植物生态学报 ›› 2024, Vol. 48 ›› Issue (7): 903-914.DOI: 10.17521/cjpe.2023.0103 cstr: 32100.14.cjpe.2023.0103
张富崇1,2,4, 于明含1,3,4,*(), 张建玲1,3,4, 王平1,2,4, 丁国栋1,3,4, 何莹莹1,3,4, 孙慧媛1,3,4
收稿日期:
2023-04-14
接受日期:
2023-10-09
出版日期:
2024-07-20
发布日期:
2023-10-10
通讯作者:
* 于明含(基金资助:
ZHANG Fu-Chong1,2,4, YU Ming-Han1,3,4,*(), ZHANG Jian-Ling1,3,4, WANG Ping1,2,4, DING Guo-Dong1,3,4, HE Ying-Ying1,3,4, SUN Hui-Yuan1,3,4
Received:
2023-04-14
Accepted:
2023-10-09
Online:
2024-07-20
Published:
2023-10-10
Contact:
* YU Ming-Han(Supported by:
摘要:
探究不同降水情景下荒漠植物茎干解剖学结构的适应性调节, 可以更好地理解未来降水格局变化下荒漠植物水和碳运输间的协调机制。该研究以毛乌素沙地黑沙蒿(Artemisia ordosica)种群为对象, 通过野外人工控制降水的方法, 模拟半干旱气候区降水变化趋势, 设置3个降水量水平(减水30%、自然降水、增水30%)以及2个降水间隔水平(降水间隔5 d、降水间隔15 d)开展双因素完全随机实验, 测定了黑沙蒿茎木质部与韧皮部解剖结构在不同降水情境下的轴向与径向变异。结果表明: 1)在降水改变的情况下, 黑沙蒿并未产生更抗栓塞的轴向木质部结构及传导效率更高的轴向韧皮部结构来适应环境; 2)降水变化通过改变40-60 cm土层含水率对黑沙蒿的木质部、韧皮部径向解剖性状产生影响。在低水分生境下, 黑沙蒿减小导管直径和增大导管壁厚度以保证水分运输的安全性, 并且通过增大韧皮部筛管面积来维持韧皮部导度保证碳的有效运输, 以此保证黑沙蒿进行正常的生理活动; 3)黑沙蒿木质部导管和韧皮部筛管具有等标度的轴向缩放规律, 二者协同关联共同维持水力功能, 且这种相关关系不受降水变化的影响。该研究表明, 黑沙蒿通过改变径向茎干结构而不是轴向结构来适应降水的改变。
张富崇, 于明含, 张建玲, 王平, 丁国栋, 何莹莹, 孙慧媛. 黑沙蒿应对降水变化的木质部与韧皮部协同响应机制. 植物生态学报, 2024, 48(7): 903-914. DOI: 10.17521/cjpe.2023.0103
ZHANG Fu-Chong, YU Ming-Han, ZHANG Jian-Ling, WANG Ping, DING Guo-Dong, HE Ying-Ying, SUN Hui-Yuan. Synergistic response mechanisms in xylem and phloem of Artemisia ordosica to changes in precipitation. Chinese Journal of Plant Ecology, 2024, 48(7): 903-914. DOI: 10.17521/cjpe.2023.0103
月份 Month | 平均月降水量 Average monthly precipitation (mm) | 降水间隔 Precipitation interval | 平均单次降水量 Average precipitation per event (mm) | 降水频次 Precipitation frequency | ||
---|---|---|---|---|---|---|
W- | W | W+ | ||||
5月 May | 33.09 | T | 3.86 | 5.52 | 7.17 | 6 |
T++ | 11.58 | 16.55 | 21.51 | 2 | ||
6月 June | 41.08 | T | 4.79 | 6.85 | 8.90 | 6 |
T++ | 14.38 | 20.54 | 26.70 | 2 | ||
7月 July | 72.39 | T | 8.45 | 12.07 | 15.68 | 6 |
T++ | 25.34 | 36.20 | 47.05 | 2 | ||
8月 August | 63.51 | T | 7.41 | 10.59 | 13.76 | 6 |
T++ | 22.23 | 31.76 | 41.28 | 2 | ||
9月 September | 52.71 | T | 6.15 | 8.79 | 11.42 | 6 |
T++ | 18.45 | 26.36 | 34.26 | 2 |
表1 宁夏盐池实验样地降水量与降水间隔时间设置
Table 1 Experimental setting of the precipitation amounts and precipitation intervals in experimental plots in Yanchi, Ningxia
月份 Month | 平均月降水量 Average monthly precipitation (mm) | 降水间隔 Precipitation interval | 平均单次降水量 Average precipitation per event (mm) | 降水频次 Precipitation frequency | ||
---|---|---|---|---|---|---|
W- | W | W+ | ||||
5月 May | 33.09 | T | 3.86 | 5.52 | 7.17 | 6 |
T++ | 11.58 | 16.55 | 21.51 | 2 | ||
