植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1232-1242.DOI: 10.17521/cjpe.2023.0272 cstr: 32100.14.cjpe.2023.0272
• 研究论文 • 上一篇
冉佳鑫1,2, 张宇辉1,2, 王云1,2, 杨智杰1,2, 毛超1,2,*()(
)
收稿日期:
2023-09-22
接受日期:
2024-02-07
出版日期:
2024-09-20
发布日期:
2024-02-18
通讯作者:
毛超(基金资助:
RAN Jia-Xin1,2, ZHANG Yu-Hui1,2, WANG Yun1,2, YANG Zhi-Jie1,2, MAO Chao1,2,*()(
)
Received:
2023-09-22
Accepted:
2024-02-07
Online:
2024-09-20
Published:
2024-02-18
Contact:
MAO Chao (Supported by:
摘要:
凋落物源溶解有机碳(DOC)是森林土壤DOC的重要来源, 其生物降解性的大小会影响土壤有机碳的固定和损失。关注气候变暖、氮磷养分输入量增加等因子对DOC生物降解性的影响, 有助于深入理解全球变化背景下森林土壤有机碳的形成和稳定。该研究依托亚热带常绿阔叶林野外增温实验平台, 以分解0天(未分解)和180天(分解中后期)的格氏栲(Castanopsis kawakamii)的叶片凋落物为研究对象, 探究增温和氮磷添加及其交互作用对不同分解阶段的凋落物源DOC生物可降解性(BDOC)及相应的光谱指标变化量(ΔDOC光谱指标)的影响。结果表明: (1)凋落物BDOC随凋落物分解逐渐降低, 分解中后期较未分解阶段减少了22.6%。(2)增温显著提高未分解凋落物的BDOC, 但未显著影响分解中后期的BDOC。同时, 增温也显著增加了未分解阶段的ΔDOC光谱指标, 且未显著影响分解中后期的ΔDOC光谱指标。(3)氮添加显著降低了未分解阶段的BDOC, 但提高了分解中后期的BDOC。与BDOC不同, 氮添加均未显著影响两个分解阶段的ΔDOC光谱指标。(4)磷添加不仅显著提高未分解和分解中后期凋落物BDOC, 也显著增加了两个阶段的ΔDOC光谱指标。(5)增温和氮磷添加对凋落物BDOC和ΔDOC光谱指标均存在显著交互作用。总之, 增温和磷添加均会加速未分解凋落物源DOC的降解, 而分解中后期凋落物源DOC的降解主要受氮磷养分含量的影响。
冉佳鑫, 张宇辉, 王云, 杨智杰, 毛超. 增温和氮磷添加对亚热带森林凋落物溶解有机碳生物可降解性的影响. 植物生态学报, 2024, 48(9): 1232-1242. DOI: 10.17521/cjpe.2023.0272
RAN Jia-Xin, ZHANG Yu-Hui, WANG Yun, YANG Zhi-Jie, MAO Chao. Effects of warming and nitrogen and phosphorus addition on dissolved organic carbon biodegradability of litter in a subtropical forest. Chinese Journal of Plant Ecology, 2024, 48(9): 1232-1242. DOI: 10.17521/cjpe.2023.0272
因子 Factor | 对照 CK | 增温 W |
---|---|---|
MBC (mg·kg-1) | 181.05 ± 9.05a | 148.38 ± 6.32b |
MBN (mg·kg-1) | 79.99 ± 6.63a | 53.17 ± 2.97b |
MBC/MBN | 2.30 ± 0.16b | 2.82 ± 0.17a |
βG (nmol·h-1·g-1) | 19.47 ± 0.87b | 24.93 ± 1.00a |
CBH (nmol·h-1·g-1) | 0.61 ± 0.04b | 1.23 ± 0.05a |
PPO (nmol·h-1·g-1) | 0.68 ± 0.04b | 0.97 ± 0.07a |
Px (nmol·h-1·g-1) | 5.00 ± 0.50b | 7.20 ± 0.35a |
表1 格氏栲天然林对照和增温样地的土壤微生物属性(平均值±标准误)
Table 1 Soil microbial properties of the warming (CK) and control (W) plots in the Castanopsis kawakamii forest (mean ± SE)
因子 Factor | 对照 CK | 增温 W |
---|---|---|
MBC (mg·kg-1) | 181.05 ± 9.05a | 148.38 ± 6.32b |
MBN (mg·kg-1) | 79.99 ± 6.63a | 53.17 ± 2.97b |
MBC/MBN | 2.30 ± 0.16b | 2.82 ± 0.17a |
βG (nmol·h-1·g-1) | 19.47 ± 0.87b | 24.93 ± 1.00a |
