植物生态学报 ›› 2024, Vol. 48 ›› Issue (12): 1650-1665.DOI: 10.17521/cjpe.2024.0025 cstr: 32100.14.cjpe.2024.0025
所属专题: 植物功能性状
徐铭泽1,2, 赵洪贤1, 李成2, 李满乐1,3, 田赟1, 刘鹏1, 查天山1,*()
收稿日期:
2024-01-24
接受日期:
2024-05-27
出版日期:
2024-12-20
发布日期:
2024-12-20
通讯作者:
*查天山(tianshanzha@bjfu.edu.cn)基金资助:
XU Ming-Ze1,2, ZHAO Hong-Xian1, LI Cheng2, LI Man-Le1,3, TIAN Yun1, LIU Peng1, ZHA Tian-Shan1,*()
Received:
2024-01-24
Accepted:
2024-05-27
Online:
2024-12-20
Published:
2024-12-20
Contact:
*ZHA Tian-Shan(tianshanzha@bjfu.edu.cn)Supported by:
摘要: 明晰植物性状的网络特征是功能生态学的研究热点, 目前对于季节尺度植物的性状网络(PTN)以及驱动因素的认识仍十分有限。该研究采用LI-6400便携式光合仪定期测量了黑沙蒿(Artemisia ordosica)生长季(5-9月)叶片光响应、CO2响应曲线及关键的叶片结构性状和生化性状指标, 探究25个叶性状间的相关性及其PTN特征。结果显示: 季节尺度, 叶性状间存在显著的相关关系, 最紧密的性状耦合关系发生在光合生理性状间, 共有67对生理-生理性状组合显著相关。PTN边密度、直径、平均路径长度和模块度分别为0.58、3、1.51和0.08, 叶组织密度、单位面积叶氮含量和蒸腾速率的介数相对较高, 是PTN中的“桥梁”。PTN并没有绝对的中心性状, 生理性状整体表现出了较高的度、特征向量中心度和聚类系数, 表明该PTN由生理性状共同主导。进一步的分析结果表明: 季节尺度25个叶性状可以被压缩为两大类性状维度, 一类是受空气温度和土壤水分调控的性状, 一类是受光合有效辐射调控的性状。研究结果强调, 在评估不同性状功能组对气候波动的潜在反应时, 需要区分环境因素对不同性状的影响程度。如果将植物性状对环境的季节反应纳入一个统一的范式, 将会错误地评估植物的性状适应性结果。
徐铭泽, 赵洪贤, 李成, 李满乐, 田赟, 刘鹏, 查天山. 季节尺度毛乌素沙地黑沙蒿的叶片性状网络特征及驱动因素. 植物生态学报, 2024, 48(12): 1650-1665. DOI: 10.17521/cjpe.2024.0025
XU Ming-Ze, ZHAO Hong-Xian, LI Cheng, LI Man-Le, TIAN Yun, LIU Peng, ZHA Tian-Shan. Characteristics of seasonal leaf trait network and its drivers in Artemisia ordosica in the Mau Us Sandy Land. Chinese Journal of Plant Ecology, 2024, 48(12): 1650-1665. DOI: 10.17521/cjpe.2024.0025
监测样株 Monitoring sample plant | 冠幅 Crown diameter (cm × cm) | 最大高度 Maximum height (cm) | |
---|---|---|---|
东西向 East-west | 南北向 South-north | ||
HSH1 | 111 | 100 | 53 |
HSH2 | 108 | 104 | 61 |
HSH3 | 115 | 120 | 58 |
表1 2021年黑沙蒿监测样株的生长特征
Table 1 Growth characteristics of monitoring sample plants of Artemisia ordosica
监测样株 Monitoring sample plant | 冠幅 Crown diameter (cm × cm) | 最大高度 Maximum height (cm) | |
---|---|---|---|
东西向 East-west | 南北向 South-north | ||
HSH1 | 111 | 100 | 53 |
HSH2 | 108 | 104 | 61 |
HSH3 | 115 | 120 | 58 |
叶性状类别 Category of leaf functional trait | 性状 Trait | 缩写 Abbreviation | 单位 Unit | 生理生态解释 Physiological and ecological explanation | |
---|---|---|---|---|---|
光合生理性状 Photosynthetic physiological trait | 最大净光合速率 Maximum net photosynthetic rate | Amax | μmol·m-2·s-1 | 光合潜力与资源获取策略 Photosynthetic potential and resource acquisition strategies | |
最大羧化速率 Maximum carboxylation rate | Vcmax | μmol·m-2·s-1 | 核酮糖-1,5-双磷酸羧化酶/加氧酶(Rubisco)催化的最大羧化反应速率 Maximum carboxylation rate of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) | ||
最大电子传递速率 Maximum electron transfer rate | Jmax | μmol·m-2·s-1 | 支持核酮糖双磷酸再生的最大电子传输速率 Maximum electron transfer rate for supporting ribulose bisphosphate regeneration | ||
暗呼吸速率 Dark respiration rate | Rd | μmol·m-2·s-1 | 黑暗环境中叶片呼吸的代谢水平 Levels of leaf respiratory metabolism under dark conditions | ||
光下暗呼吸速率 Dark respiration rate under light | Rl | μmol·m-2·s-1 | 光照环境中叶片呼吸的代谢水平 Levels of leaf respiratory metabolism under light conditions | ||
光饱和碳同化速率 Photo-saturated carbon assimilation rate | Asat | μmol CO2·m-2·s-1 | 碳同化效率 Carbon assimilation efficiency | ||
气孔导度 Stomatal conductance | gs | mol H2O·m−2·s−1 | 气体交换与资源获取 Gas exchange and resource acquisition | ||
蒸腾速率 Transpiration rate | E | mmol H2O·m−2·s−1 | 耗水特性 Water consumption characteristics | ||