6月 June | 41.08 | T | 4.79 | 6.85 | 8.90 | 6 |
T++ | 14.38 | 20.54 | 26.70 | 2 | ||
7月 July | 72.39 | T | 8.45 | 12.07 | 15.68 | 6 |
T++ | 25.34 | 36.20 | 47.05 | 2 | ||
8月 August | 63.51 | T | 7.41 | 10.59 | 13.76 | 6 |
T++ | 22.23 | 31.76 | 41.28 | 2 | ||
9月 September | 52.71 | T | 6.15 | 8.79 | 11.42 | 6 |
T++ | 18.45 | 26.36 | 34.26 | 2 |
图1 宁夏盐池实验样地及植物样本示意图。A, 样地俯视图。B, 遮雨棚内黑沙蒿植物。C, 黑沙蒿茎轴向取样示意图。
Fig. 1 Schematic diagram of the experimental plots and plants in Yanchi, Ningxia. A, Overview of the plot. B, Artemisia ordosica plants in the rain shelter. C, Schematic diagram illustrating the axial sampling of Artemisia ordosica stems. DA, length of sampling point from stem tip.
降水处理Precipitation treatment | 土壤层次 Soil layer (cm) | |||||
---|---|---|---|---|---|---|
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | |
W-T | 1.61 ± 0.69a | 1.91 ± 0.34a | 2.07 ± 0.35a | 2.68 ± 0.11a | 2.87 ± 0.18b | 2.69 ± 0.27b |
WT | 2.22 ± 1.04a | 2.55 ± 0.66a | 2.87 ± 0.74a | 3.17 ± 0.10a | 3.39 ± 0.28b | 3.18 ± 0.57b |
W+T | 2.12 ± 0.83a | 2.51 ± 0.56a | 2.52 ± 0.40a | 3.07 ± 0.51a | 3.87 ± 0.38ab | 3.60 ± 0.44b |
W-T++ | 1.36 ± 0.20a | 1.84 ± 0.46a | 2.15 ± 0.29a | 2.85 ± 0.10a | 3.60 ± 0.65b | 4.40 ± 0.68ab |
WT++ | 1.46 ± 0.17a | 2.33 ± 0.55a | 2.58 ± 0.54a | 3.89 ± 0.33a | 4.83 ± 0.36ab | 4.44 ± 0.76ab |
W+T++ | 1.52 ± 0.26a | 2.88 ± 0.96a | 3.92 ± 1.62a | 4.88 ± 1.92a | 6.33 ± 1.41a | 5.81 ± 0.53a |
双因素方差分析结果(F值) Results of Two-Way ANOVA (F-values) | ||||||
W | 0.394 | 1.824 | 1.917 | 2.213 | 7.434** | 4.612* |
T | 2.160 | 0.006 | 0.783 | 3.566 | 15.373*** | 27.910*** |
W × T | 0.173 | 0.250 | 1.243 | 1.017 | 1.607 | 0.709 |
表2 不同降水处理对宁夏盐池黑沙蒿群落不同土层土壤质量含水率(%)的影响(平均值±标准误)
Table 2 Effect of precipitation treatments on soil water content (%) in different soil layers of the Artemisia ordosica communities in Yanchi, Ningxia (mean ± SE)
降水处理Precipitation treatment | 土壤层次 Soil layer (cm) | |||||
---|---|---|---|---|---|---|
0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | |
W-T | 1.61 ± 0.69a | 1.91 ± 0.34a | 2.07 ± 0.35a | 2.68 ± 0.11a | 2.87 ± 0.18b | 2.69 ± 0.27b |
WT | 2.22 ± 1.04a | 2.55 ± 0.66a | 2.87 ± 0.74a | 3.17 ± 0.10a | 3.39 ± 0.28b | 3.18 ± 0.57b |
W+T | 2.12 ± 0.83a | 2.51 ± 0.56a | 2.52 ± 0.40a | 3.07 ± 0.51a | 3.87 ± 0.38ab | 3.60 ± 0.44b |
W-T++ | 1.36 ± 0.20a | 1.84 ± 0.46a | 2.15 ± 0.29a | 2.85 ± 0.10a | 3.60 ± 0.65b | 4.40 ± 0.68ab |
WT++ | 1.46 ± 0.17a | 2.33 ± 0.55a | 2.58 ± 0.54a | 3.89 ± 0.33a | 4.83 ± 0.36ab | 4.44 ± 0.76ab |
W+T++ | 1.52 ± 0.26a | 2.88 ± 0.96a | 3.92 ± 1.62a | 4.88 ± 1.92a | 6.33 ± 1.41a | 5.81 ± 0.53a |
