植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 632-641.DOI: 10.17521/cjpe.2021.0282
所属专题: 全球变化与生态系统
收稿日期:
2021-08-04
接受日期:
2021-12-29
出版日期:
2022-06-20
发布日期:
2022-06-09
通讯作者:
王娟,张春雨
作者简介:
*(wangjuan@bjfu.edu.cn)基金资助:
YU Shui-Jin, WANG Juan(), ZHANG Chun-Yu, ZHAO Xiu-Hai
Received:
2021-08-04
Accepted:
2021-12-29
Online:
2022-06-20
Published:
2022-06-09
Contact:
WANG Juan,ZHANG Chun-Yu
Supported by:
摘要:
森林生态系统通过响应环境波动和干扰而产生时间变化, 对其稳定性机制的研究有利于生态系统服务。温带针阔混交林是全球森林生态系统的重要组成部分, 该研究致力于探索超产效应、林分结构、物种异步性及优势物种稳定性对温带天然针阔混交林群落稳定性的影响, 以明确主要影响机制。该研究分别设定物种丰富度、胸径变异系数、物种异步性和优势物种稳定性为解释变量, 群落生物量稳定性、生物量平均值和生物量标准差为响应变量, 构建3个结构方程模型, 比较各变量间直接与间接效应的相对大小。主要结果为: (1)结构方程模型提供了良好的拟合效果, 并占群落生物量稳定性变化的40.6%; (2)物种丰富度与生物量平均值、生物量标准差均呈显著负相关关系, 路径系数分别为-0.103和-0.061; (3)胸径变异系数与群落生物量稳定性及生物量平均值均呈显著负相关关系, 路径系数分别为-0.123和-0.097; (4)物种异步性与群落生物量稳定性、生物量平均值、生物量标准差均呈显著正相关关系, 路径系数分别为0.055、0.085和0.055; (5)优势物种稳定性与群落生物量稳定性和生物量平均值呈显著正相关关系, 路径系数分别为0.623和0.085, 与生物量标准差间显著负相关, 路径系数为-0.608。研究结果表明尽管林分结构和物种异步性对温带针阔混交林群落生物量稳定性均有显著影响, 但优势物种稳定性是最主要的直接影响因素。
于水今, 王娟, 张春雨, 赵秀海. 温带针阔混交林生物量稳定性影响机制. 植物生态学报, 2022, 46(6): 632-641. DOI: 10.17521/cjpe.2021.0282
YU Shui-Jin, WANG Juan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest. Chinese Journal of Plant Ecology, 2022, 46(6): 632-641. DOI: 10.17521/cjpe.2021.0282
图1 多元回归模型中的预测变量对温带针阔混交林群落生物量稳定性(A)、生物量平均值(B)和生物量标准差(C)的影响(平均值±标准误)。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 1 Effect of the predictor variables on community biomass stability (A), mean biomass (B) and standard deviation of biomass (C) in a temperate coniferous and broadleaved mixed forest, from multiple regression models (mean ± SE). DBH, diameter at breast height. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图2 用于测试物种丰富度、胸径变异系数、物种异步性和优势物种稳定性对温带针阔混交林群落生物量稳定性(A)、生物量平均值(B)和生物量标准差(C)相对影响的结构方程模型。检验参数: p = 0.692, 比较拟合指数(CFI) =1.000, 标准化均方根残差(SRMR) = 0.002。实线箭头表示显著路径, 虚线箭头表示不显著路径; 黑色为正, 灰色为负。对于每条路径, 都展示了标准化回归系数。箭头的粗细反映了标准化回归系数的大小。R2表示解释的方差比例。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 2 Structural equation models for testing the relative effects of species richness, coefficient of variation of diameter at breast height (CVDBH), species asynchrony and dominant species stability on community biomass stability (A), mean biomass (B) and standard deviation of biomass (SDbiomass)(C) in a temperate coniferous and broadleaved mixed forest. The test parameters were p = 0.692, comparative fit index (CFI) = 1.000, standardized root mean square residual (SRMR) = 0.002. Solid arrows represent significant paths and dashed arrows represent non-significant paths (black = positive; grey = negative). For each path, the standardized regression coefficient is shown. The thickness of the arrows reflects the magnitude of the standardized regression coefficients. R2 denotes the proportion of variance explained. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
[1] |
Ali A, Sanaei A, Li M, Nalivan OA, Ahmadaali K, Pour MJ, Valipour A, Karami J, Aminpour M, Kaboli H, Askari Y (2020). Impacts of climatic and edaphic factors on the diversity, structure and biomass of species-poor and structurally-complex forests. Science of the Total Environment, 706, 135719. DOI: 10.1016/j.scitotenv.2019.135719.
