aboveground biomass (g·m-2) | 地下生物量 Belowground biomass (g·m-2) | 物种丰富度 Species richness |
---|---|---|---|---|---|
未退化 ND | 0.87 ± 0.01a | 31.00 ± 2.33a | 457.93 ± 68.18a | 519.96 ± 69.59ab | 20.80 ± 0.63a |
轻度退化 LD | 0.76 ± 0.01b | 14.17 ± 1.42b | 364.56 ± 93.09ab | 627.41 ± 113.33ab | 19.27 ± 0.50ab |
中度退化 MD | 0.65 ± 0.01c | 16.63 ± 4.10b | 206.25 ± 23.78b | 908.18 ± 192.67a | 16.40 ± 0.05c |
重度退化 SD | 0.62 ± 0.01c | 3.26 ± 0.24c | 127.04 ± 9.06b | 248.42 ± 35.03b | 17.43 ± 0.73bc |
退化梯度 Degradation degree | 禾本科 Poaceae | 莎草科 Cyperaceae | 杂类草 Forb | |||
---|---|---|---|---|---|---|
草地早熟禾 Poa pratensis (%) | 垂穗披碱草 Elymus nutans (%) | 矮生嵩草 Carex alatauensis (%) | 青藏薹草 Carex moorcroftii (%) | 草玉梅 Anemone rivularis (%) | 钝苞雪莲 Saussurea nigrescens (%) | |
未退化 ND | 20.85 ± 2.89a | 31.00 ± 1.44a | 24.73 ± 1.21c | 61.02 ± 0.71a | 32.63 ± 1.05ab | 26.69 ± 1.79a |
轻度退化 LD | 12.45 ± 8.68ab | 21.13 ± 0.27b | 46.96 ± 1.35b | 30.57 ± 0.88b | 34.91 ± 0.73a | 13.26 ± 0.56b |
中度退化 MD | 8.90 ± 1.70b | 10.56 ± 1.77c | 58.65 ± 2.61a | 23.68 ± 2.96b | 26.38 ± 1.96b | 25.71 ± 1.67a |
重度退化 SD | 14.62 ± 1.68ab | 21.28 ± 3.03b | 46.63 ± 0.87b | 28.04 ± 4.72b | 25.43 ±3.69b | 26.96± 3.19a |
表2 青藏高原不同退化程度高寒草甸优势植物生物量占各功能群的比例(平均值±标准误)
Table 2 Proportion of dominant plant biomass of each functional group of alpine meadow at varying degrees of degradation on the Qingzang Plateau (mean ± SE)
退化梯度 Degradation degree | 禾本科 Poaceae | 莎草科 Cyperaceae | 杂类草 Forb | |||
---|---|---|---|---|---|---|
草地早熟禾 Poa pratensis (%) | 垂穗披碱草 Elymus nutans (%) | 矮生嵩草 Carex alatauensis (%) | 青藏薹草 Carex moorcroftii (%) | 草玉梅 Anemone rivularis (%) | 钝苞雪莲 Saussurea nigrescens (%) | |
未退化 ND | 20.85 ± 2.89a | 31.00 ± 1.44a | 24.73 ± 1.21c | 61.02 ± 0.71a | 32.63 ± 1.05ab | 26.69 ± 1.79a |
轻度退化 LD | 12.45 ± 8.68ab | 21.13 ± 0.27b | 46.96 ± 1.35b | 30.57 ± 0.88b | 34.91 ± 0.73a | 13.26 ± 0.56b |
中度退化 MD | 8.90 ± 1.70b | 10.56 ± 1.77c | 58.65 ± 2.61a | 23.68 ± 2.96b | 26.38 ± 1.96b | 25.71 ± 1.67a |
重度退化 SD | 14.62 ± 1.68ab | 21.28 ± 3.03b | 46.63 ± 0.87b | 28.04 ± 4.72b | 25.43 ±3.69b | 26.96± 3.19a |
图1 青藏高原高寒草甸不同退化程度对土壤理化性质的影响(平均值±标准误, n = 3)。不同小写字母表示不同退化程度间差异显著(p < 0.05)。LD, 轻度退化; MD, 中度退化; ND, 未退化; SD, 重度退化。
Fig. 1 Effects of degradation degree on soil physicochemical properties in alpine meadows on the Qingzang Plateau (mean ± SE, n = 3). Different lowercase letters represent significant differences among different degradation degrees (p < 0.05). LD, light degradation; MD, moderate degradation; ND, non-degradation; SD, severe degradation.