双因素方差分析结果(F值) Results of Two-Way ANOVA (F-values) | ||||||
W | 0.394 | 1.824 | 1.917 | 2.213 | 7.434** | 4.612* |
T | 2.160 | 0.006 | 0.783 | 3.566 | 15.373*** | 27.910*** |
W × T | 0.173 | 0.250 | 1.243 | 1.017 | 1.607 | 0.709 |
图2 不同降水处理下黑沙蒿茎各个解剖性状随距离茎尖长度(DA)的轴向变化。A, 导管直径(Dc)的轴向变化。B, 水力直径(Dh)的轴向变化。C, 导管壁厚度(Tc)的轴向变化。D, 韧皮部筛管面积(PA)的轴向变化。T, 降水间隔5天; T++, 降水间隔15天; W-, 减水30%; W, 自然降水量; W+, 增水30%。CS, 共同斜率。
Fig. 2 Variations in the anatomical characteristics of stems of Artemisia ordosica under precipitation treatments with respect to the axial changes in stem tip length (DA). A, Axial changes in conduit diameter (Dc). B, Axial changes in hydraulically weighted diameter of xylem conduits (Dh). C, Axial changes in conduit wall thickness (Tc). D, Axial changes in lumen area of phloem sieve cells (PA). T, precipitation interval 5 days; T++, precipitation interval 15 days; W-, precipitation reduce by 30%; W, natural precipitation; W+, precipitation increase by 30%. CS, common slope.
模型 Model | 处理 Treatment | 斜率(下限-上限) Slope (lower limit-upper limit) | 截距(下限-上限) Intercept (lower limit-upper limit) |
---|---|---|---|
lg DA VS lg Dc | W-T | 0.178 (0.135-0.234)a | 1.059 (1.004-1.115)B |
WT | 0.154 (0.120-0.197)a | 1.105 (1.058-1.152)B | |
W+T | 0.154 (0.122-0.193)a | 1.147 (1.106-1.188)A | |
W-T++ | 0.167 (0.119-0.236)a | 1.083 (1.025-1.141)B | |
WT++ | 0.199 (0.137-0.288)a | 1.077 (0.999-1.156)B | |
W+T++ | 0.182 (0.140-0.236)a | 1.073 (1.016-1.129)B | |
lg DA VS lg Dh | W-T | 0.162 (0.117-0.226)a | 1.156 (1.094-1.217)B |
WT | 0.154 (0.110-0.218)a | 1.165 (1.099-1.230)B | |
W+T | 0.179 (0.146-0.219)a | 1.179 (1.137-1.222)B | |
W-T++ | 0.202 (0.135-0.302)a | 1.134 (1.105-1.217)B | |
WT++ | 0.213 (0.129-0.351)a | 1.137 (1.021-0.254)B | |
W+T++ | 0.183 (0.140-0.238)a | 1.137 (1.080-1.195)B | |
lg DA VS lg Tc | W-T | 0.253 (0.173-0.371)a | -0.092 (-0.104-0.020)A |
WT | 0.215 (0.143-0.323)a | -0.112 (-0.222- -0.003)A | |
W+T | 0.249 (0.173-0.360)a | -0.221 (-0.330- -0.113)B | |
W-T++ | 0.237 (0.167-0.336)a | -0.066 (-0.151-0.020)A | |
WT++ | 0.202 (0.135-0.303)a | -0.097 (-0.185- -0.008)A | |
W+T++ | 0.235 (0.163-0.338)a | -0.156 (-0.259- -0.054)A | |
lg DA VS lg PA | W-T | 0.277 (0.177-0.435)a | 1.043 (0.888-1.198)A |
WT | 0.243 (0.180-0.328)a | 0.948 (0.856-1.041)B | |
W+T | 0.231 (0.181-0.294)a | 0.967 (0.898-1.036)B | |
W-T++ | 0.236 (0.188-0.295)a | 1.064 (1.006-1.123)A | |
WT++ | 0.236 (0.177-0.315)a | 0.995 (0.917-1.073)AB | |
W+T++ | 0.243 (0.190-0.311)a | 0.943 (0.871-1.014)B |
表3 不同降水处理下黑沙蒿各木质部与韧皮部解剖特征与距离茎尖长度的幂函数模型输出结果