DOI URL |
[2] |
Ali A, Yan ER (2017). Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecological Indicators, 83, 158-168.
DOI URL |
[3] |
Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016). Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13, 4627-4635.
DOI URL |
[4] |
Aussenac R, Bergeron Y, Ghotsa Mekontchou C, Gravel D, Pilch K, Drobyshev I (2017). Intraspecific variability in growth response to environmental fluctuations modulates the stabilizing effect of species diversity on forest growth. Journal of Ecology, 105, 1010-1020.
DOI URL |
[5] |
Aussenac R, Bergeron Y, Gravel D, Drobyshev I (2019). Interactions among trees: a key element in the stabilising effect of species diversity on forest growth. Functional Ecology, 33, 360-367.
DOI |
[6] |
Chapin III FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000). Consequences of changing biodiversity. Nature, 405, 234-242.
DOI URL |
[7] |
Chase JM, McGill BJ, McGlinn DJ, May F, Blowes SA, Xiao X, Knight TM, Purschke O, Gotelli NJ (2018). Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 21, 1737-1751.
DOI URL |
[8] |
Chen L, Xiang WH, Wu HL, Ouyang S, Zhou B, Zeng YL, Chen YL, Kuzyakov Y (2019). Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biology & Biochemistry, 130, 113-121.
DOI URL |
[9] |
Chiang JM, Spasojevic MJ, Muller-Landau HC, Sun IF, Lin Y, Su SH, Chen ZS, Chen CT, Swenson NG, McEwan RW (2016). Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia, 182, 829-840.
DOI URL |
[10] |
Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao HL, Cao M, Cárdenas D, Chang LW, Chiang JM, et al. (2013). Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101, 1214-1224.
DOI URL |
[11] |
Conti G, Díaz S (2013). Plant functional diversity and carbon storage-An empirical test in semi-arid forest ecosystems. Journal of Ecology, 101, 18-28.
DOI URL |
[12] | Craven D, Eisenhauer N, Pearse WD, Hautier Y, Isbell F, Roscher C, Bahn M, Beierkuhnlein C, Bönisch G, Buchmann N, Byun C, Catford JA, Cerabolini BEL, Cornelissen JHC, Craine JM, et al. (2018). Multiple facets of biodiversity drive the diversity-stability relationship. Nature Ecology & Evolution, 2, 1579-1587. |
[13] |
Dănescu A, Albrecht AT, Bauhus J (2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI PMID |
[14] |
del Río M, Pretzsch H, Ruíz-Peinado R, Ampoorter E, Annighöfer P, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Heym M, Hurt V, Kurylyak V, et al. (2017). Species interactions increase the temporal stability of community productivity in Pinus sylvestris - Fagus sylvatica mixtures across Europe. Journal of Ecology, 105, 1032-1043.
DOI URL |
[15] |
Duffy JE, Godwin CM, Cardinale BJ (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261-264.
DOI URL |
[16] |
Ferreira J, Lennox GD, Gardner TA, Thomson JR, Berenguer E, Lees AC, Nally RM, Aragão LEOC, Ferraz SFB, Louzada J, Moura NG, Oliveira VHF, Pardini R, Solar RRC, Vieira ICG, Barlow J (2018). Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nature Climate Change, 8, 744-749.
DOI |
[17] |
Figueiredo FOG, Zuquim G, Tuomisto H, Moulatlet GM, Balslev H, Costa FRC (2018). Beyond climate control on species range: the importance of soil data to predict distribution of Amazonian plant species. Journal of Biogeography, 45, 190-200.
DOI URL |
[18] |
Forrester DI (2019). Linking forest growth with stand structure: tree size inequality, tree growth or resource partitioning and the asymmetry of competition. Forest Ecology and Management, 447, 139-157.
DOI |
[19] |
Forrester DI, Rodenfels P, Haase J, Härdtle W, Leppert KN, Niklaus PA, von Oheimb G, Scherer-Lorenzen M, Bauhus J (2019). Tree-species interactions increase light absorption and growth in Chinese subtropical mixed-species plantations. Oecologia, 191, 421-432.
DOI PMID |
[20] |
García-Palacios P, Gross N, Gaitán J, Maestre FT (2018). Climate mediates the biodiversity-ecosystem stability relationship globally. Proceedings of the National Academy of Sciences of the United States of America, 115, 8400-8405.
DOI PMID |
[21] |
Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, et al. (2016). Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
DOI URL |
[22] |
Grime JP (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902-910.
DOI URL |
[23] |
Hautier Y, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hillebrand H, Lind EM, MacDougall AS, Stevens CJ, Bakker JD, Buckley YM, Chu C, Collins SL, Daleo P, Damschen EI, et al. (2014). Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508, 521-525.