CBH (nmol·h-1·g-1) | 0.61 ± 0.04b | 1.23 ± 0.05a |
PPO (nmol·h-1·g-1) | 0.68 ± 0.04b | 0.97 ± 0.07a |
Px (nmol·h-1·g-1) | 5.00 ± 0.50b | 7.20 ± 0.35a |
图1 增温和分解时间对亚热带森林凋落物可溶性有机碳(DOC)含量的影响(平均值±标准误)。CK, 对照; t, 分解时间; W, 增温。不同小写字母表示增温和对照间存在显著差异(p < 0.05)。
Fig. 1 Effects of warming and decomposition time on dissolved organic carbon (DOC) content of litter in a subtropical forest (mean ± SE). CK, control treatment; t, decomposition time; W, warming. Different lowercase letters indicate significant differences (p < 0.05) between warming and control treatment.
处理 Treatment | 分解0天 0-day decomposition | 分解180天 180-day decomposition | ||
---|---|---|---|---|
F | p | F | p | |
W | 21.18 | <0.01 | 0.01 | 0.91 |
N | 5.57 | <0.05 | 5.90 | <0.05 |
P | 167.92 | <0.01 | 144.70 | <0.01 |
N × P | 50.94 | <0.01 | 4.87 | <0.05 |
W × N | 3.05 | 0.09 | 0.74 | 0.40 |
W × P | 21.11 | <0.01 | 4.77 | <0.05 |
W × N × P | 5.29 | <0.05 | 3.44 | 0.07 |
表2 增温和养分添加对亚热带森林凋落物分解0天和180天可溶性有机碳(DOC)生物可降解性的影响
Table 2 Effects of warming and nutrient addition on 0-day decomposition and 180-day decomposition litter-derived dissolved organic carbon (DOC) in a subtropical forest
处理 Treatment | 分解0天 0-day decomposition | 分解180天 180-day decomposition | ||
---|---|---|---|---|
F | p | F | p | |
W | 21.18 | <0.01 | 0.01 | 0.91 |
N | 5.57 | <0.05 | 5.90 | <0.05 |
P | 167.92 | <0.01 | 144.70 | <0.01 |
N × P | 50.94 | <0.01 | 4.87 | <0.05 |
W × N | 3.05 | 0.09 | 0.74 | 0.40 |
W × P | 21.11 | <0.01 | 4.77 | <0.05 |
W × N × P | 5.29 | <0.05 | 3.44 | 0.07 |
图2 增温和氮磷添加对亚热带森林凋落物分解0天(A)和180天(B)可溶性有机碳生物可降解性(BODC)的影响(平均值±标准误)。CK, 对照; N, 氮添加; NP, 氮和磷添加的交互作用; P, 磷添加; W, 增温; WN, 增温和氮添加的交互作用; WNP, 增温、氮和磷添加的交互作用; WP, 增温和磷添加的交互作用。
Fig. 2 Effects of warming and nitrogen and phosphorus addition on the biodegradability of litter-derived dissolved oganic carbon (BDOC) at 0-day decomposition (A) and 180-day decomposition (B) stage in a subtropical forest (mean ± SE). CK, control treatment; N, nitrogen addition; NP, interaction between nitrogen and phosphorus addition; P, phosphorus addition; W, warming; WN, interaction between warming and nitrogen addition; WNP, interactions among warming, nitrogen and phosphorus addition; WP, interaction between warming and phosphorus addition.
