植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 1050-1064.DOI: 10.17521/cjpe.2023.0200 cstr: 32100.14.cjpe.2023.0200
全小强1,2, 王燕茹1,2, 李小玉1,2, 梁海燕1,2, 王立冬1, 闫小莉1,2,*()
收稿日期:
2023-07-11
接受日期:
2024-02-07
出版日期:
2024-08-20
发布日期:
2024-03-12
通讯作者:
*闫小莉(ccyanxiaoli@163.com)
基金资助:
QUAN Xiao-Qiang1,2, WANG Yan-Ru1,2, LI Xiao-Yu1,2, LIANG Hai-Yan1,2, WANG Li-Dong1, YAN Xiao-Li1,2,*()
Received:
2023-07-11
Accepted:
2024-02-07
Online:
2024-08-20
Published:
2024-03-12
Contact:
*YAN Xiao-Li(ccyanxiaoli@163.com)
Supported by:
摘要:
研究不同氮添加水平和铵硝态氮配比对杉木(Cunninghamia lanceolata)幼苗叶片光合特性和叶绿素荧光参数的影响, 从光合生理生态的角度探讨杉木幼苗对氮逆境的短期响应, 可以为杉木栽培中氮肥的经营管理提供理论依据。该研究以一年生杉木幼苗为材料, 设置3个氮添加水平: 0.5 (N1)、1.0 (N2)和2.0 mmol·L-1 (N3)及7个铵态氮:硝态氮的配比: 10:0 (P1)、8:2 (P2)、6:4 (P3)、5:5 (P4)、4:6 (P5)、2:8 (P6)和0:10 (P7)的21个实验处理组, 沙培盆栽处理180天后, 测定幼苗叶绿素含量、光合特性、叶绿素荧光参数、生物量等指标。结果表明: (1)在N1水平下, 叶绿素a和b含量分别在P2和P6配比下最高; 在N2水平下, 叶绿素a和b及叶绿素(a+b)含量均为P4配比下最高; 在N3水平下, 叶绿素a和b含量均在P3配比下最高, 整体上表现为N3和N2高于N1。(2)叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)均为较高铵态氮浓度的配比处理高于较高硝态氮浓度的配比处理; Pn在N3水平为P1配比最高, 但在N1和N2水平为P2配比最高, 整体上Pn和WUE均表现为: N3 > N2 > N1。(3)各处理的最大光化学效率均在0.80-0.85的正常范围内, 光系统II潜在光化学活性在P2配比下N3显著高于N1和N2; 叶片快速叶绿素荧光诱导曲线在N1的P1配比下曲线偏离程度大, N2水平的P1、P2和P4配比和N3水平的P1、P2和P5配比在I、P相逐渐降低, J相逐渐上升; P2和P3配比下单位面积吸收、捕获和传递的光能以及热耗散和反应中心的数量随氮浓度的升高明显增大, 而P6配比下单位反应中心吸收、捕获和传递的能力以及耗散掉的能量随氮浓度的升高明显降低, 其他配比下差异不显著。最大光化学效率在各处理间无显著差异表明该研究模拟的低氮水平和氮形态异质性配比的环境未对杉木幼苗生长造成胁迫。(4)总生物量和地上生物量均表现为较高铵态氮浓度的配比处理大于较高硝态氮浓度的配比处理, 其中N2P2处理下最高, 氮添加水平间表现为N2 > N3 > N1。根冠比在N1和N3水平均为P6配比显著高于其他处理, N2水平为P7显著高于其他处理, 且整体上N1水平的根冠比显著高于N2和N3。相对较高的氮添加水平和铵态氮浓度配比的环境能提高杉木幼苗光化学反应效率, 优化光系统II反应中心的能量利用, 最终促进其光合作用和生物量的积累。
全小强, 王燕茹, 李小玉, 梁海燕, 王立冬, 闫小莉. 氮添加和铵硝态氮配比对杉木幼苗光合特性及叶绿素荧光参数的影响. 植物生态学报, 2024, 48(8): 1050-1064. DOI: 10.17521/cjpe.2023.0200
QUAN Xiao-Qiang, WANG Yan-Ru, LI Xiao-Yu, LIANG Hai-Yan, WANG Li-Dong, YAN Xiao-Li. Effects of nitrogen addition level and NH4+-N to NO3--N ratio on photosynthetic characteristics and chlorophyll fluorescence parameters in Cunninghamia lanceolata seedling. Chinese Journal of Plant Ecology, 2024, 48(8): 1050-1064. DOI: 10.17521/cjpe.2023.0200
参数和公式 Parameter and formula | 生物学意义 Biological meaning |
---|---|
Fv/Fm | 最大光化学效率 Maximum photochemical efficiency |
Fv/Fo | 光系统II潜在光化学活性 Potential photochemical activity of photosystem II |
ABS/CSm = Fm | 单位面积吸收的光能 Light energy absorbed per unit area |
TRo/CSm = φPo(ABS/CSm) | 单位面积捕获的光能 Light energy captured per unit area |
ETo/CSm = φEo(ABS/CSm) | 单位面积电子传递的量子产额 Quantum yield of electron transport per unit area |
DIo/CSm = (ABS/CSm) - (TRo/CSm) | 单位面积的热耗散 Heat dissipation per unit area |
RC/CSm = φPo × (VJ/Mo) × (ABS/CSm) | 单位面积内反应中心的数量 Number of reaction centers per unit area |
ABS/RC = Mo × (1/Vj) × (1/φPo) | 单位反应中心吸收的光能 Unit of light energy absorbed by the reaction center |
TRo/RC = Mo × (1/Vj) | 单位反应中心捕获的用于初级电子受体(QA)的能量 Unit of energy captured by the reaction center for primary electron acceptor (QA) |
ETo/RC = Mo × (1/Vj) × ψo | 单位反应中心捕获的用于电子传递的能量 Unit of energy captured by a reaction center for electron transport |
DIo/RC = ABS/RC - TRo/RC | 单位反应中心耗散掉的能量 Unit of energy dissipated from the reaction center |
表1 OJIP曲线参数及计算公式
Table 1 OJIP curve parameters and calculation formula
参数和公式 Parameter and formula | 生物学意义 Biological meaning |
---|---|
Fv/Fm | 最大光化学效率 Maximum photochemical efficiency |
Fv/Fo | 光系统II潜在光化学活性 Potential photochemical activity of photosystem II |
ABS/CSm = Fm | 单位面积吸收的光能 Light energy absorbed per unit area |
TRo/CSm = φPo(ABS/CSm) | 单位面积捕获的光能 Light energy captured per unit area |
ETo/CSm = φEo(ABS/CSm) | 单位面积电子传递的量子产额 Quantum yield of electron transport per unit area |