Table 3 Power function model outputs for each xylem and phloem anatomical feature and distance from stem tip length for different precipitation treatments of Artemisia ordosica
模型 Model | 处理 Treatment | 斜率(下限-上限) Slope (lower limit-upper limit) | 截距(下限-上限) Intercept (lower limit-upper limit) |
---|---|---|---|
lg DA VS lg Dc | W-T | 0.178 (0.135-0.234)a | 1.059 (1.004-1.115)B |
WT | 0.154 (0.120-0.197)a | 1.105 (1.058-1.152)B | |
W+T | 0.154 (0.122-0.193)a | 1.147 (1.106-1.188)A | |
W-T++ | 0.167 (0.119-0.236)a | 1.083 (1.025-1.141)B | |
WT++ | 0.199 (0.137-0.288)a | 1.077 (0.999-1.156)B | |
W+T++ | 0.182 (0.140-0.236)a | 1.073 (1.016-1.129)B | |
lg DA VS lg Dh | W-T | 0.162 (0.117-0.226)a | 1.156 (1.094-1.217)B |
WT | 0.154 (0.110-0.218)a | 1.165 (1.099-1.230)B | |
W+T | 0.179 (0.146-0.219)a | 1.179 (1.137-1.222)B | |
W-T++ | 0.202 (0.135-0.302)a | 1.134 (1.105-1.217)B | |
WT++ | 0.213 (0.129-0.351)a | 1.137 (1.021-0.254)B | |
W+T++ | 0.183 (0.140-0.238)a | 1.137 (1.080-1.195)B | |
lg DA VS lg Tc | W-T | 0.253 (0.173-0.371)a | -0.092 (-0.104-0.020)A |
WT | 0.215 (0.143-0.323)a | -0.112 (-0.222- -0.003)A | |
W+T | 0.249 (0.173-0.360)a | -0.221 (-0.330- -0.113)B | |
W-T++ | 0.237 (0.167-0.336)a | -0.066 (-0.151-0.020)A | |
WT++ | 0.202 (0.135-0.303)a | -0.097 (-0.185- -0.008)A | |
W+T++ | 0.235 (0.163-0.338)a | -0.156 (-0.259- -0.054)A | |
lg DA VS lg PA | W-T | 0.277 (0.177-0.435)a | 1.043 (0.888-1.198)A |
WT | 0.243 (0.180-0.328)a | 0.948 (0.856-1.041)B | |
W+T | 0.231 (0.181-0.294)a | 0.967 (0.898-1.036)B | |
W-T++ | 0.236 (0.188-0.295)a | 1.064 (1.006-1.123)A | |
WT++ | 0.236 (0.177-0.315)a | 0.995 (0.917-1.073)AB | |
W+T++ | 0.243 (0.190-0.311)a | 0.943 (0.871-1.014)B |
图3 不同降水处理下黑沙蒿茎同一轴向位置各个解剖性状的差异。T, 降水间隔5天; T++, 降水间隔15天; W-, 减水30%; W, 自然降水; W+, 增水30%。Dc, 导管直径; Dh, 水力直径; Tc, 导管壁厚度; PA, 韧皮部筛管面积。不同大写字母表示在同一降水间隔期下不同降水量具有显著差异(p < 0.05); 不同小写字母表示同一降水量下不同降水间隔期具有显著差异(p < 0.05), 最小显著差异(LSD)事后检验在α = 0.05水平下进行的。
Fig. 3 Differences in individual anatomical traits at the same axial position of the Artemisia ordosica stem under precipitation treatments. T, precipitation interval 5 days; T++, precipitation interval 15 days; W-, precipitation reduce by 30%; W, natural precipitation; W+, precipitation increase by 30%. Dc, conduit diameter; Dh, hydraulically weighted diameter of xylem conduits; Tc, conduit wall thickness; PA, lumen area of phloem sieve cells. Different uppercase letters indicate significant differences (p < 0.05) between different amount of precipitation at the same precipitation interval; different lowercase letters indicate significant differences (p < 0.05) among different precipitation intervals at the same amount of precipitation, least significant difference (LSD) post hoc test at α = 0.05 level.