分解时间 Decomposition time | 处理 Treatment | ΔSUVA254 | ΔSUVA260 | ΔSUVA280 | Δa300 | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
分解0天 0-day decomposition | W | 4.23 | <0.05 | 6.82 | <0.05 | 11.92 | <0.01 | 0.45 | 0.51 |
N | 6.23 | <0.05 | 0.27 | 0.61 | 0.40 | 0.53 | 8.34 | <0.01 | |
P | 55.52 | <0.01 | 34.63 | <0.01 | 51.21 | <0.01 | 31.14 | <0.01 | |
N × P | 20.35 | <0.01 | 9.52 | <0.01 | 6.65 | <0.05 | 11.88 | <0.01 | |
W × N | 2.85 | 0.10 | 6.22 | <0.05 | 0.45 | 0.51 | 0.17 | 0.68 | |
W × P | 7.04 | <0.05 | 6.51 | <0.05 | 4.31 | <0.05 | 0.32 | 0.57 | |
W × N × P | 1.92 | 0.18 | 0.02 | 0.89 | 2.93 | 0.10 | 0.25 | 0.62 | |
分解180天 180-day decomposition | W | 0.69 | 0.41 | 1.01 | 0.32 | 0.46 | 0.50 | 0.02 | 0.89 |
N | 2.04 | 0.16 | 2.54 | 0.12 | 2.84 | 0.10 | 0.54 | 0.47 | |
P | 30.57 | <0.01 | 49.27 | <0.01 | 21.43 | <0.01 | 49.74 | <0.01 | |
N × P | <0.01 | 0.99 | 1.28 | 0.27 | 5.93 | <0.05 | 0.03 | 0.86 | |
W × N | <0.01 | 1.00 | 0.02 | 0.88 | 0.03 | 0.87 | 5.74 | <0.05 | |
W × P | 2.35 | 0.14 | 6.99 | <0.05 | 5.99 | <0.05 | 0.03 | 0.86 | |
W × N × P | 0.03 | 0.86 | 0.61 | 0.44 | 2.47 | 0.13 | 5.68 | <0.05 |
表3 增温和氮磷添加对亚热带森林凋落物分解0天和180天可溶性有机碳光谱指标变化量(ΔDOC)的影响
Table 3 Effects of warming and nitrogen and phosphorus addition on the variation in dissolved organic carbon (ΔDOC) spectral index of littex at 0-day decomposition and 180-day decomposition stages in a subtropical forest.
分解时间 Decomposition time | 处理 Treatment | ΔSUVA254 | ΔSUVA260 | ΔSUVA280 | Δa300 | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
分解0天 0-day decomposition | W | 4.23 | <0.05 | 6.82 | <0.05 | 11.92 | <0.01 | 0.45 | 0.51 |
N | 6.23 | <0.05 | 0.27 | 0.61 | 0.40 | 0.53 | 8.34 | <0.01 | |
P | 55.52 | <0.01 | 34.63 | <0.01 | 51.21 | <0.01 | 31.14 | <0.01 | |
N × P | 20.35 | <0.01 | 9.52 | <0.01 | 6.65 | <0.05 | 11.88 | <0.01 | |
W × N | 2.85 | 0.10 | 6.22 | <0.05 | 0.45 | 0.51 | 0.17 | 0.68 | |
W × P | 7.04 | <0.05 | 6.51 | <0.05 | 4.31 | <0.05 | 0.32 | 0.57 | |
W × N × P | 1.92 | 0.18 | 0.02 | 0.89 | 2.93 | 0.10 | 0.25 | 0.62 | |
分解180天 180-day decomposition | W | 0.69 | 0.41 | 1.01 | 0.32 | 0.46 | 0.50 | 0.02 | 0.89 |
N | 2.04 | 0.16 | 2.54 | 0.12 | 2.84 | 0.10 | 0.54 | 0.47 | |
P | 30.57 | <0.01 | 49.27 | <0.01 | 21.43 | <0.01 | 49.74 | <0.01 | |
N × P | <0.01 | 0.99 | 1.28 | 0.27 | 5.93 | <0.05 | 0.03 | 0.86 | |
W × N | <0.01 | 1.00 | 0.02 | 0.88 | 0.03 | 0.87 | 5.74 | <0.05 | |
W × P | 2.35 | 0.14 | 6.99 | <0.05 | 5.99 | <0.05 | 0.03 | 0.86 | |
W × N × P | 0.03 | 0.86 | 0.61 | 0.44 | 2.47 | 0.13 | 5.68 | <0.05 |