水分利用效率 Water use efficiency | WUE | μmol·mmol-1 | 抗旱性与水资源利用 Drought resistance and water resource utilization | ||
氮利用效率 Nitrogen use efficiency | NUE | μmol·g-1·s-1 | 叶片养分利用、生理特性和生存策略 Nutrient utilization, physiological characteristics, and survival strategies of leaves | ||
最大光化学效率 Maximal photochemical efficiency | Fv/Fm | 光系统II (PSII)反应中心的最大光能转化效率以及叶片的健康程度 The maximum light energy conversion efficiency of photosystem II (PSII) and the health status of leaves | |||
光化学淬灭 Photochemical quenching | qP | PSII反应中心的开放程度以及光化学活性的高低 Degree of openness of PSII and the level of photochemical activity | |||
非光化学淬灭 Non-photochemical quenching | NPQ | 植物的光保护能力 Light protection ability of plants | |||
电子传递速率 Electron transfer rate | ETR | μmol·m-2·s-1 | 植物的耐光性和适应性 Light resistance and adaptability of plants | ||
结构性状 Structural trait | 叶厚度 Leaf thickness | Lt | mm | 生存策略以及光合呼吸、蒸腾相关的碳成本 Survival strategy and carbon costs related to photosynthesis, respiration and transpiration | |
比叶质量 Leaf mass per area | LMA | g·m-2 | 资源获取和抗逆性 Resource acquisition and resilience | ||
叶组织密度 Leaf tissue density | LTD | g·cm-3 | 叶片韧性和抗逆性 Leaf toughness and stress resistance | ||
叶片相对含水量 Leaf relative water content | LRWC | % | 植物的水分状况、抗旱性及环境适应 Water status, drought resistance and environmental adaptation | ||
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | 抗逆性和对抗物理危害的防御能力 Resistance to adversity and defense against physical hazards | ||
生物化学性状 Biochemical trait | 基于面积的叶氮含量 Leaf nitrogen content per unit area | Narea | g·m-2 | 资源获取和衡量光合能力 Resource acquisition and characterization of photosynthetic capacity | |
基于面积的叶碳含量 Leaf carbon content per unit area | Carea | g·m-2 | 构建和防御 Building and defense | ||
碳氮比 Ratio of leaf carbon content to nitrogen content | C:N | 元素分配与适应策略 Element allocation and adaptation strategies | |||
叶绿素含量 Chlorophyll content | Chl | μg·cm-2 | 健康程度与光合作用 Health level and photosynthesis | ||
叶绿素a/b Ratio of chlorophyll a to chlorophyll b | Chl a/b | 光能吸收和能量运输 Light absorption and energy transport | |||
类胡萝卜素含量 Carotenoid content | Car | μg·cm-2 | 光合作用与光保护必需色素 Photosynthesis and essential pigments for photoprotection |
表2 毛乌素沙地黑沙蒿研究所涉及的叶片功能性状汇总
Table 2 Summary of leaf functional traits involved in the research of Artemisia ordosica in the Mau Us Sandy Land
叶性状类别 Category of leaf functional trait | 性状 Trait | 缩写 Abbreviation | 单位 Unit | 生理生态解释 Physiological and ecological explanation | |
---|---|---|---|---|---|
光合生理性状 Photosynthetic physiological trait | 最大净光合速率 Maximum net photosynthetic rate | Amax | μmol·m-2·s-1 | 光合潜力与资源获取策略 Photosynthetic potential and resource acquisition strategies | |
最大羧化速率 Maximum carboxylation rate | Vcmax | μmol·m-2·s-1 | 核酮糖-1,5-双磷酸羧化酶/加氧酶(Rubisco)催化的最大羧化反应速率 Maximum carboxylation rate of the enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) | ||
最大电子传递速率 Maximum electron transfer rate | Jmax | μmol·m-2·s-1 | 支持核酮糖双磷酸再生的最大电子传输速率 Maximum electron transfer rate for supporting ribulose bisphosphate regeneration | ||
暗呼吸速率 Dark respiration rate | Rd | μmol·m-2·s-1 | 黑暗环境中叶片呼吸的代谢水平 Levels of leaf respiratory metabolism under dark conditions | ||
光下暗呼吸速率 Dark respiration rate under light | Rl | μmol·m-2·s-1 | 光照环境中叶片呼吸的代谢水平 Levels of leaf respiratory metabolism under light conditions | ||