图2 青藏高原高寒草甸优势植物的地上、地下生物量和根冠比对不同退化程度的响应(平均值± 95%置信区间)。AGB, 地上生物量; BGB, 地下生物量; RAGB, 相对地上生物量; RBGB, 相对地下生物量; RSR, 根冠比。LD, 轻度退化; MD, 中度退化; SD, 重度退化。RR, 响应比。
Fig. 2 Responses of aboveground and belowground biomass and root-to-shoot ratios of alpine meadow dominant species to different degradation degrees on the Qingzang Plateau (mean ± 95% CI). AGB, aboveground biomass; BGB, belowground biomass; RAGB, relative abundance of aboveground biomass; RBGB, relative abundance of belowground biomass; RSR, root-shoot ratio. LD, light degradation; MD, moderate degradation; SD, severe degradation. RR, response ratio.
图3 青藏高原高寒草甸优势植物根系形态性状对不同退化程度的响应(平均值± 95%置信区间)。Forks, 分叉数; RAD, 根平均直径; RSA, 总根表面积; RV, 根系体积; SRL, 比根长; Tips, 根尖数; TRL, 总根长。LD, 轻度退化; MD, 中度退化; SD, 重度退化。RR, 响应比。
Fig. 3 Responses of root morphological traits of alpine meadow dominant species to different degradation degrees on the Qingzang Plateau (mean ± 95% CI). Forks, number of forks; RAD, root average diameter; RSA, root surface area; RV, root volume; SRL, specific root length; Tips, root tips; TRL, total root length. LD, light degradation; MD, moderate degradation; SD, severe degradation. RR, response ratio.
图4 青藏高原高寒草甸优势植物根系形态性状和生物量与环境因子之间的关系。AGB, 地上生物量; BGB, 地下生物量; BD, 土壤密度; Forks, 分叉数; RAD, 根平均直径; RAGB, 相对地上生物量; RBGB, 相对地下生物量; RSA, 根表面积; RSR, 根冠比; RV, 根体积; SAN, 土壤铵态氮含量; SNN, 土壤硝态氮含量; SOC, 土壤有机碳含量; SRL, 比根长; STN, 土壤全氮含量; STP, 土壤全磷含量; SWC, 土壤含水量; Tips, 根尖数; TRL, 总根长。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 4 Relationship between root morphological traits and biomass of alpine meadow dominant species and environmental factors on the Qingzang Plateau. AGB, aboveground biomass; BGB, belowground biomass; BD, soil density; Forks, number of forks; RAD, root average diameter; RAGB, relative abundance of aboveground biomass; RBGB, relative abundance of belowground biomass; RSA, root surface area; RSR, root-to-shoot ratio; RV, root volume; SAN, soil ammonium nitrogen content; SNN, soil nitrate nitrogen content; SOC, soil organic carbon content; SRL, specific root length; STN, soil total nitrogen content; STP, soil total phosphorus; SWC, soil water content; Tips, root tips; TRL, total root length. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
优势种 Dominant species | 最优模型 Optimal model | 校正R2 Correction R2 | p |
---|---|---|---|
草地早熟禾 Poa pratensis | RAGB = 0.00006TRL* - 0.008RV + 0.01RAD - 0.003 | 0.07 | >0.05 |
垂穗披碱草 Elymus nutans | RAGB = -0.000008TRL* - 0.02 | 0.04 | >0.05 |
矮生嵩草 Carex alatauensis | RAGB = 0.0013TRL*** -0.004 | 0.03 | >0.05 |
青藏薹草 Carex moorcroftii | RAGB = 0.0004RSA*** - 0.000003Forks* - 0.003 | 0.39 | <0.001 |
草玉梅 Anemone rivularis | RAGB = -0.0004SRL** + 0.0005TRL* + 0.01RV* - 0.003RSA + 0.00003Tips + 0.04 | 0.34 | <0.01 |
钝苞雪莲 Saussurea nigrescens | RAGB = 0.00005TRL*** + 0.009RAD*** - 1.7344 | 0.48 | <0.001 |
表3 青藏高原高寒草甸不同优势植物相对地上生物量与根系形态性状的逐步回归分析
Table 3 Stepwise regression analysis of the relative abundance of aboveground biomass of different dominant plant species influenced by the root morphological traits in alpine meadow on the Qingzang Plateau