图3 增温和氮磷添加对亚热带森林凋落物分解0天和180天可溶性有机碳光谱指标变化量(ΔDOC)的影响(平均值±标准误)。ΔSUVA254、ΔSUVA260、ΔSUVA280和Δa300分别表征凋落物浸提液的芳香化程度、疏水性组分、高分子量化合物和发色团物质在培养28天后的变化量。CK, 对照; N, 氮添加; NP, 氮和磷添加的交互作用; P, 磷添加; W, 增温; WN, 增温和氮添加的交互作用; WNP, 增温、氮和磷添加的交互作用; WP, 增温和磷添加的交互作用。
Fig. 3 Effects of warming and nitrogen and phosphorus addition on the variations in dissolved organic carbon (ΔDOC) spectral index of litter with 0-day decomposition and 180-day decomposition in a subtropical forest (mean ± SE). ΔSUVA254, ΔSUVA260, ΔSUVA280 and Δa300 represented the aromaticity, hydrophobicity, high molecular weight and chromophoric dissolved oganic matter composition of leaf litter, respectively after 28-day incubation. CK, control treatment; N, nitrogen addition; NP, interaction between nitrogen and phosphorus addition; P, phosphorus addition; W, warming; WN, interaction between warming and nitrogen addition; WNP, interactions among warming, nitrogen and phosphorus addition; WP, interaction between warming and phosphorus addition.
图4 可溶性有机碳生物可降解性(BDOC)与凋落物初始可溶性有机碳(DOC)光谱指标和可溶性有机碳光谱指标变化量(ΔDOC)的拟合。SUVA254、SUVA260、SUVA280和a300分别表征凋落物浸提液的芳香化程度、疏水性组分、高分子量化合物和发色团物质。ΔSUVA254、ΔSUVA260、ΔSUVA280和Δa300分别表征凋落物浸提液的芳香化程度、疏水性组分、高分子量化合物和发色团物质在培养28天后的变化量。
Fig. 4 Variations of dissolved organic carbon biodegradability (BDOC) and corresponding the variations in dissolved organic carbon (ΔDOC) with initial dissolved organic carbon (DOC) during litter incubation. SUVA254, SUVA260, SUVA280 and a300 represented the aromaticity, hydrophobicity, high molecular weight and chromophoric dissolved organic matter (DOM) composition of leaf litter, respectively. ΔSUVA254, ΔSUVA260, ΔSUVA280 and Δa300 denoted the aromaticity, hydrophobicity, molecular weight and chromophoric DOM composition of leaf litter, respectively during 28-day incubation.
[1] | Abbott BW, Larouche JR, Jones Jr. JB, Bowden WB, Balser AW (2014). Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. Journal of Geophysical Research: Biogeosciences, 119, 2049-2063. |
[2] | Begum MS, Park JH, Yang LY, Shin KH, Hur J (2023). Optical and molecular indices of dissolved organic matter for estimating biodegradability and resulting carbon dioxide production in inland waters: a review. Water Research, 228, 119362. DOI: 10.1016/j.watres.2022.119362. |
[3] | Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011). Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy, 110, 1-75. |
[4] |
Carter HT, Tipping E, Koprivnjak JF, Miller MP, Cookson B, Hamilton-Taylor J (2012). Freshwater DOM quantity and quality from a two-component model of UV absorbance. Water Research, 46, 4532-4542.