光饱和碳同化速率 Photo-saturated carbon assimilation rate | Asat | μmol CO2·m-2·s-1 | 碳同化效率 Carbon assimilation efficiency | ||
气孔导度 Stomatal conductance | gs | mol H2O·m−2·s−1 | 气体交换与资源获取 Gas exchange and resource acquisition | ||
蒸腾速率 Transpiration rate | E | mmol H2O·m−2·s−1 | 耗水特性 Water consumption characteristics | ||
水分利用效率 Water use efficiency | WUE | μmol·mmol-1 | 抗旱性与水资源利用 Drought resistance and water resource utilization | ||
氮利用效率 Nitrogen use efficiency | NUE | μmol·g-1·s-1 | 叶片养分利用、生理特性和生存策略 Nutrient utilization, physiological characteristics, and survival strategies of leaves | ||
最大光化学效率 Maximal photochemical efficiency | Fv/Fm | 光系统II (PSII)反应中心的最大光能转化效率以及叶片的健康程度 The maximum light energy conversion efficiency of photosystem II (PSII) and the health status of leaves | |||
光化学淬灭 Photochemical quenching | qP | PSII反应中心的开放程度以及光化学活性的高低 Degree of openness of PSII and the level of photochemical activity | |||
非光化学淬灭 Non-photochemical quenching | NPQ | 植物的光保护能力 Light protection ability of plants | |||
电子传递速率 Electron transfer rate | ETR | μmol·m-2·s-1 | 植物的耐光性和适应性 Light resistance and adaptability of plants | ||
结构性状 Structural trait | 叶厚度 Leaf thickness | Lt | mm | 生存策略以及光合呼吸、蒸腾相关的碳成本 Survival strategy and carbon costs related to photosynthesis, respiration and transpiration | |
比叶质量 Leaf mass per area | LMA | g·m-2 | 资源获取和抗逆性 Resource acquisition and resilience | ||
叶组织密度 Leaf tissue density | LTD | g·cm-3 | 叶片韧性和抗逆性 Leaf toughness and stress resistance | ||
叶片相对含水量 Leaf relative water content | LRWC | % | 植物的水分状况、抗旱性及环境适应 Water status, drought resistance and environmental adaptation | ||
叶干物质含量 Leaf dry matter content | LDMC | g·g-1 | 抗逆性和对抗物理危害的防御能力 Resistance to adversity and defense against physical hazards | ||
生物化学性状 Biochemical trait | 基于面积的叶氮含量 Leaf nitrogen content per unit area | Narea | g·m-2 | 资源获取和衡量光合能力 Resource acquisition and characterization of photosynthetic capacity | |
基于面积的叶碳含量 Leaf carbon content per unit area | Carea | g·m-2 | 构建和防御 Building and defense | ||
碳氮比 Ratio of leaf carbon content to nitrogen content | C:N | 元素分配与适应策略 Element allocation and adaptation strategies | |||
叶绿素含量 Chlorophyll content | Chl | μg·cm-2 | 健康程度与光合作用 Health level and photosynthesis | ||
叶绿素a/b Ratio of chlorophyll a to chlorophyll b | Chl a/b | 光能吸收和能量运输 Light absorption and energy transport | |||
类胡萝卜素含量 Carotenoid content | Car | μg·cm-2 | 光合作用与光保护必需色素 Photosynthesis and essential pigments for photoprotection |
图2 毛乌素沙地环境因子的季节动态。
Fig. 2 Seasonal dynamics of environmental factors in the Mau Us Sandy Land. PAR, photosynthetically active radiation; PPT, precipitation; RH, relative humidity; Ta, air temperature; VPD, vapor pressure deficit; VWC, soil volumetric water content.
图3 黑沙蒿气体交换类生理性状(A)、叶绿素荧光类生理性状(B)、生物化学性状(C)、结构性状(D)的相对季节趋势。每个测量周期的性状相对值为当前值/季节中的最大值。图中线条阴影部分为变量的标准误。性状名称见表2。
Fig. 3 Relative seasonal trends of physiological traits related to gas exchange (A), physiological traits related to chlorophyll fluorescence (B), biochemical traits (C) and structural traits (D) of Artemisia ordosica. The relative value of traits for each measurement period is the ratio of the current value to the maximum. The shaded areas of the lines in the figure represent the standard error of the variables. The names of leaf traits see Table 2.