优势种 Dominant species | 最优模型 Optimal model | 校正R2 Correction R2 | p |
---|---|---|---|
草地早熟禾 Poa pratensis | RAGB = 0.00006TRL* - 0.008RV + 0.01RAD - 0.003 | 0.07 | >0.05 |
垂穗披碱草 Elymus nutans | RAGB = -0.000008TRL* - 0.02 | 0.04 | >0.05 |
矮生嵩草 Carex alatauensis | RAGB = 0.0013TRL*** -0.004 | 0.03 | >0.05 |
青藏薹草 Carex moorcroftii | RAGB = 0.0004RSA*** - 0.000003Forks* - 0.003 | 0.39 | <0.001 |
草玉梅 Anemone rivularis | RAGB = -0.0004SRL** + 0.0005TRL* + 0.01RV* - 0.003RSA + 0.00003Tips + 0.04 | 0.34 | <0.01 |
钝苞雪莲 Saussurea nigrescens | RAGB = 0.00005TRL*** + 0.009RAD*** - 1.7344 | 0.48 | <0.001 |
优势种 Dominant species | 最优模型 Optimal model | 校正R2 Correction R2 | p |
---|---|---|---|
草地早熟禾 Poa pratensis | RBGB = 0.000004Tips** - 0.000001SRL - 0.0002 | 0.19 | <0.01 |
垂穗披碱草 Elymus nutans | RBGB = -0.00009TRL*** - 0.03RAD*** + 0.0004RSA*** - 0.000002SRL*** + 0.000003Forks* + 0.000004Tips + 0.02 | 0.69 | <0.001 |
矮生嵩草 Carex alatauensis | RBGB = 0.00002TRL* - 0.00001Forks* + 0.01RV + 0.003 | 0.20 | <0.05 |
青藏薹草 Carex moorcroftii | RBGB = 0.02RV*** - 0.00007SRL* + 0.006 | 0.54 | <0.001 |
草玉梅 Anemone rivularis | RBGB= -0.00009SRL***+0.00002Forks*** + 0.00001Tips*** - 0.0003RSA** + 0.003RV** - 0.0007RAD + 0.02 | 0.82 | <0.001 |
钝苞雪莲 Saussurea nigrescens | RBGB = 0.0001RSA*** - 0.000008SRL* - 0.001 | 0.53 | <0.001 |
表4 青藏高原高寒草甸不同优势植物相对地下生物量与根系形态性状的逐步回归分析
Table 4 Stepwise regression analysis of the relative abundance of belowground biomass of different dominant plant species influenced by the root morphological traits in alpine meadow on the Qingzang Plateau
优势种 Dominant species | 最优模型 Optimal model | 校正R2 Correction R2 | p |
---|---|---|---|
草地早熟禾 Poa pratensis | RBGB = 0.000004Tips** - 0.000001SRL - 0.0002 | 0.19 | <0.01 |
垂穗披碱草 Elymus nutans | RBGB = -0.00009TRL*** - 0.03RAD*** + 0.0004RSA*** - 0.000002SRL*** + 0.000003Forks* + 0.000004Tips + 0.02 | 0.69 | <0.001 |
矮生嵩草 Carex alatauensis | RBGB = 0.00002TRL* - 0.00001Forks* + 0.01RV + 0.003 | 0.20 | <0.05 |
青藏薹草 Carex moorcroftii | RBGB = 0.02RV*** - 0.00007SRL* + 0.006 | 0.54 | <0.001 |
草玉梅 Anemone rivularis | RBGB= -0.00009SRL***+0.00002Forks*** + 0.00001Tips*** - 0.0003RSA** + 0.003RV** - 0.0007RAD + 0.02 | 0.82 | <0.001 |
钝苞雪莲 Saussurea nigrescens | RBGB = 0.0001RSA*** - 0.000008SRL* - 0.001 | 0.53 | <0.001 |
[1] | Ade LJ, He B, Wang CT, Hu L, Zi HB (2015). Effects of Chenopodium ambrosioides on soil enzyme activity, microorganism quantity and soil nutrient content of three cultivated pastures of rhizosphere soil in northwestern Sichuan. Southwest China Journal of Agricultural Sciences, 28, 815-821. |
[ 阿的鲁骥, 何兵, 王长庭, 胡雷, 字洪标 (2015). 入侵植物土荆芥对川西北高寒草甸3种培育牧草根际土壤酶活性、微生物数量及土壤养分的影响. 西南农业学报, 28, 815-821.] | |
[2] | Ban ZH, Wang Q (2015). Response of drought-loving lotus grass and elderberry competition to simulated warming. Chinese Journal of Plant Ecology, 39, 43-51. |
[ 班芷桦, 王琼 (2015). 喜旱莲子草和接骨草竞争对模拟增温的响应. 植物生态学报, 39, 43-51.]