DIo/CSm = (ABS/CSm) - (TRo/CSm) | 单位面积的热耗散 Heat dissipation per unit area |
RC/CSm = φPo × (VJ/Mo) × (ABS/CSm) | 单位面积内反应中心的数量 Number of reaction centers per unit area |
ABS/RC = Mo × (1/Vj) × (1/φPo) | 单位反应中心吸收的光能 Unit of light energy absorbed by the reaction center |
TRo/RC = Mo × (1/Vj) | 单位反应中心捕获的用于初级电子受体(QA)的能量 Unit of energy captured by the reaction center for primary electron acceptor (QA) |
ETo/RC = Mo × (1/Vj) × ψo | 单位反应中心捕获的用于电子传递的能量 Unit of energy captured by a reaction center for electron transport |
DIo/RC = ABS/RC - TRo/RC | 单位反应中心耗散掉的能量 Unit of energy dissipated from the reaction center |
参数 Parameter | 氮添加水平 Nitrogen addition level (N) | 铵硝态氮配比 NH4+-N/NO3--N ratio (R) | 氮添加水平×铵硝态氮配比 N × R | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
叶绿素a含量 Chlorophyll a content | 4.47 | <0.05 | 3.34 | <0.01 | 6.99 | <0.01 |
叶绿素b含量 Chlorophyll b content | 3.83 | <0.05 | 1.34 | 0.25 | 5.17 | <0.01 |
叶绿素(a+b)含量 Chlorophyll (a+b) content | 2.85 | 0.07 | 1.57 | 0.17 | 2.95 | <0.01 |
净光合速率 Net photosynthetic rate | 2.65 | 0.07 | 54.21 | <0.01 | 8.42 | <0.01 |
蒸腾速率 Transpiration rate | 28.29 | <0.01 | 50.74 | <0.01 | 6.67 | <0.01 |
气孔导度 Stomatal conductance | 62.30 | <0.01 | 33.68 | <0.01 | 15.57 | <0.01 |
水分利用效率 Water use efficiency | 501.75 | <0.01 | 31.75 | <0.01 | 31.36 | <0.01 |
最大光化学效率 Maximum photochemical efficiency | 5.87 | <0.01 | 3.35 | <0.01 | 0.67 | 0.78 |
光系统II潜在化学活性 Potential chemical activity of photosystem II | 6.90 | <0.01 | 3.75 | <0.01 | 0.81 | 0.64 |
地上生物量 Above-ground biomass | 21.45 | <0.01 | 18.33 | <0.01 | 2.07 | 0.04 |
地下生物量 Below-ground biomass | 17.22 | <0.01 | 20.37 | <0.01 | 1.33 | 0.24 |
总生物量 Total biomass | 22.18 | <0.01 | 9.47 | <0.01 | 1.85 | 0.07 |
根冠比 Root-shoot ratio | 19.65 | <0.01 | 31.18 | <0.01 | 1.64 | 0.12 |
表2 氮添加和铵硝态氮配比对杉木光合色素含量、光合参数、叶绿素荧光参数和生物量的双因素方差分析
Table 2 Two-way ANOVA analysis of nitrogen addition level and NH4+-N/NO3--N ratio on photosynthetic pigment content, photosynthetic parameters, chlorophyll fluorescence parameters, and biomass of Cunninghamia lanceolata
参数 Parameter | 氮添加水平 Nitrogen addition level (N) | 铵硝态氮配比 NH4+-N/NO3--N ratio (R) | 氮添加水平×铵硝态氮配比 N × R | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
叶绿素a含量 Chlorophyll a content | 4.47 | <0.05 | 3.34 | <0.01 | 6.99 | <0.01 |
叶绿素b含量 Chlorophyll b content | 3.83 | <0.05 | 1.34 | 0.25 | 5.17 | <0.01 |
叶绿素(a+b)含量 Chlorophyll (a+b) content | 2.85 | 0.07 | 1.57 | 0.17 | 2.95 | <0.01 |
净光合速率 Net photosynthetic rate | 2.65 | 0.07 | 54.21 | <0.01 | 8.42 | <0.01 |
蒸腾速率 Transpiration rate | 28.29 | <0.01 | 50.74 | <0.01 | 6.67 | <0.01 |
气孔导度 Stomatal conductance | 62.30 | <0.01 | 33.68 | <0.01 | 15.57 | <0.01 |
水分利用效率 Water use efficiency | 501.75 | <0.01 | 31.75 | <0.01 | 31.36 | <0.01 |
最大光化学效率 Maximum photochemical efficiency | 5.87 | <0.01 | 3.35 | <0.01 | 0.67 | 0.78 |
光系统II潜在化学活性 Potential chemical activity of photosystem II | 6.90 | <0.01 | 3.75 | <0.01 | 0.81 | 0.64 |
地上生物量 Above-ground biomass | 21.45 | <0.01 | 18.33 | <0.01 | 2.07 | 0.04 |
地下生物量 Below-ground biomass | 17.22 | <0.01 | 20.37 | <0.01 | 1.33 | 0.24 |
总生物量 Total biomass | 22.18 | <0.01 | 9.47 | <0.01 | 1.85 | 0.07 |
根冠比 Root-shoot ratio | 19.65 | <0.01 | 31.18 | <0.01 | 1.64 | 0.12 |
指标 Index | 铵硝态氮配比 NH4+-N to NO3--N ratio | 氮添加水平 Nitrogen addition level | ||
---|---|---|---|---|
N1 | N2 | N3 | ||
叶绿素a含量 Chlorophyll a content (mg·g-1) | P1 | 0.374 ± 0.026ABCa | 0.367 ± 0.011Ba | 0.414 ± 0.016ABCa |
P2 | 0.418 ± 0.019Aa | 0.333 ± 0.015Bb | 0.436 ± 0.020ABa | |
P3 | 0.372 ± 0.013ABCb | 0.342 ± 0.033Bb | 0.457 ± 0.010Aa | |
P4 | 0.315 ± 0.015Cc | 0.488 ± 0.002Aa | 0.410 ± 0.020ABCb | |
P5 | 0.371 ± 0.016ABCa | 0.410 ± 0.038ABa | 0.332 ± 0.023Ca | |