图4 黑沙蒿叶片性状的相关性。*、**和***分别代表变量在p < 0.05、p < 0.01和p < 0.001水平存在显著相关性。性状名称见表2。
Fig. 4 Correlations of leaf traits of Artemisia ordosica. *, **, and *** in the figure represent significant correlations between variables at the p < 0.05, p < 0.01, and p < 0.001 levels, respectively. The names of leaf traits see Table 2.
图6 黑沙蒿叶功能性状的性状网络特征参数差异。图中红色背景区域为结构性状, 蓝色背景区域为生化性状, 黄色背景区域为光合生理性状。性状名称同表2。
Fig. 6 Differences in plant trait network parameters of leaf functional traits of Artemisia ordosica. Red background area represents structural traits, blue background area represents biochemical traits, and yellow background area represents photosynthetic physiological traits. The names of leaf traits see Table 2.
叶性状 Leaf trait | 主成分1 Principal component 1 | 主成分2 Principal component 2 |
---|---|---|
Vcmax | -0.22 | 0.03 |
Jmax | -0.24 | 0.04 |
Amax | -0.24 | -0.14 |
Rd | -0.23 | 0.14 |
Rl | -0.23 | 0.13 |
Asat | -0.26 | -0.01 |
gs | -0.24 | 0.07 |
E | -0.25 | 0.10 |
WUE | 0.11 | -0.24 |
NUE | -0.22 | -0.16 |
qP | -0.21 | -0.12 |
Fv/Fm | -0.22 | -0.02 |
ETR | -0.25 | -0.04 |
NPQ | -0.06 | -0.04 |
Narea | -0.20 | 0.22 |
Carea | 0.01 | 0.35 |
C:N | 0.20 | 0.02 |
Chl | -0.07 | -0.34 |
Chl a/b | -0.23 | 0.07 |
Car | -0.09 | -0.31 |
LMA | -0.05 | 0.36 |
LDMC | 0.22 | 0.19 |
LRWC | -0.23 | -0.18 |
Lt | 0.09 | -0.28 |
LTD | -0.10 | 0.38 |
特征值 Characteristic value | 3.77 | 2.34 |
方差比例 Variance ratio | 54.75% | 21.04% |
累计方差比例 Accumulated variance ratio | 54.75% | 75.79% |
表3 黑沙蒿叶性状在主成分分析中的载荷及解释方差
Table 3 Load and explanatory variance of leaf traits in principal component analysis of Artemisia ordosica
叶性状 Leaf trait | 主成分1 Principal component 1 | 主成分2 Principal component 2 |
---|---|---|
Vcmax | -0.22 | 0.03 |
Jmax | -0.24 | 0.04 |
Amax | -0.24 | -0.14 |
Rd | -0.23 | 0.14 |
Rl | -0.23 | 0.13 |
Asat | -0.26 | -0.01 |
gs | -0.24 | 0.07 |
E | -0.25 | 0.10 |
WUE | 0.11 | -0.24 |
NUE | -0.22 | -0.16 |
qP | -0.21 | -0.12 |
Fv/Fm | -0.22 | -0.02 |
ETR | -0.25 | -0.04 |
NPQ | -0.06 | -0.04 |
Narea | -0.20 | 0.22 |
Carea | 0.01 | 0.35 |
C:N | 0.20 | 0.02 |
Chl | -0.07 | -0.34 |
Chl a/b | -0.23 | 0.07 |
Car | -0.09 | -0.31 |
LMA | -0.05 | 0.36 |
LDMC | 0.22 | 0.19 |
LRWC | -0.23 | -0.18 |
Lt | 0.09 | -0.28 |
LTD | -0.10 | 0.38 |
特征值 Characteristic value | 3.77 | 2.34 |
方差比例 Variance ratio | 54.75% | 21.04% |
累计方差比例 Accumulated variance ratio | 54.75% | 75.79% |
图8 黑沙蒿主成分性状群(F1和F2)与环境因子间的季节关系。*和**分别代表线性关系在p < 0.05和p < 0.01水平存在显著相关性。
Fig. 8 Seasonal relationships between principal component trait groups (F1 and F2) and environmental factors. The asterisks * and ** represent significant linear relationships at the p < 0.05 and p < 0.01 levels, respectively. PAR, photosynthetically active radiation; Ta, air temperature; VPD, vapor pressure deficit; VWC, soil volumetric water content.