DOI |
|
[3] | Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM, Kattge J, McCormack ML, Meier IC, Rillig MC, Roumet C, et al. (2020). The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 6, eaba3756. DOI: 10.1126/sciadv.aba3756. |
[4] | Bouma TJ, Nielsen KL, van Hal J, Koutstaal B (2001). Root system topology and diameter distribution of species from habitats differing in inundation frequency. Functional Ecology, 15, 360-369. |
[5] | Cao J, Adamowski JF, Deo RC, Xu X, Gong Y, Feng Q (2019). Grassland degradation on the Qinghai-Tibetan Plateau: reevaluation of causative factors. Rangeland Ecology & Management, 72, 988-995. |
[6] | Cao J, Wei C, Adamowski JF, Biswas A, Li Y, Zhu G, Liu C, Feng Q (2021). On China’s Qinghai-Tibetan Plateau, duration of grazing exclosure alters R:S ratio, root morphology and attending root biomass. Soil and Tillage Research, 209, 104969. DOI: 10.1016/j.still.2021.104969. |
[7] | Caruso T, Mafrica R, Bruno M, Vescio R, Sorgonà A (2021). Root architectural traits of rooted cuttings of two fig cultivars: treatments with arbuscular mycorrhizal fungi formulation. Scientia Horticulturae, 283, 110083. DOI: 10.1016/j.scienta.2021.110083. |
[8] | Chen XX, Shi FX, Sun FD, Li F(2019). Spatial Distribution Characteristics of the Number and Structure of Grazing Livestock in Typical Pastoral Counties in Northwest Sichuan. Chinese Journal of Applied & Environmental Biology, 25, 63-69. |
[ 陈晓霞, 石福孙, 孙飞达, 李飞(2019). 川西北典型牧业县放牧家畜数量及结构的空间分布特征. 应用与环境生物学报, 25, 63-69.] | |
[9] | Cheng D, Niklas K (2007). Above- and below-ground biomass relationships across 1534 forested communities. Annals of Botany, 99, 95-102. |
[10] | Dong S, Shang Z, Gao J, Boone RB (2020). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 287, 106684. DOI: 10.1016/j. agee.2019.106684. |
[11] | Dong SK, Wen L, Li YY, Wang XX, Zhu L, Li XY (2012). Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Science Society of America Journal, 76, 2256-2264. |
[12] | Du JH, Liu AL, Dong YX, Hu MY, Liang J, Li W (2014). Architectural characteristics of roots in typical coastal psammophytes of South China. Chinese Journal of Plant Ecology, 38, 888-895. |
[ 杜建会, 刘安隆, 董玉祥, 胡绵友, 梁杰, 李薇 (2014). 华南海岸典型沙生植物根系构型特征. 植物生态学报, 38, 888-895.]
DOI |
|
[13] | Du ZY, Cong N (2024). Response of vegetation and soil characteristics to different levels of degraded grassland on the Tibetan Plateau. Acta Ecologica Sinica, 44, 2504-2516. |
[ 杜志勇, 丛楠 (2024). 植被与土壤特征对青藏高原不同程度退化草地的响应研究. 生态学报, 44, 2504-2516.] | |
[14] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
PMID |
[15] | Fitter AH, Stickland TR (1991). Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytologist, 118, 383-389. |
[16] | Fort F, Cruz P, Jouany C (2014). Hierarchy of root functional trait values and plasticity drive early-stage competition for water and phosphorus among grasses. Functional Ecology, 28, 1030-1040. |
[17] | Freschet GT, Kichenin E, Wardle DA (2015). Explaining within-community variation in plant biomass allocation: a balance between organ biomass and morphology above vs below ground? Journal of Vegetation Science, 26, 431-440. |
[18] | Ge ZC, Xu WZ, Wu ZX, Liu Y, Shi L, Qiao Y, Geng JC (2022). Root morphological characteristics of different alfalfa varieties in sandy grass bottomland of Yulin. Guizhou Agricultural Sciences, 50(8), 54-63. |
[ 葛志超, 徐伟洲, 武治兴, 刘阳, 史雷, 乔雨, 耿金才 (2022). 榆林风沙草滩地不同品种紫花苜蓿的根系形态特征. 贵州农业科学, 50(8), 54-63.] | |
[19] | Guo X, Hu ZM, Li SG, Guo Q (2021). Effects of nitrogen and phosphorus addition on belowground biomass of temperate typical steppe in Inner Mongolia. Chinese Journal of Ecology, 40, 929-939. |
[ 郭旋, 胡中民, 李胜功, 郭群 (2021). 氮磷添加对内蒙古温带典型草原地下生物量的影响. 生态学杂志, 40, 929-939.] | |
[20] | Hawkes CV, Sullivan JJ (2001). The impact of herbivory on plants in different resource conditions: a meta-analysis. Ecology, 82, 2045-2058. |
[21] |
Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, et al. (1999). Plant diversity and productivity experiments in European grasslands. Science, 286, 1123-1127.