P6 | 0.402 ± 0.017ABa | 0.368 ± 0.004Ba | 0.379 ± 0.019ABCa | |
P7 | 0.327 ± 0.016BCa | 0.343 ± 0.009Ba | 0.359 ± 0.020BCa | |
叶绿素b含量 Chlorophyll b content (mg·g-1) | P1 | 0.215 ± 0.009ABb | 0.245 ± 0.006ABa | 0.254 ± 0.003ABa |
P2 | 0.253 ± 0.012Aa | 0.207 ± 0.008Bb | 0.246 ± 0.013ABab | |
P3 | 0.235 ± 0.006ABab | 0.223 ± 0.013Bb | 0.265 ± 0.003Aa | |
P4 | 0.216 ± 0.012ABb | 0.289 ± 0.008Aa | 0.237 ± 0.011ABb | |
P5 | 0.226 ± 0.008ABab | 0.248 ± 0.014ABa | 0.206 ± 0.003Bb | |
P6 | 0.254 ± 0.007Aa | 0.227 ± 0.007Ba | 0.260 ± 0.018ABa | |
P7 | 0.208 ± 0.007Ba | 0.247 ± 0.017ABa | 0.250 ± 0.021ABa | |
叶绿素(a+b)含量 Chlorophyll (a+b) content (mg·g-1) | P1 | 0.624 ± 0.058Aa | 0.612 ± 0.017Ba | 0.667 ± 0.018Aa |
P2 | 0.619 ± 0.060Aa | 0.507 ± 0.035Ba | 0.617 ± 0.072Aa | |
P3 | 0.628 ± 0.030Aab | 0.565 ± 0.046Bb | 0.723 ± 0.012Aa | |
P4 | 0.531 ± 0.024Ab | 0.803 ± 0.033Aa | 0.648 ± 0.030Ab | |
P5 | 0.597 ± 0.024Aa | 0.657 ± 0.052ABa | 0.552 ± 0.033Aa | |
P6 | 0.656 ± 0.022Aa | 0.646 ± 0.030ABa | 0.684 ± 0.066Aa | |
P7 | 0.514 ± 0.032Aa | 0.629 ± 0.056ABa | 0.660 ± 0.076Aa |
表3 不同氮添加水平与铵硝态氮配比下杉木幼苗叶绿素含量(平均值±标准误)
Table 3 Chlorophyll content of Cunninghamia lanceolata under different nitrogen addition levels and NH4+-N to NO3--N ratios (mean ± SE)
指标 Index | 铵硝态氮配比 NH4+-N to NO3--N ratio | 氮添加水平 Nitrogen addition level | ||
---|---|---|---|---|
N1 | N2 | N3 | ||
叶绿素a含量 Chlorophyll a content (mg·g-1) | P1 | 0.374 ± 0.026ABCa | 0.367 ± 0.011Ba | 0.414 ± 0.016ABCa |
P2 | 0.418 ± 0.019Aa | 0.333 ± 0.015Bb | 0.436 ± 0.020ABa | |
P3 | 0.372 ± 0.013ABCb | 0.342 ± 0.033Bb | 0.457 ± 0.010Aa | |
P4 | 0.315 ± 0.015Cc | 0.488 ± 0.002Aa | 0.410 ± 0.020ABCb | |
P5 | 0.371 ± 0.016ABCa | 0.410 ± 0.038ABa | 0.332 ± 0.023Ca | |
P6 | 0.402 ± 0.017ABa | 0.368 ± 0.004Ba | 0.379 ± 0.019ABCa | |
P7 | 0.327 ± 0.016BCa | 0.343 ± 0.009Ba | 0.359 ± 0.020BCa | |
叶绿素b含量 Chlorophyll b content (mg·g-1) | P1 | 0.215 ± 0.009ABb | 0.245 ± 0.006ABa | 0.254 ± 0.003ABa |
P2 | 0.253 ± 0.012Aa | 0.207 ± 0.008Bb | 0.246 ± 0.013ABab | |
P3 | 0.235 ± 0.006ABab | 0.223 ± 0.013Bb | 0.265 ± 0.003Aa | |
P4 | 0.216 ± 0.012ABb | 0.289 ± 0.008Aa | 0.237 ± 0.011ABb | |
P5 | 0.226 ± 0.008ABab | 0.248 ± 0.014ABa | 0.206 ± 0.003Bb | |
P6 | 0.254 ± 0.007Aa | 0.227 ± 0.007Ba | 0.260 ± 0.018ABa | |
P7 | 0.208 ± 0.007Ba | 0.247 ± 0.017ABa | 0.250 ± 0.021ABa | |
叶绿素(a+b)含量 Chlorophyll (a+b) content (mg·g-1) | P1 | 0.624 ± 0.058Aa | 0.612 ± 0.017Ba | 0.667 ± 0.018Aa |
P2 | 0.619 ± 0.060Aa | 0.507 ± 0.035Ba | 0.617 ± 0.072Aa | |
P3 | 0.628 ± 0.030Aab | 0.565 ± 0.046Bb | 0.723 ± 0.012Aa | |
P4 | 0.531 ± 0.024Ab | 0.803 ± 0.033Aa | 0.648 ± 0.030Ab | |
P5 | 0.597 ± 0.024Aa | 0.657 ± 0.052ABa | 0.552 ± 0.033Aa | |
P6 | 0.656 ± 0.022Aa | 0.646 ± 0.030ABa | 0.684 ± 0.066Aa | |
P7 | 0.514 ± 0.032Aa | 0.629 ± 0.056ABa | 0.660 ± 0.076Aa |
图1 不同氮添加水平与铵硝态氮配比下杉木叶片光合特征参数(平均值±标准误)。不同大写字母表示在同一氮添加水平下不同铵硝态氮配比间的差异显著(p < 0.05); 不同小写字母表示同一铵硝态氮配比下不同氮添加水平间的差异显著(p < 0.05)。N1-N3, 氮添加水平分别为: 0.5、1.0、2.0 mmol·L-1; P1-P7, NH4+-N和NO3--N的配比分别为: 10:0、8:2、6:4、5:5、4:6、2:8、0:10。
Fig. 1 Photosynthetic characteristics parameters of Cunninghamia lanceolata leaves under different nitrogen addition levels and NH4+-N/NO3--N ratios (mean ± SE). Different uppercase letters indicate the significant difference between different NH4+-N/NO3--N ratio at the same nitrogen addition level (p < 0.05); different lowercase letters indicate significant differences between different nitrogen addition levels under the same NH4+-N/NO3--N ratio (p < 0.05). N1-N3, nitrogen addition level: 0.5, 1.0, 2.0 mmol·L-1; P1-P7, NH4+-N to NO3--N ratio: 10:0, 8:2, 6:4, 5:5, 4:6, 2:8, 0:10.