[1] | Anadon-Rosell A, Hasibeder R, Palacio S, Mayr S, Ingrisch J, Ninot JM, Nogués S, Bahn M (2017). Short-term carbon allocation dynamics in subalpine dwarf shrubs and their responses to experimental summer drought. Environmental and Experimental Botany, 141, 92-102. |
[2] | Ayub G, Smith RA, Tissue DT, Atkin OK (2011). Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytologist, 190, 1003-1018. |
[3] | Bao L, Liu YH (2009). Comparison of leaf functional traits in different forest communities in Mt. Dongling of Beijing. Acta Ecologica Sinica, 29, 3692-3703. |
[ 宝乐, 刘艳红 (2009). 东灵山地区不同森林群落叶功能性状比较. 生态学报, 29, 3692-3703.] | |
[4] | Chai SF, Tang JM, Wang ML (2015). Photosynthetic and physiological characteristics of Camellia petelotii seedlings under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2, 322-328. |
[ 柴胜丰, 唐健民, 王满莲 (2015). 干旱胁迫对金花茶幼苗光合生理特性的影响. 西北植物学报, 2, 322-328.] | |
[5] | Chandregowda MH, Tjoelker MG, Power SA, Pendall E (2022). Drought and warming alter gross primary production allocation and reduce productivity in a widespread pasture grass. Plant, Cell & Environment, 45, 2271-2291. |
[6] | Cui XT, Yuan FH, Wang AZ, Guan DX, Wu JB, Jin CJ (2017). Leaf age-related changes in photosynthesis of Quercus mongolica leaves in relation to leaf functional traits. Chinese Journal of Ecology, 36, 3160-3167. |
[ 崔西甜, 袁凤辉, 王安志, 关德新, 吴家兵, 金昌杰 (2017). 蒙古栎叶片光合作用随叶龄的变化及其与叶片功能性状的关系. 生态学杂志, 36, 3160-3167.] | |
[7] | Dai YM, Li ML, Xu MZ, Tian Y, Zhao HX, Gao SJ, Hao SR, Liu P, Jia X, Zha TS (2022). Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land. Chinese Journal of Plant Ecology, 46, 1376-1387. |
[ 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山 (2022). 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征. 植物生态学报, 46, 1376-1387.]
DOI |
|
[8] | Deng XX, Xiao WF, Zeng LX, Lei L, Shi Z (2019). Transport and distribution characteristics of photosynthates of Pinus massoniana seedlings. Scientia Silvae Sinicae, 55(7), 27-34. |
[ 邓秀秀, 肖文发, 曾立雄, 雷蕾, 施征 (2019). 马尾松幼苗光合产物的运输与分配特征. 林业科学, 55(7), 27-34.] | |
[9] | Dong XG, Cao YF, Tian LM, Wang K, Zhang Y, Qi D (2015). Leaf morphology and photosynthetic characteristics of wild Ussurian pear in China. Chinese Journal of Applied Ecology, 26, 1327-1334. |
[ 董星光, 曹玉芬, 田路明, 王昆, 张莹, 齐丹 (2015). 中国野生山梨叶片形态及光合特性. 应用生态学报, 26, 1327-1334.] | |
[10] |
Flores-Moreno H, Fazayeli F, Banerjee A, Datta A, Kattge J, Butler EE, Atkin OK, Wythers K, Chen M, Anand M, Bahn M, Byun C, Cornelissen JHC, Craine J, Gonzalez- Melo A, et al. (2019). Robustness of trait connections across environmental gradients and growth forms. Global Ecology and Biogeography, 28, 1806-1826.
DOI |
[11] | Guo W, Cherubini P, Zhang J, Li M, Qi L (2023). Leaf stomatal traits rather than anatomical traits regulate gross primary productivity of moso bamboo (Phyllostachys edulis) stands. Frontiers in Plant Science, 14, 1117564. DOI: 10.3389/fpls.2023.1117564. |
[12] | Happonen K, Virkkala AM, Kemppinen J, Niittynen P, Luoto M (2022). Relationships between above-ground plant traits and carbon cycling in tundra plant communities. Journal of Ecology, 110, 700-716. |
[13] | He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, et al. (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918. |
[14] | He NP, Liu CC, Zhang JH, Xu L, Yu GR (2018). Perspectives and challenges in plant traits: from organs to communities. Acta Ecologica Sinica, 38, 6787-6796. |
[ 何念鹏, 刘聪聪, 张佳慧, 徐丽, 于贵瑞 (2018). 植物性状研究的机遇与挑战: 从器官到群落. 生态学报, 38, 6787-6796.] | |
[15] |
Heskel MA, Bitterman D, Atkin OK, Turnbull MH, Griffin KL (2014). Seasonality of foliar respiration in two dominant plant species from the Arctic tundra: response to long-term warming and short-term temperature variability. Functional Plant Biology, 41, 287-300.
DOI PMID |
[16] |
Heskel MA, Tang JW (2018). Environmental controls on light inhibition of respiration and leaf and canopy daytime carbon exchange in a temperate deciduous forest. Tree Physiology, 38, 1886-1902.
DOI PMID |
[17] |
Ji WL, LaZerte SE, Waterway MJ, Lechowicz MJ (2020). Functional ecology of congeneric variation in the leaf economics spectrum. New Phytologist, 225, 196-208.