DOI URL |
[24] |
He HJ, Zhang CY, Zhao XH, Fousseni F, Wang JS, Dai HJ, Yang S, Zuo Q (2018). Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLOS ONE, 13, e0186226. DOI: 10.1371/journal.pone.0186226.
DOI URL |
[25] |
Hector A, Hautier Y, Saner P, Wacker L, Bagchi R, Joshi J, Scherer-Lorenzen M, Spehn EM, Bazeley-White E, Weilenmann M, Caldeira MC, Dimitrakopoulos PG, Finn JA, Huss-Danell K, Jumpponen A, et al. (2010). General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 91, 2213-2220.
PMID |
[26] |
Hillebrand H, Bennett DM, Cadotte MW (2008). Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology, 89, 1510-1520.
PMID |
[27] |
Huang YY, Chen YX, Nadia CI, Martin B, Matteo B, Anne L, Li Y, Werner H, Goddert VO, Yang XF, Liu XJ, Pei KQ, Sabine B, Yang B, David E, et al. (2018). Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 362, 80-83.
DOI URL |
[28] |
Isbell F, Gonzalez A, Loreau M, Cowles J, Díaz S, Hector A, Mace GM, Wardle DA, Connor MI, Duffy JE, Turnbull LA, Thompson PL, Larigauderie A (2017). Linking the influence and dependence of people on biodiversity across scales. Nature, 546, 65-72.
DOI URL |
[29] |
Jarzyna MA, Jetz W (2018). Taxonomic and functional diversity change is scale dependent. Nature Communications, 9, 2565. DOI: 10.1038/s41467-018-04889-z.
DOI PMID |
[30] |
Jucker T, Bouriaud O, Avacaritei D, Coomes DA (2014). Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecology Letters, 17, 1560-1569.
DOI URL |
[31] |
Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015). Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology, 96, 1242-1252.
DOI URL |
[32] |
Loreau M, de Mazancourt C, (2008). Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments. The American Naturalist, 172, E48-E66.
DOI URL |
[33] |
Loreau M, de Mazancourt C, (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 16, 106-115.
DOI URL |
[34] |
Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ (2014). Convergence of terrestrial plant production across global climate gradients. Nature, 512, 39-43.
DOI URL |
[35] |
Millar CI, Stephenson NL (2015). Temperate forest health in an era of emerging megadisturbance. Science, 349, 823-826.
DOI URL |
[36] |
Morin X, Fahse L, de Mazancourt C, Scherer-Lorenzen M, Bugmann H (2014). Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecology Letters, 17, 1526-1535.
DOI URL |
[37] |
Ouyang S, Xiang W, Gou M, Chen L, Lei P, Xiao W, Deng X, Zeng L, Li J, Zhang T, Peng C, Forrester DI (2021). Stability in subtropical forests: the role of tree species diversity, stand structure, environmental and socio- economic conditions. Global Ecology and Biogeography, 30, 500-513.
DOI URL |
[38] |
Pretzsch H (2014). Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. Forest Ecology and Management, 327, 251-264.
DOI URL |
[39] |
Rodrigues AC, Villa PM, Neri AV (2019). Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecological Indicators, 102, 208-217.
DOI |
[40] |
Roscher C, Weigelt A, Proulx R, Marquard E, Schumacher J, Weisser WW, Schmid B (2011). Identifying population and community-level mechanisms of diversity-stability relationships in experimental grasslands. Journal of Ecology, 99, 1460-1469.
DOI URL |
[41] |
Sasaki T, Lauenroth WK (2011). Dominant species, rather than diversity, regulates temporal stability of plant communities. Oecologia, 166, 761-768.
DOI URL |
[42] |
Schnabel F, Schwarz JA, Dănescu A, Fichtner A, Nock CA, Bauhus J, Potvin C (2019). Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Global Change Biology, 25, 4257-4272.
DOI PMID |
[43] |
Soares AAV, Leite HG, Souza AL, Silva SR, Lourenço HM, Forrester DI (2016). Increasing stand structural heterogeneity reduces productivity in Brazilian Eucalyptus monoclonal stands. Forest Ecology and Management, 373, 26-32.
DOI URL |
[44] |
Thibaut LM, Connolly SR (2013). Understanding diversity- stability relationships: towards a unified model of portfolio effects. Ecology Letters, 16, 140-150.
DOI PMID |
[45] |
Valencia E, de Bello F, Galland T, Adler PB, Lepš J, E-Vojtkó A, van Klink R, Carmona CP, Danihelka J, Dengler J, Eldridge DJ, Estiarte M, García-González R, Garnier E, García DG, et al. (2020). Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 117, 24345-24351.