图2 不同氮添加水平与铵硝态氮配比下杉木幼苗叶绿素荧光参数差异分析(平均值±标准误)。不同大写字母表示在同一氮添加水平下不同铵硝态氮配比间的差异显著(p < 0.05); 不同小写字母表示同一铵硝态氮配比下不同氮添加水平间的差异显著(p < 0.05)。N1-N3, 氮添加水平分别为: 0.5、1.0、2.0 mmol·L-1; P1-P7, NH4+-N和NO3--N的配比分别为: 10:0、8:2、6:4、5:5、4:6、2:8、0:10。Fv/Fm, 最大光化学效率; Fv/Fo, 光系统II潜在光化学活性。
Fig. 2 Differential analysis of chlorophyll fluorescence parameters of Cunninghamia lanceolata under different nitrogen addition levels and NH4+-N/NO3--N ratios (mean ± SE). Different uppercase letters indicate the significant difference between different NH4+-N/NO3--N ratio at the same nitrogen addition level (p < 0.05); different lowercase letters indicate significant differences between different nitrogen addition levels under the same NH4+-N/NO3--N ratio (p < 0.05). N1-N3, nitrogen addition level: 0.5, 1.0, 2.0 mmol·L-1; P1-P7, NH4+-N to NO3--N ratio: 10:0, 8:2, 6:4, 5:5, 4:6, 2:8, 0:10. Fv/Fm, maximum photochemical efficiency; Fv/Fo, potential photochemical activity of photosystem II.
图3 不同氮添加水平和铵硝态氮配比下杉木叶绿素荧光动力学曲线。N1-N3, 氮添加水平分别为: 0.5、1.0、2.0 mmol·L-1; P1-P7, NH4+-N和NO3--N的配比分别为: 10:0、8:2、6:4、5:5、4:6、2:8、0:10。Vt, 相对可变荧光; ΔVt, 相对可变荧光的差异。
Fig. 3 Chlorophyll fluorescence kinetic curves of Cunninghamia lanceolata under different nitrogen addition levels and NH4+-N/NO3--N ratios. N1-N3, nitrogen addition level: 0.5, 1.0, 2.0 mmol·L-1; P1-P7, NH4+-N to NO3--N ratio: 10:0, 8:2, 6:4, 5:5, 4:6, 2:8, 0:10. Vt, relatively variable fluorescence; ΔVt, differences in relative variable fluorescence.
图4 氮添加和铵硝态氮配比对杉木能量分配参数的影响。N1-N3, 氮添加水平分别为: 0.5、1.0、2.0 mmol·L-1; P1-P7, NH4+-N和NO3--N的配比分别为: 10:0、8:2、6:4、5:5、4:6、2:8、0:10。参数同表1。
Fig. 4 Effects of nitrogen addition level and NH4+-N/NO3--N ratio on the energy distribution parameters in leaves of Cunninghamia lanceolata. N1-N3, nitrogen addition level: 0.5, 1.0, 2.0 mmol·L-1; P1-P7, NH4+-N to NO3--N ratio: 10:0, 8:2, 6:4, 5:5, 4:6, 2:8, 0:10. Parameters see Table 1.