DOI PMID |
[5] |
Chen J, Sinsabaugh RL (2021). Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics. Global Change Biology, 27, 1322-1325.
DOI PMID |
[6] | Don A, Kalbitz K (2005). Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biology & Biochemistry, 37, 2171-2179. |
[7] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[8] | Fork ML, Osburn CL, Heffernan JB (2020). Bioavailability and compositional changes of dissolved organic matter in urban headwaters. Aquatic Sciences, 82, 66. DOI: 10.1007/s00027-020-00739-7. |
[9] | Hall SJ, Huang WJ, Timokhin VI, Hammel KE (2020). Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology, 101, e03113. DOI: 10.1002/ecy.3113. |
[10] | Hensgens G, Laudon H, Peichl M, Gil IA, Zhou Q, Berggren M (2020). The role of the understory in litter DOC and nutrient leaching in boreal forests. Biogeochemistry, 149, 87-103. |
[11] |
Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.
DOI PMID |
[12] | Hou EQ, Luo YQ, Kuang YW, Chen CR, Lu XK, Jiang LF, Luo XZ, Wen DZ (2020). Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 11, 637. DOI: 10.1038/s41467-020-14492-w. |
[13] | Hu J, Kang LY, Li ZL, Feng XH, Liang CF, Wu Z, Zhou W, Liu XN, Yang YH, Chen LY (2023). Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes. Nature Communications, 14, 3681. DOI: 10.1038/s41467-023-39432-2. |
[14] | IPCC Intergovernmental Panel on Climate Change (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[15] | Jansen B, Kalbitz K, McDowell WH (2014). Dissolved organic matter: linking soils and aquatic systems. Vadose Zone Journal, 13, 1-4. |
[16] | Jiang F, Huang J, Chu GW, Cheng Y, Liu XJ, Liu JX, Lie ZY (2021). Effects of warming on soil phosphorus fractions and their contributions to available phosphorus in south subtropical forests. Chinese Journal of Plant Ecology, 45, 197-206. |
[蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸 (2021). 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献. 植物生态学报, 45, 197-206.] | |
[17] |
Li Y, Niu SL, Yu GR (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22, 934-943.
DOI PMID |
[18] | Lin CF, Peng JQ, Hong HB, Yang ZJ, Yang YS (2017). Effect of nitrogen and phosphorus availability on forest litter decomposition. Acta Ecologica Sinica, 37, 54-62. |
[林成芳, 彭建勤, 洪慧滨, 杨智杰, 杨玉盛 (2017). 氮、磷养分有效性对森林凋落物分解的影响研究进展. 生态学报, 37, 54-62.] | |
[19] | Liu JX, Liu SG, Li YY, Liu SZ, Yin GC, Huang J, Xu Y, Zhou GY (2017). Warming effects on the decomposition of two litter species in model subtropical forests. Plant and Soil, 420, 277-287. |
[20] | Liu M, Zhang ZJ, He Q, Wang H, Li X, Schoer J (2014). Exogenous phosphorus inputs alter complexity of soil- dissolved organic carbon in agricultural riparian wetlands. Chemosphere, 95, 572-580. |
[21] | Liu XF, Chen SD, Li XJ, Yang ZJ, Xiong DC, Xu C, Wanek W, Yang YS (2022). Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtropical natural forest over 450 days. Geoderma, 427, 116139. DOI: 10.1016/j.geoderma.2022.116139. |
[22] | Long J, Zhao C, Zhang MJ, Wu JN, Wu QS, Huang BC, Zhang JM (2019). Effect of litter decomposition on soil microbes on different slopes. Acta Ecologica Sinica, 39, 2696-2704. |
[龙健, 赵畅, 张明江, 吴劲楠, 吴求生, 黄博聪, 张菊梅 (2019). 不同坡向凋落物分解对土壤微生物群落的影响. 生态学报, 39, 2696-2704.] | |
[23] | Mao R, Li SY (2018). Temperature sensitivity of biodegradable dissolved organic carbon increases with elevating humification degree in subtropical rivers. Science of the Total Environment, 635-636, 1367-1371. |