DOI PMID |
[22] | Hou LL, Yan RR, Zhang Y, Xin XP (2020). Effects of grazing intensity on functional traits of Leymus chinensis in meadow steppe. Scientia Agricultura Sinica, 53, 2562-2572. |
[ 侯路路, 闫瑞瑞, 张宇, 辛晓平 (2020). 放牧强度对草甸草原羊草功能性状的影响. 中国农业科学, 53, 2562-2572.]
DOI |
|
[23] | Kong D, Wang J, Kardol P, Wu H, Zeng H, Deng X, Deng Y (2015). The root economics spectrum: divergence of absorptive root strategies with root diameter. Biogeosciences Discussions, 12, 13041-13067. |
[24] |
Laliberté E (2017). Below-ground frontiers in trait-based plant ecology. New Phytologist, 213, 1597-1603.
DOI PMID |
[25] | Li Q, Zhao CZ, Kang MP, Li XY (2021). The relationship of the main root-shoot morphological characteristics and biomass allocation of Saussurea salsa under different habitat conditions in Sugan Lake wetland on the northern margin of the Qinghai-Tibet Plateau. Ecological Indicators, 128, 107836. DOI: 10.1016/j.ecolind.2021. 107836. |
[26] | Li TL, Huo GW, Wu YN (2022). Comparison of root traits of Stipa krylovii and Allium polyrhizum under grazing in typical steppe. Chinese Journal of Applied Ecology, 33, 360-368. |
[ 李天良, 霍光伟, 乌云娜 (2022). 放牧影响下典型草原克氏针茅和多根葱根系属性比较. 应用生态学报, 33, 360-368.]
DOI |
|
[27] |
Li XL, Feng YH (2015). Research advance on relation of aerial part and root traits of rice. Chinese Agricultural Science Bulletin, 31(6), 1-6.
DOI |
[ 李香玲, 冯跃华 (2015). 水稻根系生长特性及其与地上部分关系的研究进展. 中国农学通报, 31(6), 1-6.]
DOI |
|
[28] | Li XP, Zhao CZ, Ren Y, Zhang J, Lei L (2018). Fractal root systems of Elymus nutans under different density conditions in Gahai Wetland. Acta Ecologica Sinica, 38, 1176-1182. |
[ 李雪萍, 赵成章, 任悦, 张晶, 雷蕾 (2018). 尕海湿地不同密度条件下垂穗披碱草根系分形结构. 生态学报, 38, 1176-1182.] | |
[29] | Li YH, Luo T, Lu Q (2008). Plant height as a simple predictor of the root to shoot ratio: evidence from alpine grasslands on the Tibetan Plateau. Journal of Vegetation Science, 19, 245-252. |
[30] | Li YY, Dong SK, Li XY, Wen L (2012). Effect of enclosure on vegetation photosynthesis and biomass of degraded grasslands in headwater area of Qinghai-Tibetan Plateau. Acta Agrestia Sinica, 20, 621-625. |
[ 李媛媛, 董世魁, 李小艳, 温璐 (2012). 围栏封育对三江源区退化高寒草地植物光合作用及生物量的影响. 草地学报, 20, 621-625.]
DOI |
|
[31] |
Liu H, Mi Z, Lin LI, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
DOI PMID |
[32] |
Liu SL, Wang CT, Zhang CB, Hu L, Tang LT, Pan P (2021). A comparative study of root characteristics of three gramineous herbage species in the Northwest Sichuan Plateau. Acta Prataculturae Sinica, 30(3), 41-53.
DOI |
[ 刘斯莉, 王长庭, 张昌兵, 胡雷, 唐立涛, 潘攀 (2021). 川西北高原3种禾本科牧草根系特征比较研究. 草业学报, 30(3), 41-53.]