指标 Index | 铵硝态氮配比 NH4+-N to NO3--N ratio | 氮添加水平 Nitrogen addition level | ||
---|---|---|---|---|
N1 | N2 | N3 | ||
地上生物量 Above-ground biomass (g·tree-1) | P1 | 4.00 ± 0.25Aa | 6.01 ± 0.88ABCa | 5.76 ± 0.34Aa |
P2 | 3.82 ± 0.19Ab | 7.17 ± 0.36Aa | 5.28 ± 0.69ABab | |
P3 | 3.99 ± 0.08Ab | 6.52 ± 0.22ABa | 5.12 ± 0.13ABab | |
P4 | 3.42 ± 0.61Aa | 4.61 ± 0.51BCDa | 4.11 ± 0.22ABa | |
P5 | 2.96 ± 0.45Ab | 3.74 ± 0.34CDa | 3.57 ± 0.17Bab | |
P6 | 2.61 ± 0.19Aa | 3.26 ± 0.32Da | 3.35 ± 0.41Ba | |
P7 | 2.95 ± 0.15Aa | 2.91 ± 0.60Da | 3.27 ± 0.74Ba | |
地下生物量 Below-ground biomass (g·tree-1) | P1 | 1.30 ± 0.10Ca | 1.18 ± 0.17CDa | 1.07 ± 0.10BCa |
P2 | 1.16 ± 0.18Ca | 1.07 ± 0.17Da | 1.01 ± 0.07BCa | |
P3 | 1.35 ± 0.10BCa | 1.33 ± 0.14BCDa | 0.96 ± 0.03Ca | |
P4 | 1.58 ± 0.10ABCa | 1.46 ± 0.17BCDa | 1.33 ± 0.05ABCa | |
P5 | 1.90 ± 0.10ABa | 1.86 ± 0.16ABCa | 1.20 ± 0.12ABCb | |
P6 | 2.11 ± 0.01Aa | 2.20 ± 0.10Aa | 1.63 ± 0.05ABa | |
P7 | 1.67 ± 0.14ABCb | 2.03 ± 0.13ABa | 1.47 ± 0.23ABb | |
总生物量 Total biomass (g·tree-1) | P1 | 5.29 ± 0.30Aa | 7.19 ± 0.80ABCa | 6.83 ± 0.34Aa |
P2 | 4.98 ± 0.22Ab | 8.24 ± 0.23Aa | 6.29 ± 0.64Aab | |
P3 | 5.34 ± 0.18Ab | 7.85 ± 0.10ABa | 6.09 ± 0.15Aab | |
P4 | 5.00 ± 0.53Aa | 6.07 ± 0.68ABCa | 5.43 ± 0.26Aa | |
P5 | 4.85 ± 0.50Aa | 5.60 ± 0.26BCa | 4.78 ± 0.23Aa | |
P6 | 4.72 ± 0.18Aa | 5.46 ± 0.43BCa | 4.99 ± 0.36Aa | |
P7 | 4.62 ± 0.29Aa | 4.95 ± 0.69Ca | 4.74 ± 0.53Aa | |
根冠比 Root-shoot ratio | P1 | 0.33 ± 0.04Ba | 0.21 ± 0.07Ca | 0.19 ± 0.03Ba |
P2 | 0.31 ± 0.01Ba | 0.16 ± 0.03Cb | 0.19 ± 0.02Bb | |
P3 | 0.35 ± 0.07Ba | 0.20 ± 0.01Ca | 0.19 ± 0.02Ba | |
P4 | 0.46 ± 0.02Ba | 0.32 ± 0.03BCa | 0.34 ± 0.07ABa | |
P5 | 0.64 ± 0.02ABa | 0.50 ± 0.06ABab | 0.34 ± 0.02ABb | |
P6 | 0.85 ± 0.15Aa | 0.68 ± 0.04Aa | 0.50 ± 0.07Aa | |
P7 | 0.59 ± 0.09ABa | 0.70 ± 0.03Aa | 0.45 ± 0.04Aa |
表4 不同氮添加水平与铵硝态氮配比下杉木幼苗的生物量(平均值±标准误)
Table 4 Biomass of Cunninghamia lanceolata under nitrogen different addition levels and NH4+-N/NO3--N ratios (mean ± SE)
指标 Index | 铵硝态氮配比 NH4+-N to NO3--N ratio | 氮添加水平 Nitrogen addition level | ||
---|---|---|---|---|
N1 | N2 | N3 | ||
地上生物量 Above-ground biomass (g·tree-1) | P1 | 4.00 ± 0.25Aa | 6.01 ± 0.88ABCa | 5.76 ± 0.34Aa |
P2 | 3.82 ± 0.19Ab | 7.17 ± 0.36Aa | 5.28 ± 0.69ABab | |
P3 | 3.99 ± 0.08Ab | 6.52 ± 0.22ABa | 5.12 ± 0.13ABab | |
P4 | 3.42 ± 0.61Aa | 4.61 ± 0.51BCDa | 4.11 ± 0.22ABa | |
P5 | 2.96 ± 0.45Ab | 3.74 ± 0.34CDa | 3.57 ± 0.17Bab | |
P6 | 2.61 ± 0.19Aa | 3.26 ± 0.32Da | 3.35 ± 0.41Ba | |
P7 | 2.95 ± 0.15Aa | 2.91 ± 0.60Da | 3.27 ± 0.74Ba | |
地下生物量 Below-ground biomass (g·tree-1) | P1 | 1.30 ± 0.10Ca | 1.18 ± 0.17CDa | 1.07 ± 0.10BCa |
P2 | 1.16 ± 0.18Ca | 1.07 ± 0.17Da | 1.01 ± 0.07BCa | |
P3 | 1.35 ± 0.10BCa | 1.33 ± 0.14BCDa | 0.96 ± 0.03Ca | |
P4 | 1.58 ± 0.10ABCa | 1.46 ± 0.17BCDa | 1.33 ± 0.05ABCa | |
P5 | 1.90 ± 0.10ABa | 1.86 ± 0.16ABCa | 1.20 ± 0.12ABCb | |
P6 | 2.11 ± 0.01Aa | 2.20 ± 0.10Aa | 1.63 ± 0.05ABa | |
P7 | 1.67 ± 0.14ABCb | 2.03 ± 0.13ABa | 1.47 ± 0.23ABb | |
总生物量 Total biomass (g·tree-1) | P1 | 5.29 ± 0.30Aa | 7.19 ± 0.80ABCa | 6.83 ± 0.34Aa |
P2 | 4.98 ± 0.22Ab | 8.24 ± 0.23Aa | 6.29 ± 0.64Aab | |
P3 | 5.34 ± 0.18Ab | 7.85 ± 0.10ABa | 6.09 ± 0.15Aab | |
P4 | 5.00 ± 0.53Aa | 6.07 ± 0.68ABCa | 5.43 ± 0.26Aa | |
P5 | 4.85 ± 0.50Aa | 5.60 ± 0.26BCa | 4.78 ± 0.23Aa | |
P6 | 4.72 ± 0.18Aa | 5.46 ± 0.43BCa | 4.99 ± 0.36Aa | |
P7 | 4.62 ± 0.29Aa | 4.95 ± 0.69Ca | 4.74 ± 0.53Aa | |
根冠比 Root-shoot ratio | P1 | 0.33 ± 0.04Ba | 0.21 ± 0.07Ca | 0.19 ± 0.03Ba |
P2 | 0.31 ± 0.01Ba | 0.16 ± 0.03Cb | 0.19 ± 0.02Bb | |
P3 | 0.35 ± 0.07Ba | 0.20 ± 0.01Ca | 0.19 ± 0.02Ba | |
P4 | 0.46 ± 0.02Ba | 0.32 ± 0.03BCa | 0.34 ± 0.07ABa | |
P5 | 0.64 ± 0.02ABa | 0.50 ± 0.06ABab | 0.34 ± 0.02ABb | |
P6 | 0.85 ± 0.15Aa | 0.68 ± 0.04Aa | 0.50 ± 0.07Aa | |
P7 | 0.59 ± 0.09ABa | 0.70 ± 0.03Aa | 0.45 ± 0.04Aa |
[1] | Cai DS, Chen QQ, Pei XX, Zhang J, Gong SF (2023). Effects of different nitrogen forms on leaf anatomical structure and photosynthetic characteristics of Camellia oleifera seedlings. Journal of Forest and Environment, 43, 194-200. |