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | |||
---|---|---|---|---|
Dc | Dh | Tc | PA | |
W | 24.932*** | 2.968 | 29.155*** | 70.233*** |
T | 5.079* | 2.527 | 0.203 | 1.816 |
W × T | 0.347 | 0.645 | 0.104 | 0.775 |
表4 同一轴向位置黑沙蒿茎解剖特征的双因素方差分析结果(F值)
Table 4 Results of two-way ANOVA (F-values) for anatomical characteristics of Artemisia ordosica stems in the same axial position
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | |||
---|---|---|---|---|
Dc | Dh | Tc | PA | |
W | 24.932*** | 2.968 | 29.155*** | 70.233*** |
T | 5.079* | 2.527 | 0.203 | 1.816 |
W × T | 0.347 | 0.645 | 0.104 | 0.775 |
图4 黑沙蒿茎同一轴向位置导管直径(Dc)、水力直径(Dh)、导管壁厚度(Tc)与韧皮部筛管面积(PA)的相关关系。***, p < 0.001。
Fig. 4 Correlation between conduit diameter (Dc), hydraulically weighted diameter of xylem conduits (Dh), conduit wall thickness (Tc) and lumen area of phloem sieve cells (PA) in the same axial position of the stem of Artemisia ordosica. ***, p < 0.001.
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | ||
---|---|---|---|
Dc | Dh | Tc | |
W-T | -1.89 ± 0.68a | -0.71 ± 0.39a | 8.85 ± 2.62a |
WT | -0.68 ± 0.88a | -0.19 ± 0.45a | 7.74 ± 4.14a |
W+T | -0.76 ± 0.74a | -0.50 ± 0.45a | 5.99 ± 4.05a |
W-T++ | -0.62 ± 0.79a | -0.47 ± 0.43a | 9.92 ± 3.93a |
WT++ | -0.85 ± 0.72a | -0.46 ± 0.42a | 13.90 ± 6.17a |
W+T++ | -0.69 ± 0.75a | -0.47 ± 0.49a | 4.34 ± 3.61a |
表5 不同降水处理下黑沙蒿茎同一轴向位置木质部解剖特征与韧皮部筛管面积线性拟合模型斜率的差异性(平均值±标准误)
Table 5 Differences in the slope of the linear fit model between xylem anatomical features and sieve tube area of the bast at the same axial position of Artemisia ordosica stems under different precipitation treatments (mean ± SE)
降水处理 Precipitation treatment | 解剖特征 Anatomical characteristics | ||
---|---|---|---|
Dc | Dh | Tc | |
W-T | -1.89 ± 0.68a | -0.71 ± 0.39a | 8.85 ± 2.62a |
WT | -0.68 ± 0.88a | -0.19 ± 0.45a | 7.74 ± 4.14a |
W+T | -0.76 ± 0.74a | -0.50 ± 0.45a | 5.99 ± 4.05a |
W-T++ | -0.62 ± 0.79a | -0.47 ± 0.43a | 9.92 ± 3.93a |
WT++ | -0.85 ± 0.72a | -0.46 ± 0.42a | 13.90 ± 6.17a |
W+T++ | -0.69 ± 0.75a | -0.47 ± 0.49a | 4.34 ± 3.61a |
图5 不同土层含水率与黑沙蒿各个解剖特征相关关系。Dc, 导管直径; Dh, 水力直径; Tc, 导管壁厚度; PA, 韧皮部筛管面积。
Fig. 5 Correlation between water content of different soil layers and individual anatomical features of Artemisia ordosica. Dc, conduit diameter; Dh, hydraulically weighted diameter of xylem conduits; Tc, conduit wall thickness; PA, lumen area of phloem sieve cells.