DOI |
|
[33] | Liu Y, Wang GL, Liu GB, Qu QL, Yuan ZC (2010). Difference and inherent linkage of root characteristics in different root classification of Pinus tabulaeformis seedlings. Chinese Journal of Plant Ecology, 34, 1386-1393. |
[ 刘莹, 王国梁, 刘国彬, 曲秋玲, 袁子成 (2010). 不同分类系统下油松幼苗根系特征的差异与联系. 植物生态学报, 34, 1386-1393.]
DOI |
|
[34] | Luo FL, Zhang FW, Zhang GR, Wang CY, Zhu JB, Yang YS, Li YN (2021). Effects of grazing intensity on community characteristics and vegetation living states in alpine meadows. Pratacultural Science, 38, 2097-2105. |
[ 罗方林, 张法伟, 张光茹, 王春雨, 祝景彬, 杨永胜, 李英年 (2021). 放牧强度对高寒草甸群落特征及植被生存状态的影响. 草业科学, 38, 2097-2105.] | |
[35] | Ma XZ, Wang XP (2021). Aboveground and belowground biomass and its’ allometry for Salsola passerina shrub in degraded steppe desert in Northwestern China. Land Degradation & Development, 32, 714-722. |
[36] | Mensah S, Glèlè Kakaï R, Seifert T (2016). Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits. Annals of Forest Research, 59, 49-60. |
[37] |
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692.
DOI PMID |
[38] | Ostonen I, Püttsepp Ü, Biel C, Alberton O, Bakker MR, Lõhmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M, Brunner I (2007). Specific root length as an indicator of environmental change. Plant Biosystems, 141, 426-442. |
[39] | Peng F, Xue X, You Q, Huang C, Dong S, Liao J, Duan H, Tsunekawa A, Wang T (2018). Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet Plateau. Ecological Indicators, 93, 572-580. |
[40] | Peng Y, Yang Y (2016). Allometric biomass partitioning under nitrogen enrichment: evidence from manipulative experiments around the world. Scientific Reports, 6, 28918. DOI: 10.1038/srep28918. |
[41] |
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
DOI PMID |
[42] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301. |
[43] | Roa-Fuentes LL, Campo J, Parra-Tabla V (2012). Plant biomass allocation across a precipitation gradient: an approach to seasonally dry tropical forest at Yucatán, Mexico. Ecosystems, 15, 1234-1244. |
[44] | Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331. |
[45] | Song WJ, Su JS, Zhang MD, Zhao YJ, Wang ZW, Jia YS, Bai YF (2023). Compensatory growth of grassland plants and optimal grazing intensity in northern China: an integrated analysis based on grazing experiments. Chinese Science Bulletin, 68, 1330-1342. |
[ 宋伟江, 苏纪帅, 张梦迪, 赵玉金, 王忠武, 贾玉山, 白永飞 (2023). 中国北方草地植物补偿性生长与合理放牧强度: 基于放牧实验的整合分析. 科学通报, 68, 1330-1342.] | |
[46] | Su JS, Zhao J, Jing GH, Wei L, Liu J, Cheng JM, Zhang JE (2017). Root pattern of Stipa plants in semiarid grassland after long-term grazing exclusion. Acta Ecologica Sinica, 37, 6571-6580. |
[47] | Sun GJ, Zhang R, Zhou L (2003). Trends and advances in researches on plant functional diversity and functional groups. Acta Ecologica Sinica, 23, 1430-1435. |
[ 孙国钧, 张荣, 周立 (2003). 植物功能多样性与功能群研究进展. 生态学报, 23, 1430-1435.] | |
[48] | Sun JH, Shi HL, Chen KY, Ji BM, Zhang J (2023). Research advances on trade-off relationships of plant fine root functional traits. Chinese Journal of Plant Ecology, 47, 1055-1070. |
[ 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静 (2023). 植物细根功能性状的权衡关系研究进展. 植物生态学报, 47, 1055-1070.]
DOI |
|
[49] | Suo CX, Fei X, Liu YZ, Xiang S, Sun SC (2023). Functional group characteristics of plant community at different grazing intensities in alpine grassland of northwestern Sichuan. Chinese Journal of Applied and Environmental Biology, 29, 109-116. |
[ 锁才序, 费璇, 刘银占, 向双, 孙书存 (2023). 不同放牧强度下川西北高寒草地植物功能群特征变化. 应用与环境生物学报, 29, 109-116.] | |
[50] | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997). The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. |
[51] | Wang CT, Long RJ, Ding LM (2004). The effects of differences in functional group diversity and composition on plant community productivity in four types of alpine meadow communities. Chinese Biodiversity, 12, 403-409. |
[ 王长庭, 龙瑞军, 丁路明 (2004). 高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响. 生物多样性, 12, 403-409.]