DOI PMID |
[46] |
Wang J, Cheng YX, Zhang CY, Zhao YZ, Zhao XH, von Gadow K, (2016). Relationships between tree biomass productivity and local species diversity. Ecosphere, 7, e01562. DOI: 10.1002/ecs2.1562.
DOI |
[47] |
Wang SP, Loreau M (2016). Biodiversity and ecosystem stability across scales in metacommunities. Ecology Letters, 19, 510-518.
DOI URL |
[48] |
Wayne Polley H, Wilsey BJ (2018). Variability in community productivity-Mediating effects of vegetation attributes. Functional Ecology, 32, 1410-1419.
DOI URL |
[49] |
Wayne Polley H, Wilsey BJ, Derner JD (2007). Dominant species constrain effects of species diversity on temporal variability in biomass production of tallgrass prairie. Oikos, 116, 2044-2052.
DOI URL |
[50] |
Weiner J, Solbrig OT (1984). The meaning and measurement of size hierarchies in plant populations. Oecologia, 61, 334-336.
DOI PMID |
[51] |
Xu Q, Yang X, Yan Y, Wang S, Loreau M, Jiang L (2021). Consistently positive effect of species diversity on ecosystem, but not population, temporal stability. Ecology Letters, 24, 2256-2266.
DOI URL |
[52] |
Xu Z, Ren H, Li MH, van Ruijven J, Han X, Wan S, Li H, Yu Q, Jiang Y, Jiang L (2015). Environmental changes drive the temporal stability of semi-arid natural grasslands through altering species asynchrony. Journal of Ecology, 103, 1308-1316.
DOI URL |
[53] |
Yang Z, van Ruijven J, Du G (2011). The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant and Soil, 345, 315-324.
DOI URL |
[54] |
Yu Q, Rao X, Chu C, Liu S, Lin Y, Sun D, Tan X, Hanif A, Shen W (2020). Species dominance rather than species asynchrony determines the temporal stability of productivity in four subtropical forests along 30 years of restoration. Forest Ecology and Management, 457, 117687. DOI: 10.1016/j.foreco.2019.117687.
DOI URL |
[55] |
Yuan Z, Ali A, Jucker T, Ruiz-Benito P, Wang S, Jiang L, Wang X, Lin F, Ye J, Hao Z, Loreau M (2019). Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests. Ecology, 100, e02650. DOI: 10.1002/ecy.2650.
DOI URL |
[56] |
Yuan Z, Ali A, Sanaei A, Ruiz-Benito P, Jucker T, Fang L, Bai E, Ye J, Lin F, Fang S, Hao Z, Wang X (2021). Few large trees, rather than plant diversity and composition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China. Forest Ecology and Management, 481, 118698. DOI: 10.1016/j.foreco.2020.118698.
DOI URL |
[57] |
Yuan Z, Ali A, Wang S, Gazol A, Freckleton R, Wang X, Lin F, Ye J, Zhou L, Hao Z, Loreau M (2018). Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 630, 422-431.
DOI URL |
[58] | Zhang C, Zhao Y, Zhao X, von Gadow K, (2012). Species- habitat associations in a northern temperate forest in China. Silva Fennica, 46, 501-519. |
[59] |
Zhang Y, Chen HYH (2015). Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
DOI URL |
[60] |
Zhang Y, Feng J, Loreau M, He N, Han X, Jiang L (2019). Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecology Letters, 22, 563-571.
DOI URL |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 李周园, 叶小洲, 王少鹏. 生态系统稳定性及其与生物多样性的关系[J]. 植物生态学报, 2021, 45(10): 1127-1139. |
[3] | 黎松松, 王宁欣, 郑伟, 朱亚琼, 王祥, 马军, 朱进忠. 一年生和多年生豆禾混播草地超产与多样性效应的比较[J]. 植物生态学报, 2021, 45(1): 23-37. |
[4] | 喻泓, 杨晓晖, 慈龙骏. 地表火对红花尔基沙地樟子松种群空间分布格局的影响[J]. 植物生态学报, 2009, 33(1): 71-80. |
[5] | 江小雷, 张卫国, 段争虎. 资源互补效应对多样性-生产力关系的影响[J]. 植物生态学报, 2005, 29(4): 523-529. |
[6] | 朱锦懋, 黄茂提, 陈由强, 黄儒珠, 李晓青. 笋材两用毛竹林林分结构数量关系研究[J]. 植物生态学报, 2000, 24(4): 483-488. |
[7] | 桑卫国, 陈灵芝, 于顺利, 马克平. 蒙古栎红松林物种组成和结构动态的研究[J]. 植物生态学报, 2000, 24(2): 231-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19