DOI PMID |
[18] | Jiang Y, Tian Y, Zha T, Jia X, Bourque CPA, Liu P, Jin C, Jiang X, Li X, Wei N, Gao S (2021). Dynamic changes in plant resource use efficiencies and their primary influence mechanisms in a typical desert shrub community. Forests, 12, 1372. DOI: 10.3390/f12101372. |
[19] | Jin C, Zha TS, Jia X, Tian Y, Zhou WJ, Wei TZ (2020). Light energy partitioning, photoprotection and influencing factors of photosystem II in an exotic species (Salix psammophila) in Mu Us Sandy Land. Scientia Silvae Sinicae, 56(10), 34-44. |
[ 靳川, 查天山, 贾昕, 田赟, 周文君, 卫腾宙 (2020). 毛乌素沙地沙柳光系统Ⅱ光保护机制和能量分配动态及其影响因子. 林业科学, 56(10), 34-44.] | |
[20] |
Kirschbaum MU, Farquhar GD (1987). Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora. Plant Physiology, 83, 1032-1036.
DOI PMID |
[21] | Kleyer M, Trinogga J, Cebrián Piqueras MA, Trenkamp A, Flojgaard C, Ejrnæs R, Bouma TJ, Minden V, Maier M, Mantilla-Contreras J (2019). Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. Journal of Ecology, 107, 829-842. |
[22] |
Li L, McCormack ML, Ma C, Kong D, Zhang Q, Chen X, Zeng H, Niinemets Ü, Guo DL (2015). Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters, 18, 899-906.
DOI PMID |
[23] | Li Y (2020). Variation of Leaf Trait Network Among Different Vegetation Types and Its Influencing Factors. PhD dissertation,Beijing Forestry University, Beijing. |
[ 李颖 (2020). 叶片性状网络在不同植被类型间的变异规律及其影响因素. 博士学位论文, 北京林业大学, 北京.] | |
[24] | Li Y, Liu C, Sack L, Xu L, Li M, Zhang J, He N (2022). Leaf trait network architecture shifts with species-richness and climate across forests at continental scale. Ecology Letters, 25, 1442-1457. |
[25] | Li Y, Zha TS, Jia X, Qin SG, Wu YJ, Wang B (2015). Photosynthetic characteristics of typical desert plant Artemisia ordosica in semi-arid region. Chinese Journal of Ecology, 34, 86-93. |
[ 李媛, 查天山, 贾昕, 秦树高, 吴雅娟, 王奔 (2015). 半干旱区典型沙生植物油蒿(Artemisia ordosica)的光合特性. 生态学杂志, 34, 86-93.] | |
[26] | Li YL, Cui JY, Su YZ (2005). Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 25, 304-311. |
[ 李玉霖, 崔建垣, 苏永中 (2005). 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 25, 304-311.] | |
[27] | Li Z, Tan XF, Lu K, Zhang L, Long HX, Lü JB, Lin Q (2017). Influence of drought stress on the growth, leaf gas exchange, and chlorophyll fluorescence in two varieties of tung tree seedlings. Acta Ecologica Sinica, 37, 1515-1524. |
[ 李泽, 谭晓风, 卢锟, 张琳, 龙洪旭, 吕佳斌, 林青 (2017). 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响. 生态学报, 37, 1515-1524.] | |
[28] |
Luo D, Shi YJ, Song FH, Li JC (2021). Variation and correlation of leaf functional traits and photosynthetic characteristics of 38 hazelnut germplasm resources. Chinese Journal of Ecology, 40, 11-22.
DOI |
[ 罗达, 史彦江, 宋锋惠, 李嘉诚 (2021). 38个榛种质资源叶功能性状与光合特征变异及其相关性. 生态学杂志, 40, 11-22.] | |
[29] | Mu RL, Liu MX, Xu L, Zhang GJ, Yu RX, Li L (2022). Diurnal variation of photosynthesis and resource utilization efficiency of the typical plants in the semi-arid area of Loess Plateau. Plant Physiology Journal, 58, 1381-1391. |
[ 穆若兰, 刘旻霞, 徐璐, 张国娟, 于瑞新, 李亮 (2022). 黄土高原半干旱区典型植物资源利用效率及光合日变化探析. 植物生理学报, 58, 1381-1391.] | |
[30] | Ogaya R, Peñuelas J (2003). Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environmental and Experimental Botany, 50, 137-148. |
[31] |
Osuna JL, Baldocchi DD, Kobayashi H, Dawson TE (2015). Seasonal trends in photosynthesis and electron transport during the Mediterranean summer drought in leaves of deciduous oaks. Tree Physiology, 35, 485-500.
DOI PMID |
[32] |
Poorter H, Lambers H, Evans JR (2014). Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytologist, 201, 378-382.