[1] | Anfodillo T, Olson ME (2021). Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority. Frontiers in Forests and Global Change, 4, 704670. DOI: 10.3389/ffgc.2021.704670. |
[2] | Anfodillo T, Petit G, Crivellaro A (2013). Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA Journal, 34, 352-364. |
[3] |
Beikircher B, Mayr S (2009). Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology, 29, 765-775.
DOI PMID |
[4] |
Blackman CJ, Gleason SM, Cook AM, Chang Y, Laws CA, Westoby M (2018). The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Annals of Botany, 122, 59-67.
DOI PMID |
[5] |
Bouda M, Huggett BA, Prats KA, Wason JW, Wilson JP, Brodersen CR (2022). Hydraulic failure as a primary driver of xylem network evolution in early vascular plants. Science, 378, 642-646.
DOI PMID |
[6] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment, 33, 1059-1069. |
[7] | Chang W, Stein ML, Wang J, Kotamarthi VR, Moyer EJ (2016). Changes in spatiotemporal precipitation patterns in changing climate conditions. Journal of Climate, 29, 8355-8376. |
[8] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[9] | Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Michele Holbrook N (2005). The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant, Cell & Environment, 28, 1082-1089. |
[10] |
Fonti P, von Arx G, García-González I, Eilmann B, Sass- Klaassen U, Gärtner H, Eckstein D (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 185, 42-53.
DOI PMID |
[11] | Gersony JT, Holbrook NM (2022). Phloem turgor is maintained during severe drought in Ricinus communis. Plant, Cell & Environment, 45, 2898-2905. |
[12] |
Hacke UG, Jacobsen AL, Brandon Pratt R, Maurel C, Lachenbruch B, Zwiazek J (2012). New research on plant-water relations examines the molecular, structural, and physiological mechanisms of plant responses to their environment. New Phytologist, 196, 345-348.
DOI PMID |
[13] | Hacke UG, Sperry JS, Pittermann J (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1, 31-41. |
[14] |
Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
PMID |
[15] | Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831-845. |
[16] |
He P, Gleason SM, Wright IJ, Weng E, Liu H, Zhu S, Lu M, Luo Q, Li R, Wu G, Yan E, Song Y, Mi X, Hao G, Reich PB, et al. (2020). Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 26, 1833-1841.
DOI PMID |
[17] |
Hölttä T, Mencuccini M, Nikinmaa E (2009). Linking phloem function to structure: analysis with a coupled xylem-phloem transport model. Journal of Theoretical Biology, 259, 325-337.
DOI PMID |
[18] | IPCC (2014). Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[19] | Jyske T, Hölttä T (2015). Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytologist, 205, 102-115. |
[20] |
Kiorapostolou N, Camarero JJ, Carrer M, Sterck F, Brigita B, Sangüesa-Barreda G, Petit G (2020). Scots pine trees react to drought by increasing xylem and phloem conductivities. Tree Physiology, 40, 774-781.
DOI PMID |
[21] | Kiorapostolou N, Galiano-Pérez L, von Arx G, Gessler A, Petit G (2018). Structural and anatomical responses of Pinus sylvestris and Tilia platyphyllos seedlings exposed to water shortage. Trees, 32, 1211-1218. |
[22] |
Kiorapostolou N, Petit G (2019). Similarities and differences in the balances between leaf, xylem and phloem structures in Fraxinus ornus along an environmental gradient. Tree Physiology, 39, 234-242.