[蔡东升, 陈情情, 裴欣睲, 张健, 龚守富 (2023). 不同氮素形态对油茶苗叶片解剖结构与光合特性的影响. 森林与环境学报, 43, 194-200.] | |
[2] | Carvalho PA, Oliveira LE, Sodek L, Carvalho JND (2015). Nitrogen metabolism in the roots of rubber tree (Hevea brasiliensis) plants supplied with nitrate or ammonium as nitrogen source during hypoxia. Australian Journal of Crop Science, 9, 1278-1285. |
[3] | Cui XY, Song JF (2005). Soil NH4+/NO3- nitrogen characteristics in primary forests and the adaptability of some coniferous species. Acta Ecologica Sinica, 25, 3082-3092. |
[崔晓阳, 宋金凤 (2005). 原始森林土壤NH4+/NO3-生境特征与某些针叶树种的适应性. 生态学报, 25, 3082-3092.] | |
[4] | Dąbrowski P, Baczewska AH, Pawluśkiewicz B, Paunov M, Alexantrov V (2016). Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. Journal of Photochemistry and Photobiology B: Biology, 157, 22-31. |
[5] | Du YD, Yuan XY, Feng ZZ (2023). Effects of different nitrogen forms on photosynthesis characteristics and growth of poplar. Chinese Journal of Plant Ecology, 47, 348-360. |
[杜英东, 袁相洋, 冯兆忠 (2023). 不同形态氮对杨树光合特性及生长的影响. 植物生态学报, 47, 348-360.]
DOI |
|
[6] |
Fang H, Song HY, Cao F, He Y, Qiu ZJ (2007). Study on the relationship between spectral properties of oilseed rape leaves and their chlorophyll content. Spectroscopy and Spectral Analysis, 27, 1731-1734.
PMID |
[方慧, 宋海燕, 曹芳, 何勇, 裘正军 (2007). 油菜叶片的光谱特征与叶绿素含量之间的关系研究. 光谱学与光谱分析, 27, 1731-1734.] | |
[7] | Gao Y, Liu W, Wang X, Yang L, Han S, Chen S, Strasser RJ, Valverde BE, Qiang S (2018). Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. Plant Physiology and Biochemistry, 128, 1-12. |
[8] | Guo W, Han X, Zhang L, Wang Y, Du H, Yan Y, Sun ZK, Zhang L, Li GH, Luo L (2023). Morphological, photosynthetic physiological and transcriptome analyses of Pteroceltis tatarinowii in response to different nitrogen application levels. Journal of Nanjing Forestry University (Natural Sciences Edition), 47(5), 87-96. |
[郭伟, 韩秀, 张利, 王迎, 杜辉, 燕语, 孙忠奎, 张林, 李国华, 罗磊 (2023). 青檀扦插苗对不同氮素水平的形态、光合生理响应和转录组分析. 南京林业大学学报(自然科学版), 47(5), 87-96.]
DOI |
|
[9] | Han HZ, Zhang LH, Wang XL, Li SH, Wang F, Zhang Y (2019). Effects of different nitrogen forms and ratios on growth and development of Cinnamomun bodinieri seedlings. Northern Horticulture, (6), 96-101. |
[韩浩章, 张丽华, 王晓立, 李素华, 王芳, 张颖 (2019). 不同氮素形态配比对猴樟幼苗生长发育的影响. 北方园艺, (6), 96-101.] | |
[10] | Huang JL, Wang Y (2015). Effects of soil water stress on fast chlorophyll fluorescence induction of Pistacia weinmannifolia. Acta Botanica Boreali-Occidentalia Sinica, 35, 2505-2512. |
[黄俊玲, 王妍 (2015). 干热河谷乡土树种叶绿素荧光特征对水分胁迫的响应. 西北植物学报, 35, 2505-2512.] | |
[11] | Huang XH, Wu JJ, Wang YS, Feng DL, Sun XY (2022). Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels. Journal of Nanjing Forestry University (Natural Sciences Edition), 46(2), 119-126. |
[黄小辉, 吴焦焦, 王玉书, 冯大兰, 孙向阳 (2022). 不同供氮水平的核桃幼苗生长及叶绿素荧光特性. 南京林业大学学报(自然科学版), 46(2), 119-126.]
DOI |
|
[12] |
Kobe RK, Iyer M, Walters MB (2010). Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology, 91, 166-179.
PMID |
[13] | Li HX, Li ZH, Xing YJ, Bai H (2020). Effects of different levels of nitrogen supply on biomass and photosynthetic characteristics of Quercus mongolica seedlings. Journal of Northwest Forestry University, 35, 116-120. |
[李海霞, 李正华, 邢亚娟, 白卉 (2020). 不同供氮水平对蒙古栎幼苗生物量与光合特性的影响. 西北林学院学报, 35, 116-120.] | |
[14] | Li LY, Tang Y, Zhong MH, Chen XF, Xu SS, Cao GQ, Ye YQ (2022). Effects of slow release fertilizer on growth and chlorophyll fluorescence of Cunninghamia lanceolata matrix seedlings. Journal of Fujian Forestry Science and Technology, 49(2), 11-17. |
[李玲燕, 唐银, 钟明慧, 陈小芳, 许珊珊, 曹光球, 叶义全 (2022). 缓释肥对杉木幼苗生长和叶绿素荧光的影响. 福建林业科技, 49(2), 11-17.] | |
[15] | Li TT, Yang L, Li XX, Wang YS, Wang XW (2023). Different nitrogen forms on the photosynthetic characteristics and growth of Fraxinus mandshurica and Quercus mongolica. Bulletin of Botanical Research, 43, 207-217. |
[李婷婷, 杨柳, 李晓霞, 王奕淞, 王秀伟 (2023). 水曲柳和蒙古栎光合特性和生长对不同氮素形态的响应. 植物研究, 43, 207-217.]