[24] | Mao R, Zhang XH, Li SY, Song CC (2017). Long-term phosphorus addition enhances the biodegradability of dissolved organic carbon in a nitrogen-limited temperate freshwater wetland. Science of the Total Environment, 605, 332-336. |
[25] | Marschner B, Kalbitz K (2003). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113, 211-235. |
[26] | McDowell WH, Zsolnay A, Aitkenhead-Peterson JA, Gregorich EG, Jones DL, Jödemann D, Kalbitz K, Marschner B, Schwesig D (2006). A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biology & Biochemistry, 38, 1933-1942. |
[27] | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
[28] | Nguyen HVM, Choi JH (2015). Changes in the dissolved organic matter leaching from soil under severe temperature and N-deposition. Environmental Monitoring and Assessment, 187, 323. |
[29] | Ni MF, Ma YM, Wang ZK, Wang XD, Zhu SX (2022). A distinctive mode of dissolved organic carbon biodegradation in karst lakes and reservoirs: evidence from trophic controls and compositional transformations. Journal of Cleaner Production, 368, 133217. DOI: 10.1016/j.jclepro.2022.133217. |
[30] | Pinsonneault AJ, Moore TR, Roulet NT, Lapierre JF (2016). Biodegradability of vegetation-derived dissolved organic carbon in a cool temperate ombrotrophic bog. Ecosystems, 19, 1023-1036. |
[31] | Qin FC, Lu JK, Li ZS, Meng S, Wang SK, Liang JF, He XH (2023). Nitrogen rather than carbon released by litter decomposition mediates nutrient relationships in a multispecies forest plantation with hemiparasite. Science of the Total Environment, 888, 164176. DOI: 10.1016/j.scitotenv.2023.164176. |
[32] | Räsänen N, Kankaala P, Tahvanainen T, Akkanen J, Saarnio S (2014). Short-term effects of phosphorus addition and PH rise on bacterial utilization and biodegradation of dissolved organic carbon (DOC) from boreal mires. Aquatic Ecology, 48, 435-446. |
[33] | Spohn M, Berg B (2023). Import and release of nutrients during the first five years of plant litter decomposition. Soil Biology & Biochemistry, 176, 108878. DOI: 10.1016/j.soilbio.2022.108878. |
[34] |
Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354.
PMID |
[35] | Wang H, Holden J, Zhang ZJ, Li M, Li X (2014). Concentration dynamics and biodegradability of dissolved organic matter in wetland soils subjected to experimented warming. Science of the Total Environmental, 470-471, 907-916. |
[36] | Wickland KP, Aiken GR, Butler K, Dornblaser MM, Spencer RGM, Striegl RG (2012). Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: seasonality and importance of inorganic nitrogen. Global Biogeochemical Cycles, 26, GB0E03. DOI: 10.1029/2012GB004342. |
[37] | Wu PP, Ding YD, Li SL, Sun XX, Zhang Y, Mao R (2021). Carbon, nitrogen and phosphorus stoichiometry controls interspecific patterns of leaf litter-derived dissolved organic matter biodegradation in subtropical plantations of China. iForest-Biogeosciences and Forestry, 14, 80-85. |
[38] | Yang H (2018). Effects of nitrogen and phosphorus addition on leaf nutrient characteristics in a subtropical forest. Trees, 32, 383-391. |
[39] | Yao JN, Lyu JH, Yu WL, Zhang JB, Lei ZF, Li Q, Song XZ (2018). Effects of nitrogen deposition and management intensity on stoichiometry of leaf litter in Moso bamboo forest. Chinese Journal of Applied Ecology, 29, 467-473. |
[姚钧能, 吕建华, 俞卫良, 张君波, 雷赵枫, 李全, 宋新章 (2018). 氮沉降和经营强度对毛竹林凋落叶生态化学计量特征的影响. 应用生态学报, 29, 467-473.]