DOI PMID |
[23] |
Klein T, Hartmann H (2018). Climate change drives tree mortality. Science, 362, 758. DOI: 10.1126/science.aav6508.
PMID |
[24] | Lazzarin M, Crivellaro A, Williams CB, Dawson TE, Mozzi G, Anfodillo T (2016). Tracheid and pit anatomy vary in tandem in a tall Sequoiadendron giganteum tree. IAWA Journal, 37, 172-185. |
[25] |
Lechthaler S, Turnbull TL, Gelmini Y, Pirotti F, Anfodillo T, Adams MA, Petit G (2019). A standardization method to disentangle environmental information from axial trends of xylem anatomical traits. Tree Physiology, 39, 495-502.
DOI PMID |
[26] | Lens F, Gleason SM, Bortolami G, Brodersen C, Delzon S, Jansen S (2022). Functional xylem characteristics associated with drought-induced embolism in angiosperms. New Phytologist, 236, 2019-2036. |
[27] |
Lintunen A, Paljakka T, Jyske T, Peltoniemi M, Sterck F, von Arx G, Cochard H, Copini P, Caldeira MC, Delzon S, Gebauer R, Grönlund L, Kiorapostolou N, Lechthaler S, Lobo-do-Vale R, et al. (2016). Osmolality and non- structural carbohydrate composition in the secondary phloem of trees across a latitudinal gradient in Europe. Frontiers in Plant Science, 7, 726. DOI: 10.3389/fpls.2016.00726.
PMID |
[28] |
Martínez-Sancho E, Dorado-Liñán I, Hacke UG, Seidel H, Menzel A (2017). Contrasting hydraulic architectures of scots pine and sessile oak at their southernmost distribution limits. Frontiers in Plant Science, 8, 598. DOI: 10.3389/fpls.2017.00598.
PMID |
[29] |
Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006). Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology, 87, 3175-3185.
PMID |
[30] |
McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B (2015). A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height. Tree Physiology, 35, 723-731.
DOI PMID |
[31] |
Mencuccini M, Hölttä T, Petit G, Magnani F (2007). Sanio’s laws revisited. Size-dependent changes in the xylem architecture of trees. Ecology Letters, 10, 1084-1093.
PMID |
[32] |
Nardini A, Pedà G, Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho- anatomical bases, carbon costs and ecological consequences. New Phytologist, 196, 788-798.
DOI PMID |
[33] |
Nardini A, Savi T, Losso A, Petit G, Pacilè S, Tromba G, Mayr S, Trifilò P, Lo Gullo MA, Salleo S (2017). X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytologist, 213, 1068-1075.
DOI PMID |
[34] | Ning ZY, Zhao XY, Li YL, Wang LL, Lian JE, Yang HL, Li YQ (2021). Plant community C:N:P stoichiometry is mediated by soil nutrients and plant functional groups during grassland desertification. Ecological Engineering, 162, 106179. DOI: 10.1016/j.ecoleng.2021.106179. |
[35] | Nola P, Bracco F, Assini S, Arx G, Castagneri D (2020). Xylem anatomy of Robinia pseudoacacia L. and Quercus robur L. is differently affected by climate in a temperate alluvial forest. Annals of Forest Science, 77, 1-16. |
[36] | Nolf M, Creek D, Duursma R, Holtum J, Mayr S, Choat B (2015). Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant, Cell & Environment, 38, 2652-2661. |
[37] |
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, León-Gómez C, Dawson T, Martínez JJ, Castorena M, Echeverría A, Espinosa CI, Fajardo A, Gazol A, Isnard S, et al. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115, 7551-7556.
DOI PMID |
[38] |
Petit G, Anfodillo T (2009). Plant physiology in theory and practice: an analysis of the WBE model for vascular plants. Journal of Theoretical Biology, 259, 1-4.