DOI |
|
[16] | Lin Y, Tsay YF (2023). Study of vacuole glycerate transporter NPF8.4 reveals a new role of photorespiration in C/N balance. Nature Plants, 9, 803-816. |
[17] | Liu H, Wang CQ, Wu JS, Guo LH (2016). Effects of exponential N fertilization on the growth and nutrient content in clonal Cunninghamia lanceolata seedlings. Chinese Journal of Applied Ecology, 27, 3123-3128. |
[刘欢, 王超琦, 吴家森, 郭联华 (2016). 氮素指数施肥对杉木无性系苗生长及养分含量的影响. 应用生态学报, 27, 3123-3128.]
DOI |
|
[18] | Liu YR, Liu FJ, Wang S, Wang SJ (1983). Studies on seedling growth and photosynthetic characteristics of four poplar hybrids. Scientia Silvae Sinicae, 19, 269-276. |
[刘雅荣, 刘奉觉, 王爽, 王世绩 (1983). 四种杨树苗木的生长与光合作用特性的研究. 林业科学, 19, 269-276.] | |
[19] | Luo XH, Zou BX, Wu JQ, Yang LP (2011). Effects of different nitrogen levels and NH4+/NO3- ratios on the growth, nitrogen metabolism and photosynthesis of anther-derived somatic seedlings of Hevea brasiliensis. Plant Nutrition and Fertilizers Science, 17, 693-701. |
[罗雪华, 邹碧霞, 吴菊群, 杨俐苹 (2011). 氮水平和形态配比对巴西橡胶树花药苗生长及氮代谢、光合作用的影响. 植物营养与肥料学报, 17, 693-701.] | |
[20] | Ma XQ, Huang BL (1997). A summary of research on soil fertility decline of plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 21(2), 77-82. |
[马祥庆, 黄宝龙 (1997). 人工林地力衰退研究综述. 南京林业大学学报, 21(2), 77-82.] | |
[21] | Ma YD, Liu HY, Zhang XQ, Si XY, Diao M (2016). Effect of different nitrogen levels on dry matter accumulation, photosynthetic characteristics and chlorophyll fluorescence of endive (Cichorium endivia L.). Journal of Shihezi University (Natural Science), 34, 315-320. |
[马亚东, 刘慧英, 张筱茜, 司鑫雨, 刁明 (2016). 不同供氮水平对苦苣干物质积累、光合特性及叶绿素荧光参数的影响. 石河子大学学报(自然科学版), 34, 315-320.] | |
[22] | Maeda SI, Konishi M, Yanagisawa S, Omata T (2014). Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant & Cell Physiology, 55, 1311-1324. |
[23] | Pereira WE, de Siqueira DL, Martínez CA, Puiatti M (2000). Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. Journal of Plant Physiology, 157, 513-520. |
[24] | Qian SY, Wang Q, Liu N, Li Q, Lei ZF, Song XZ, Ai JG (2018). Effects of nitrogen deposition and phosphorus addition on photosynthesis and chlorophyll fluorescence characteristics of Chinese fir. Ecological Science, 37(5), 113-121. |
[钱树玥, 王巧, 刘宁, 李全, 雷赵枫, 宋新章, 哀建国 (2018). 氮沉降和磷添加对杉木光合及叶绿素荧光特征的影响. 生态科学, 37(5), 113-121.] | |
[25] | Qiu NW, Zhou F, Wang Y, Hou YT, Gu ZJ (2013). Comparison on characteristics of the fast chlorophyll fluorescence induction kinetics between Pinus species and Populus species. Scientia Silvae Sinicae, 49(3), 136-143. |
[邱念伟, 周峰, 王颖, 侯元同, 顾祝军 (2013). 松树与杨树叶片叶绿素快相荧光动力学特征比较. 林业科学, 49(3), 136-143.] | |
[26] | Ren HZ, Zhang FM, Liu BZ (1992). Effect of different nitrogen forms on growth, development and yield in media-cultural sweet pepper. Journal of China Agricultural University, (3), 275-279. |
[任华中, 张福墁, 刘步洲 (1992). 不同形态氮素对基质栽培甜椒生长发育的影响. 北京农业大学学报, (3), 275-279.] | |
[27] |
Ruban AV (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170, 1903-1916.
DOI PMID |
[28] |
Schansker G, Tóth SZ, Strasser RJ (2005). Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica et Biophysica Acta, 1706, 250-261.
DOI PMID |
[29] |
Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010). Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta, 1797, 1313-1326.
DOI PMID |
[30] | Tian YN, Chen GD, Wu X, Huang Z, Wang P, Zhang SL, Wu JY (2017). Effect of different ratios of nitrate and ammonium on growth and physiological characteristics of Pyrus betulaefolia seedlings. South China Fruits, 46(2), 26-30. |
[田亚男, 陈国栋, 吴潇, 黄智, 王鹏, 张绍铃, 吴巨友 (2017). 不同硝铵配比对杜梨幼苗生长和生理特性的影响. 中国南方果树, 46(2), 26-30.] | |
[31] |
Verena JL, Ingo E (2016). Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves. Tree Physiology, 36, 694-711.
DOI PMID |
[32] | Wang LD, Liang HY, Wang YR, Quan XQ, Li XY, Yan XL (2023). Effects of different nitrogen forms and ratios on photosynthetic characteristics and growth in Cunninghamia lanceolata and Schima superba seedlings. Journal of Sichuan Agricultural University, 41, 217-224. |
[王立冬, 梁海燕, 王燕茹, 全小强, 李小玉, 闫小莉 (2023). 不同氮素形态与配比对杉木和木荷幼苗光合特性及生长的影响. 四川农业大学学报, 41, 217-224.] | |
[33] | Yan XL, Lin ZY, Hu WJ, Huo YF, Li ZK, Ma XQ (2020). A review of nitrogen uptake preference of trees and its formation mechanism. World Forestry Research, 33(5), 25-30. |
[闫小莉, 林智熠, 胡文佳, 霍昱帆, 李震凯, 马祥庆 (2020). 林木氮素吸收偏好性及其形成机制研究进展. 世界林业研究, 33(5), 25-30.] | |
[34] | Yan XL, Ma XQ (2021). Responses of root morphology and seedling growth in three tree species to heterogeneous supplies of ammonium and nitrate. Forest Ecology and Management, 479, 118538. DOI: 10.1016/j.foreco.2020.118538. |
[35] |
Yang JC, Zhang JH (2006). Grain filling of cereals under soil drying. New Phytologist, 169, 223-236.