DOI PMID |
[33] | She WW (2018). Response of Artemisia ordosica Community to Water and Nitrogen Addition in the Mu Us Desert. PhD dissertation,Beijing Forestry University, Beijing. |
[ 佘维维 (2018). 毛乌素沙地油蒿群落对水分和氮素添加的响应. 博士学位论文, 北京林业大学, 北京.] | |
[34] | Song GM, Wang Q, Jin J (2020). Leaf photosynthetic capacity of sunlit and shaded mature leaves in a deciduous forest. Forests, 11, 318. DOI: 10.3390/f11030318. |
[35] | Song GM, Wang Q, Jin J (2021). Exploring the instability of the relationship between maximum potential electron transport rate and maximum carboxylation rate in cool-temperate deciduous forests. Agricultural and Forest Meteorology, 308, 108614. DOI: 10.1016/j.agrformet. 2021.108614. |
[36] | Sun J, Guan D, Wu J, Jing Y, Yuan F, Wang A, Jin C (2015). Day and night respiration of three tree species in a temperate forest of northeastern China. iForest, 8, 25-32. |
[37] | Tang YR, Zhao CZ, Zhao H, Hou G, Ma M, Zhao TT, Wang YF, Zeng HX (2021). The relationship between leaf dry mass and leaf area, leaf thickness of Hippophae rhamnoides under different light conditions in Taohe River riparian forest. Chinese Journal of Ecology, 40, 2745-2753. |
[ 唐玉瑞, 赵成章, 赵辉, 侯刚, 马敏, 赵婷婷, 王毓芳, 曾红霞 (2021). 不同光环境下洮河护岸林沙棘叶干重与叶面积、叶厚度间的关系. 生态学杂志, 40, 2745-2753.] | |
[38] | Wan CY, Yu JR, Zhu SD (2023). Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species. Chinese Journal of Plant Ecology, 47, 1386-1397. |
[ 万春燕, 余俊瑞, 朱师丹 (2023). 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异. 植物生态学报, 47, 1386-1397.]
DOI |
|
[39] | Wang X, Ji M, Zhang Y, Zhang L, Akram MA, Dong L, Hu W, Xiong J, Sun Y, Li H, Degen AA, Ran J, Deng J (2023). Plant trait networks reveal adaptation strategies in the drylands of China. BMC Plant Biology, 23, 266. DOI: 10.1186/s12870-023-04273-0. |
[40] | Wang ZQ, Zha TS, Jia X, Wu YJ, Zhang MY, Mu JW (2017). Seasonal variation in photosynthetic parameters of Artemisia ordosica in relation to leaf nitrogen and specific leaf area. Chinese Journal of Ecology, 36, 916-924. |
[ 王子奇, 查天山, 贾昕, 吴雅娟, 张明艳, 穆家伟 (2017). 油蒿光合参数季节动态及其与叶氮含量和比叶面积的关系. 生态学杂志, 36, 916-924.] | |
[41] |
Winkler DE, Belnap J, Duniway MC, Hoover D, Reed SC, Yokum H, Gill R (2020). Seasonal and individual event- responsiveness are key determinants of carbon exchange across plant functional types. Oecologia, 193, 811-825.
DOI PMID |
[42] | Wu FY, Yi LT, Li XP, Yin XM, Liu MH, Yu SQ (2012). Effect of different light intensity on intensity chlorophyll content and chlorophyll fluorescence in Lithocarpus glaber. Journal of Northeast Agricultural University, 43(4), 88-92. |
[ 吴飞燕, 伊力塔, 李修鹏, 殷秀敏, 刘美华, 余树全 (2012). 不同光照强度对石栎幼苗叶绿素含量及叶绿素荧光参数的影响. 东北农业大学学报, 43(4), 88-92.] | |
[43] | Wu SY (2019). Seasonal Dynamics of Leaf Functional Traits in Artemisia ordosica and Their Influencing Factors. Master degree dissertation, Beijing Forestry University, Beijing. |
[ 吴水瑛 (2019). 油蒿叶功能性状季节动态及其影响因素. 硕士学位论文, 北京林业大学, 北京.] | |
[44] | Wu Y, Ren C, Tian Y, Zha T, Liu P, Bai Y, Ma J, Lai Z, Bourque CPA (2018). Photosynthetic gas-exchange and PSII photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila). Ecological Indicators, 94, 130-138. |
[45] | Xu MZ, Liu P, Tian Y, Zhao HX, Jin C, Li ML, Mao J, Wei XS, Jia X, Zha TS (2023). Seasonal response of light use efficiency of Artemisia ordosica to leaf traits in Mu Us sandy land. Acta Ecologica Sinica, 43, 5122-5136. |
[ 徐铭泽, 刘鹏, 田赟, 赵洪贤, 靳川, 李满乐, 毛军, 魏晓帅, 贾昕, 查天山 (2023). 毛乌素沙地油蒿叶性状对光能利用效率动态的影响. 生态学报, 43, 5122-5136.] | |
[46] | Xu M, Zha T, Tian Y, Liu P, Jia X, Bourque CPA, Jin C, Wei X, Zhao H, Guo Z (2022). Elevated physiological plasticity in xerophytic-deciduous shrubs as demonstrated in their variable maximum carboxylation rate. Ecological Indicators, 144, 109475. DOI: 10.1016/j.ecolind.2022.109475. |
[47] |
Yasumura Y, Hikosaka K, Hirose T (2006). Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiology, 26, 1315-1323.