DOI PMID |
[39] | Petit G, Crivellaro A (2014). Comparative axial widening of phloem and xylem conduits in small woody plants. Trees, 28, 915-921. |
[40] |
Petit G, Pfautsch S, Anfodillo T, Adams MA (2010). The challenge of tree height in Eucalyptus regnans: When xylem tapering overcomes hydraulic resistance. New Phytologist, 187, 1146-1153.
DOI PMID |
[41] |
Petit G, Savi T, Consolini M, Anfodillo T, Nardini A (2016). Interplay of growth rate and xylem plasticity for optimal coordination of carbon and hydraulic economies in Fraxinus ornus trees. Tree Physiology, 36, 1310-1319.
PMID |
[42] |
Petit G, Zambonini D, Hesse BD, Häberle KH (2022). No xylem phenotypic plasticity in mature Picea abies and Fagus sylvatica trees after 5 years of throughfall precipitation exclusion. Global Change Biology, 28, 4668-4683.
DOI PMID |
[43] | Pfautsch S, Harbusch M, Wesolowski A, Smith R, MacFarlane C, Tjoelker MG, Reich PB, Adams MA (2016). Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters, 19, 240-248. |
[44] | Prendin A, Petit G, Fonti P, Rixen C, Dawes MA, von Arx G (2018). Axial xylem architecture of Larix decidua exposed to CO2 enrichment and soil warming at the tree line. Functional Ecology, 32, 273-287. |
[45] | Putnam AE, Broecker WS (2017). Human-induced changes in the distribution of rainfall. Science Advances, 3, e1600871. DOI: 10.1126/sciadv.1600871. |
[46] |
Savage JA, Beecher SD, Clerx L, Gersony JT, Knoblauch J, Losada JM, Jensen KH, Knoblauch M, Holbrook NM (2017). Maintenance of carbohydrate transport in tall trees. Nature Plants, 3, 965-972.
DOI PMID |
[47] |
Sevanto S (2014). Phloem transport and drought. Journal of Experimental Botany, 65, 1751-1759.
DOI PMID |
[48] |
Sevanto S (2018). Drought impacts on phloem transport. Current Opinion in Plant Biology, 43, 76-81.
DOI PMID |
[49] | Sevanto S, Ryan M, Dickman LT, Derome D, Patera A, Defraeye T, Pangle RE, Hudson PJ, Pockman WT (2018). Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two coexisting arid-zone coniferous trees? Plant, Cell & Environment, 41, 1551-1564. |
[50] |
Soriano D, Echeverría A, Anfodillo T, Rosell JA, Olson ME (2020). Hydraulic traits vary as the result of tip-to-base conduit widening in vascular plants. Journal of Experimental Botany, 71, 4232-4242.
DOI PMID |
[51] | Sperry JS, Stiller V, Hacke UG (2003). Xylem hydraulics and the soil-plant-atmosphere continuum: opportunities and unresolved issues. Agronomy Journal, 95, 1362-1370. |
[52] |
Venturas MD, Sperry JS, Hacke UG (2017). Plant xylem hydraulics: what we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59, 356-389.
DOI |
[53] | Yu MH, He YY, Zhang FC, Ding GD, Wang CY (2023). Effects of intra-year precipitation variability on shrub community productivity depend on the annual total rainfall. Plant and Soil, 487, 499-510. |
[54] | Zhu SD, Liu H, Xu QY, Cao K, Ye Q (2016). Are leaves more vulnerable to cavitation than branches. Functional Ecology, 30, 1740-1744. |
[55] | Zimmermann MH (1978). Hydraulic architecture of some diffuse-porous trees. Canadian Journal of Botany, 56, 2286-2295. |
[1] | 钱尼澎, 高浩鑫, 宋超杰, 董淳超, 刘琪璟. 长白山白桦径向生长季节动态及其对环境因子的响应[J]. 植物生态学报, 2024, 48(8): 1001-1010. |
[2] | 马琳, 巢林, 何雨莎, 李忠国, 王爱华, 刘晟源, 胡宝清, 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 888-902. |
[3] | 常晨晖, 朱彪, 朱江玲, 吉成均, 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 张文瑾, 佘维维, 秦树高, 乔艳桂, 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[5] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[6] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[7] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[8] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[9] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[10] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[11] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[12] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[13] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[14] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[15] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19