DOI |
|
[52] | Wang CT, Long RJ, Wang QL, Jing ZC, Shi JJ (2009). Changes in plant diversity, biomass and soil C, in alpine meadows at different degradation stages in the headwater region of three rivers, China. Land Degradation & Development, 20, 187-198. |
[53] | Wang CT, Long RJ, Wang QL, Jing ZC, Shi JJ, Du YG, Cao GM (2008). Changes in soil organic carbon and microbial biomass carbon at different degradation successional stages of alpine meadows in the headwater region of three rivers in China. Chinese Journal of Applied & Environmental Biology, 14, 225-230. |
[ 王长庭, 龙瑞军, 王启兰, 景增春, 施建军, 杜岩功, 曹广民 (2008). 三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化. 应用与环境生物学报, 14, 225-230.] | |
[54] | Wang JW, Zhao CZ, Zhao LC, Wang XP, Li Q (2018). Response of root morphology and biomass of Phragmites australis to soil salinity in inland salt marsh. Acta Ecologica Sinica, 38, 4843-4851. |
[ 王继伟, 赵成章, 赵连春, 王小鹏, 李群 (2018). 内陆盐沼芦苇根系形态及生物量分配对土壤盐分因子的响应. 生态学报, 38, 4843-4851.] | |
[55] | Wang N, Pan XC, Bai SB, Zhang T (2020). Effects of acid rain on root morphology and distribution pattern in the buffer zone of broad-leaved forest invaded by Moso bamboo. Acta Ecologica Sinica, 40, 4670-4678. |
[ 王楠, 潘小承, 白尚斌, 张拓 (2020). 酸雨对毛竹入侵阔叶林缓冲区根系形态及分布格局的影响. 生态学报, 40, 4670-4678.] | |
[56] | Wang XF, Wang ZY, Liang JH, Wang LQ (2013). Study on the root architecture of cespitose plants in the grassland of Inner Mongolia. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 34(3), 77-82. |
[ 王旭峰, 王占义, 梁金华, 王立群 (2013). 内蒙古草地丛生型植物根系构型的研究. 内蒙古农业大学学报(自然科学版), 34(3), 77-82.] | |
[57] | Wang XX, Dong SK, Yang B, Li YY, Su XK (2014). The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring and Assessment, 186, 6903-6917. |
[58] | Weemstra M, Kiorapostolou N, van Ruijven J, Mommer L, de Vries J, Sterck F (2020). The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration. Functional Ecology, 34, 575-585. |
[59] | Weemstra M, Kuyper TW, Sterck FJ, Umaña MN (2023). Incorporating belowground traits: avenues towards a whole-tree perspective on performance. Oikos, 2023, e08827. DOI: 10.1111/oik.08827. |
[60] | Wen L, Dong SK, Li YY, Wang XX, Li XY, Shi JJ, Dong QM (2013). The impact of land degradation on the C pools in alpine grasslands of the Qinghai-Tibet Plateau. Plant and Soil, 368, 329-340. |
[61] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI PMID |
[62] | Wu GL, Wang D, Liu Y, Ding LM, Liu ZH (2017). Warm-season grazing benefits species diversity conservation and topsoil nutrient sequestration in alpine meadow. Land Degradation & Development, 28, 1311-1319. |
[63] | Xu TW, Zhao JC, Mao SJ, Geng YY, Liu HJ, Zhao XQ, Xu SX (2020). Response of plant community structure and biomass to short-term rest grazing in an alpine meadow in Haibei Autonomous Prefecture of Qinghai. Acta Prataculturae Sinica, 29(4), 1-8. |
[ 徐田伟, 赵炯昌, 毛绍娟, 耿远月, 刘宏金, 赵新全, 徐世晓 (2020). 青海省海北地区高寒草甸群落特征和生物量对短期休牧的响应. 草业学报, 29(4), 1-8.]