PMID |
[48] | Zhang J, He N, Liu C, Xu L, Chen Z, Li Y, Wang R, Yu G, Sun W, Xiao C, Chen HYH, Reich PB (2020). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543. |
[49] | Zhao HX, Zhang YJ, Xu MZ, Wei TZ, Mao J, Luo Y, Jia X, Zha TS (2022). Effects of leaf nitrogen allocation on seasonal variation in maximum net photosynthetic rate in Artemisia ordosica. Acta Ecologica Sinica, 42, 7156-7166. |
[ 赵洪贤, 张洋军, 徐铭泽, 卫腾宙, 毛军, 雒宇, 贾昕, 查天山 (2022). 油蒿叶片氮分配对其最大净光合速率季节变异的影响. 生态学报, 42, 7156-7166.] | |
[50] | Zhao HY, Li YL, Wang XY, Mao W, Zhao XY, Zhang TH (2010). Variations in leaf traits of 52 plants in Horqin sand land. Journal of Desert Research, 30, 1292-1298. |
[ 赵红洋, 李玉霖, 王新源, 毛伟, 赵学勇, 张铜会 (2010). 科尔沁沙地52种植物叶片性状变异特征研究. 中国沙漠, 30, 1292-1298.] | |
[51] | Zheng YP, Dang CH, Hao LH, Cheng DJ, Xu M (2016). Photosynthetic and respiratory acclimation of maize leaves to experimental warming in the North China Plain. Acta Ecologica Sinica, 36, 5236-5246. |
[ 郑云普, 党承华, 郝立华, 程东娟, 徐明 (2016). 华北平原玉米叶片光合及呼吸过程对实验增温的适应性. 生态学报, 36, 5236-5246.] | |
[52] | Zhong GW, Tian Y, Liu P, Jia X, Zha TS (2022). Leaf traits and resource use efficiencies of 19 woody plant species in a plantation in Fangshan, Beijing, China. Forests, 14, 63. DOI: 10.3390/f14010063. |
[1] | 彭思瑞, 张慧玲, 孙兆林, 赵学超, 田鹏, 陈迪马, 王清奎, 刘圣恩. 长期凋落物去除对亚热带杉木林土壤有机碳及其组分的影响[J]. 植物生态学报, 2024, 48(8): 1078-1088. |
[2] | 张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制[J]. 植物生态学报, 2024, 48(7): 903-914. |
[3] | 文佳, 张新娜, 王娟, 赵秀海, 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应[J]. 植物生态学报, 2024, 48(6): 719-729. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 马斌, 佘维维, 秦欢, 宣瑞智, 宋春阳, 袁新月, 苗春, 刘靓, 冯薇, 秦树高, 张宇清. 氮水添加对黑沙蒿种子功能性状的影响[J]. 植物生态学报, 2024, 48(12): 1637-1649. |
[6] | 兰光飞, 张强, 陈相标, 陈仕东, 熊德成, 刘小飞, 杨智杰, 杨玉盛. 中亚热带格氏栲林凋落物季节动态特征及其影响因素[J]. 植物生态学报, 2024, 48(12): 1589-1601. |
[7] | 胡楚婷, 杨柳依依, 石绍林, 周琰, 陈婷婷, 郑博瀚, 杨暘, 卢小玲, 王陈玲, 倪健. 浙江金华典型人工植被的植物功能性状[J]. 植物生态学报, 2024, 48(10): 1336-1350. |
[8] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[9] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[10] | 汤璐瑶, 方菁, 钱海蓉, 张博纳, 上官方京, 叶琳峰, 李姝雯, 童金莲, 谢江波. 落羽杉和池杉功能性状随高度的变异与协同[J]. 植物生态学报, 2023, 47(11): 1561-1575. |
[11] | 江蓝, 魏晨思, 何中声, 朱静, 邢聪, 王雪琳, 刘金福, 沈彩霞, 施友文. 格氏栲天然林林窗植物群落功能性状的变异[J]. 植物生态学报, 2022, 46(3): 267-279. |
[12] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[13] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[14] | 桂子洋, 秦树高, 胡朝, 白凤, 石慧书, 张宇清. 毛乌素沙地两种典型灌木叶片凝结水吸收能力及吸水途径[J]. 植物生态学报, 2021, 45(6): 583-593. |
[15] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19