DOI PMID |
[36] | Yang XX, Yan H, Shang QY, Zhou CH, Guo SW (2018). Effects of nitrogen forms and water stress on the water absorption of root systems among the different rice cultivars. Hubei Agricultural Sciences, 57(21), 51-56. |
[杨秀霞, 燕辉, 商庆银, 周春火, 郭世伟 (2018). 氮素形态及水分胁迫对水稻根系水分吸收的影响机制. 湖北农业科学, 57(21), 51-56.] | |
[37] | Yao G, Gao HY, Wang WW, Zhang LT, Bu JW (2009). The effects of Pb-stress on functions of photosystems and photosynthetic rate in maize seedling leaves. Acta Ecologica Sinica, 29, 1162-1169. |
[姚广, 高辉远, 王未未, 张立涛, 部建雯 (2009). 铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响. 生态学报, 29, 1162-1169.] | |
[38] | Ye YQ, Luo HY, Li M, Liu XX, Cao GQ, Xu SS (2018). Effects of nitrogen forms on lateral roots development and photosynthetic characteristics in leaves of Cunninghamia lanceolata seedlings. Acta Botanica Boreali-Occidentalia Sinica, 38, 2036-2044. |
[叶义全, 罗红艳, 李茂, 刘晓霞, 曹光球, 许珊珊 (2018). 氮素形态对杉木幼苗侧根生长和叶片光合特性的影响. 西北植物学报, 38, 2036-2044.] | |
[39] | Zhang JG, Sheng WT, Xiong YQ, Wan XR (2006). Effects of fertilization on soil nutrient content of potted Chinese fir seedling. Scientia Silvae Sinicae, 42(4), 44-50. |
[张建国, 盛炜彤, 熊有强, 万细瑞 (2006). 施肥对盆栽杉木苗土壤养分含量的影响. 林业科学, 42(4), 44-50.] | |
[40] | Zhang JJ, Xu SS, Cao GQ, Lin SZ, Pan YM, Ye YQ (2020). Effects of nitrogen forms on the chlorophyll fluorescence parameters and chloroplast ultra-structure of Cunninghamia lanceolata. Journal of Northrwest Forestry University, 35(2), 24-31. |
[张家君, 许珊珊, 曹光球, 林思祖, 潘彦名, 叶义全 (2020). 不同氮形态对杉木叶绿素荧光参数和叶绿体超微结构的影响. 西北林学院学报, 35(2), 24-31.] | |
[41] |
Zhang PF, Liu PZ, Wang CL, Deng MZ, Lin YR, Ren XL, Chen XL (2023). Effects of elevated atmospheric ammonia concentration on photosynthetic characteristics and grain yield in wheat under different nitrogen rates. Chinese Journal of Applied Ecology, 34, 1009-1014.
DOI |
[张鹏飞, 刘朋召, 王成龙, 邓明珠, 林延荣, 任小龙, 陈小莉 (2023). 大气NH3浓度升高对不同施氮水平下小麦叶片光合特征和籽粒产量的影响. 应用生态学报, 34, 1009-1014.]
DOI |
|
[42] | Zhang WQ, Huang FF, Gan XH, Li YF, Tang CB, Qiu PJ (2021). Effects of fertilization on the growth and photosynthetic characteristics of Heritiera littoralis seedlings. Guihaia, 41, 862-871. |
[张卫强, 黄芳芳, 甘先华, 李一凡, 唐成波, 丘鹏基 (2021). 施肥对银叶树幼苗生长及光合特性的影响. 广西植物, 41, 862-871.] | |
[43] | Zhang Y, Sun HZ, Liu YF, Tang XH, Fang X (2021). Effects of nitrogen addition and drought on seedling growth, photosynthesis and volatile organic compounds-carbon emission of two subtropical tree seedlings. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 50, 524-532. |
[张羽, 孙浩钊, 刘燕飞, 汤行昊, 方熊 (2021). 氮添加和干旱对亚热带两个树种生长、光合及挥发性有机碳释放的影响. 福建农林大学学报(自然科学版), 50, 524-532.] | |
[44] |
Zhang ZY, Yi X, Hu B, Hu YC, Liu JH, Fan MS (2010). Programmed death of cortical cells in oat roots under nitrogen deficiency. Chinese Agricultural Science Bulletin, 26(8), 175-178.
DOI |
[张子义, 伊霞, 胡博, 胡云才, 刘景辉, 樊明寿 (2010). 缺氮条件下燕麦根轴细胞的程序性死亡. 中国农学通报, 26(8), 175-178.] | |
[45] | Zhao D, Reddy KR, Kakani VG, Reddy VR (2005). Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 22, 391-403. |
[46] |
Zhao JJ, Ai JG (2022). Short-term response of photosynthesis and chlorophyll fluorescence characteristics of fir seedlings to nitrogen deposition. Chinese Agricultural Science Bulletin, 38(29), 67-73.
DOI |
[赵佼娇, 哀建国 (2022). 杉木幼苗光合及叶绿素荧光特征对氮沉降的短期响应. 中国农学通报, 38(29), 67-73.]
DOI |
|
[47] | Zhou MX, Yan GY, Xing YJ, Chen F, Zhang X, Wang JY, Zhang JH, Dai GH, Zheng XB, Sun WJ, Wang QG, Liu T (2019). Nitrogen deposition and decreased precipitation does not change total nitrogen uptake in a temperate forest. Science of the Total Environment, 651, 32-41. |
[1] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[2] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 颜辰亦, 龚吉蕊, 张斯琦, 张魏圆, 董学德, 胡宇霞, 杨贵森. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J]. 植物生态学报, 2024, 48(2): 229-241. |
[5] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[6] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[9] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[10] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[11] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[12] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[13] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[14] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
[15] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19