DOI |
|
[64] | Yang YD, Ma JL, Ma HB, Zhou Y, Li C, Dong C (2023). Effects of grazing exclusion on root trait characteristics of dominant plants in the desert steppe. Pratacultural Science, 40, 1507-1517. |
[ 杨彦东, 马静利, 马红彬, 周瑶, 李成, 董川 (2023). 封育对荒漠草原优势植物根系性状特征的影响. 草业科学, 40, 1507-1517.] | |
[65] | Yang Y, Fang J, Ma W, Guo D, Mohammat A (2010). Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 19, 268-277. |
[66] | Yang YH, Luo YQ (2011). Isometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development. Journal of Ecology, 99, 431-437. |
[67] | Zhang F, Li YC, Wang X, Zhu JX (2021). Effect of rangeland degradation on biomass allocation in alpine meadows on the Qinghai-Tibet Plateau, China. Pratacultural Science, 38, 1451-1458. |
[ 张帆, 李元淳, 王新, 朱剑霄 (2021). 青藏高原高寒草甸退化对草地群落生物量及其分配的影响. 草业科学, 38, 1451-1458.] | |
[68] | Zhang T, Zou XH, Li LX, Tao CZ, Wu PF (2023). Research progress on the cost and benefit of root acquisition metabolism from plant resources. Journal of Northwest Forestry University, 38(4), 149-155. |
[ 张婷, 邹显花, 李林鑫, 陶长铸, 吴鹏飞 (2023). 根系获取资源过程中的代谢成本权衡策略研究进展. 西北林学院学报, 38(4), 149-155.] | |
[69] | Zhang WT, Zhao CZ, Song QH, Wang JW, Wang JL, Yao WX, Li Q (2017). The relationship between root branching number and connection length of Potentilla acaulis in alpine degraded grasslands. Acta Ecologica Sinica, 37, 8518-8525. |
[ 张伟涛, 赵成章, 宋清华, 王继伟, 王建良, 姚文秀, 李群 (2017). 高寒退化草地星毛委陵菜根系分叉数和连接长度的关系. 生态学报, 37, 8518-8525.] | |
[70] | Zhang Y, Zheng QZ, Gao XX, Ma YD, Liang KM, Yue HT, Huang XX, Wu KT, Wang XR (2022). Land degradation changes the role of above- and belowground competition in regulating plant biomass allocation in an alpine meadow. Frontiers in Plant Science, 13, 822594. DOI: 10.3389/fpls.2022.822594. |
[71] | Zhang YM, Hu HY, Bai XM, Cory M, Javier GF, Iván OP (2022). Effects of soil water restriction on root growth and root morphology of perennial ryegrass and pasture brome. Chinese Journal of Eco-Agriculture, 30, 1784-1794. |
[ 张咏梅, 胡海英, 白小明, Cory M, Javier GF, Iván OP (2022). 多年生黑麦草、雀麦根系形态和生长对土壤干旱的适应性. 中国生态农业学报, 30, 1784-1794.] | |
[72] | Zhou YS, Wang LQ, Zhang P, Liang JH, Wang XF (2011). Responses of the root architecture of Stipa grandis to grassland degradation. Pratacultural Science, 28, 1962-1966. |
[ 周艳松, 王立群, 张鹏, 梁金华, 王旭峰 (2011). 大针茅根系构型对草地退化的响应. 草业科学, 28, 1962-1966.] | |
[73] | Zou S, Lv FC (2016). Two special vegetation types in Tibetan Plateau: alpine grassland and alpine meadow. Geography Teaching, 57, 4-7. |
[1] | 杜淑辉 褚建民 段俊光 薛建国 徐磊 徐晓庆 王其兵 黄建辉 张倩. 木质素酚类物质对内蒙古退化草地土壤有机碳的影响[J]. 植物生态学报, 2025, 49(1): 30-41. |
[2] | 徐嘉昕 肖元明 王小赟 王雯莹 马玉花 李强峰 周国英. 微生物菌肥与氮磷肥回补对退化高寒草甸土壤理化性质和酶活性的影响[J]. 植物生态学报, 2025, 49(1): 159-172. |
[3] | 许梦真 卢正宽 谭星儒 王彦兵 苏天成 窦山德 潘庆民 陈世苹. 呼伦贝尔草甸草原退化特征因子识别与快速诊断指标体系构建[J]. 植物生态学报, 2025, 49(1): 42-58. |
[4] | 张小雨, 贾国栋, 余新晓, 孙立博, 蒋涛. 不同退化程度小叶杨人工林冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2024, 48(9): 1143-1156. |
[5] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[6] | 袁鹤洋, 郝珉辉, 何怀江, 张春雨, 赵秀海. 长白山物种丰富度与物种组成对森林生产力的影响及其随演替的变化[J]. 植物生态学报, 2024, 48(12): 1602-1611. |
[7] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[10] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[11] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[12] | 何春梅, 李雨姗, 尹秋龙, 贾仕宏, 郝占庆. 秦岭皇冠暖温性落叶阔叶林优势树种的径级结构和数量特征[J]. 植物生态学报, 2023, 47(12): 1658-1667. |
[13] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[14] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
[15] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19