DOI |
|
[40] | Yuan XC, Si YT, Lin WS, Yang JQ, Wang Z, Zhang QF, Qian W, Chen Y, Yang YS (2018). Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation. PLoS ONE, 13, e0191403. DOI: 10.1371/journal.pone.0191403. |
[41] |
Zhang H, Zeng WJ, Gong XT, Ma ZQ (2023). Relationships between root hairs and mycorrhizal fungi across typical subtropical tree species. Chinese Journal of Plant Ecology, 47, 88-100.
DOI |
[张慧, 曾文静, 龚新桃, 马泽清 (2023). 亚热带典型树种根毛特征及其与共生真菌的关系. 植物生态学报, 47, 88-100.]
DOI |
|
[42] | Zhao JQ, Wu JP, Zhang HL, Xiong X, Zhao MD, Chu GW, Meng Z, Zhou GY, Zhang DQ (2019). Effects of warming on soil microbial communities of a subtropical monsoon evergreen broad-leaved forest in southern China. Ecology and Environmental Sciences, 28, 881-889. |
[赵建琪, 吴建平, 张慧玲, 熊鑫, 赵梦頔, 褚国伟, 孟泽, 周国逸, 张德强 (2019). 增温对南亚热带季风常绿阔叶林土壤微生物群落的影响. 生态环境学报, 28, 881-889.]
DOI |
|
[43] | Zheng W, Zhou JC, Lin WS, Zheng Y, Li C, Li XF, Ji YH, Yang ZJ (2019). Effects of soil warming on soil microbial extracellular enzyme activities with different depths in a young Chinese fir (Cunninghamia lanceolata) plantation of subtropics. Chinese Journal of Applied Ecology, 30, 832-840. |
[郑蔚, 周嘉聪, 林伟盛, 郑永, 李超, 李先锋, 纪宇皝, 杨智杰 (2019). 土壤增温对亚热带杉木幼树不同深度土壤微生物胞外酶活性的影响. 应用生态学报, 30, 832-840.]
DOI |
|
[44] | Zhou YQ, Sun BY, Xie BH, Feng K, Zhang ZJ, Zhang Z, Li SZ, Du XF, Zhang Q, Gu SS, Song W, Wang LL, Xia JY, Han GX, Deng Y (2021). Warming reshaped the microbial hierarchical interactions. Global Change Biology, 27, 6331-6347. |
[1] | 全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉. 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响[J]. 植物生态学报, 2024, 48(8): 1050-1064. |
[2] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[3] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[4] | 索南吉, 李博文, 吕汪汪, 王文颖, 拉本, 陆徐伟, 宋扎磋, 陈程浩, 苗琪, 孙芳慧, 汪诗平. 增温增水情景下钉柱委陵菜物候序列的变化及其抗冻性[J]. 植物生态学报, 2024, 48(2): 158-170. |
[5] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 兰光飞 张强 陈相标 陈仕东 熊德成 刘小飞 杨智杰 杨玉盛. 中亚热带格氏栲林凋落物季节动态特征及其影响因素[J]. 植物生态学报, 2024, 48(12): 1-0. |
[8] | 李昀奕 郑矜 严晓艳 李霜 罗林 童晋 赵春章. 云杉和华西箭竹叶际与根际细菌群落对增温的响应[J]. 植物生态学报, 2024, 48(12): 1-0. |
[9] | 张玉 杜婷 陈玉莲 朱和萌 谭波 游成铭 张丽 徐振锋 李晗. 亚高山森林凋落物碳对土壤有机碳组分的贡献及其对冻融作用的响应[J]. 植物生态学报, 2024, 48(11): 1422-1433. |
[10] | 王梁 赵学超 杨少博 王清奎. 杉木叶和细根诱导的土壤有机碳分解激发效应及其对氮添加的响应[J]. 植物生态学报, 2024, 48(11): 1434-1444. |
[11] | 陆啸飞 覃张芬 王斌 旷远文. 氮添加对南亚热带常绿阔叶林林下植物-土壤植硅体碳的影响[J]. 植物生态学报, 2024, 48(10): 1302-1311. |
[12] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[13] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[14] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[15] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19