植物生态学报 ›› 2024, Vol. 48 ›› Issue (7): 888-902.DOI: 10.17521/cjpe.2024.0016 cstr: 32100.14.cjpe.2024.0016
所属专题: 植物功能性状
马琳1, 巢林1,2, 何雨莎1, 李忠国2, 王爱华1, 刘晟源3, 胡宝清1, 刘艳艳1,*()()
收稿日期:
2024-01-19
接受日期:
2024-05-06
出版日期:
2024-07-20
发布日期:
2024-05-16
通讯作者:
* 刘艳艳(基金资助:
MA Lin1, CHAO Lin1,2, HE Yu-Sha1, LI Zhong-Guo2, WANG Ai-Hua1, LIU Sheng-Yuan3, HU Bao-Qing1, LIU Yan-Yan1,*()()
Received:
2024-01-19
Accepted:
2024-05-06
Online:
2024-07-20
Published:
2024-05-16
Contact:
* LIU Yan-Yan(Supported by:
摘要:
在全球气候变化背景下, 干旱诱导木质部栓塞被认为是驱动树木死亡的主要因素。因此, 分析木质部栓塞抗性(用导水率损失50%的水势(P50)表示)的内在解剖决定因素对于理解其结构与功能间的机制具有重要意义, 为气候变化背景下植被恢复树种选择提供理论依据。该研究测定广西弄岗喀斯特森林内12个主要常绿树种的木质部导管直径、导管组指数、组分占比、纹孔形态和纹孔膜超微结构, 同时结合木质部储水特征(如木材密度和饱和含水量), 综合分析干旱诱导木质部栓塞抗性与其解剖结构以及储水特征之间的关系。结果显示: (1) P50与导管直径、密度、导管组指数以及组分占比间的相关性均不显著; (2) P50与纹孔形态特征以及纹孔膜厚度和纹孔腔深度等特征间的相关性均不显著; (3) P50与木材密度显著负相关, 与饱和含水量边缘显著正相关, 即木材密度较大、饱和含水量较低的树种表现出较强的栓塞抗性。研究结果表明, 运用单一的解剖结构来评估栓塞抗性是不全面的; 此外, 木质部水分存储能力与栓塞抗性之间的权衡关系对于深入理解喀斯特植物耐旱性的内在结构机制以及多元化的水分利用策略具有重要的生态学意义。
马琳, 巢林, 何雨莎, 李忠国, 王爱华, 刘晟源, 胡宝清, 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系. 植物生态学报, 2024, 48(7): 888-902. DOI: 10.17521/cjpe.2024.0016
MA Lin, CHAO Lin, HE Yu-Sha, LI Zhong-Guo, WANG Ai-Hua, LIU Sheng-Yuan, HU Bao-Qing, LIU Yan-Yan. Relationship of embolism resistance with xylem anatomical structure and related traits of 12 tree species in tropical karst seasonal rainforests. Chinese Journal of Plant Ecology, 2024, 48(7): 888-902. DOI: 10.17521/cjpe.2024.0016
图1 广西热带喀斯特季节性雨林研究地基本情况。A, 弄岗气候图。B, 弄岗峰丛深切圆洼地地貌。C, 样地内部。
Fig. 1 Basic situation of the study site in tropical karst seasonal rainforests in Guangxi. A, Climate of Nonggang. B, Landform of deeply incised karst peak cluster with circular depressions of Nonggang. C, Interior of the sample site.
树种 Species | 科 Family | 符号 Symbol | 最大导管长度 Maximum vessel length (cm) |
---|---|---|---|
蚬木 Excentrodendron tonkinense | 锦葵科 Malvaceae | 85.0 | |
闭花木 Cleistanthus sumatranus | 叶下珠科 Phyllanthaceae | 93.9 | |
网脉核果木 Drypetes perreticulata | 核果木科 Putranjivaceae | 53.5 | |
海南大风子 Hydnocarpus hainanensis | 青钟麻科 Achariaceae | 35.0 | |
割舌树 Walsura robusta | 楝科 Meliaceae | 71.6 | |
金丝李 Garcinia paucinervis | 藤黄科 Clusiaceae | 92.3 | |
茎花山柚 Champereia manillana | 山柚子科 Opiliaceae | 96.8 | |
三角车 Rinorea bengalensis | 堇菜科 Violaceae | 94.8 | |
细叶谷木 Memecylon scutellatum | 野牡丹科 Melastomataceae | 52.8 | |
淡黄金花茶 Camellia grandis | 山茶科 Theaceae | 115.7 | |
南方紫金牛 Ardisia thyrsiflora | 报春花科 Primulaceae | 79.0 | |
广西澄广花 Orophea polycarpa | 番荔枝科 Annonaceae | 72.6 |
表1 热带喀斯特季节性雨林12个树种的基本信息
Table 1 Basic information of 12 tree species in tropical karst seasonal rainforest
树种 Species | 科 Family | 符号 Symbol | 最大导管长度 Maximum vessel length (cm) |
---|---|---|---|
蚬木 Excentrodendron tonkinense | 锦葵科 Malvaceae | 85.0 | |
闭花木 Cleistanthus sumatranus | 叶下珠科 Phyllanthaceae | 93.9 | |
网脉核果木 Drypetes perreticulata | 核果木科 Putranjivaceae | 53.5 | |
海南大风子 Hydnocarpus hainanensis | 青钟麻科 Achariaceae | 35.0 | |
割舌树 Walsura robusta | 楝科 Meliaceae | 71.6 | |
金丝李 Garcinia paucinervis | 藤黄科 Clusiaceae | 92.3 | |
茎花山柚 Champereia manillana | 山柚子科 Opiliaceae | 96.8 | |
三角车 Rinorea bengalensis | 堇菜科 Violaceae | 94.8 | |
细叶谷木 Memecylon scutellatum | 野牡丹科 Melastomataceae | 52.8 | |
淡黄金花茶 Camellia grandis | 山茶科 Theaceae | 115.7 | |
南方紫金牛 Ardisia thyrsiflora | 报春花科 Primulaceae | 79.0 | |
广西澄广花 Orophea polycarpa | 番荔枝科 Annonaceae | 72.6 |
图2 热带喀斯特季节性雨林植物木质部导管组分与纹孔。A, 光学显微镜下的各组织细胞。紫色箭头是导管, 红色箭头是射线薄壁细胞, 绿色箭头是轴向薄壁细胞, 黄色框中是纤维。B, 扫描电子显微镜下的非覆物纹孔。红色实线代表纹孔膜, 虚线代表纹孔口。C, 扫描电子显微镜下的覆物纹孔。D, 透射电镜下的纹孔膜结构。蓝色箭头依次代表纹孔腔深度(Lp)和纹孔膜厚度(Tm)。
Fig. 2 Xylem tissue components and pits of plants in tropical karst seasonal rainforest. A, Various tissue cells under an optical microscope. Purple, red, green arrows and the yellow box represent the vessel, ray parenchyma, axial parenchyma, and fiber, respectively. B, Non-vestured pits under a scanning electron microscope. Red solid and dashed lines represent the pit membrane and the pit aperture, respectively. C, Vestured pits under a scanning electron microscope. D, Pit membrane under an transmission electron microscopy. Blue arrows are the depth of pit cavity (Lp) and the thickness of pit membrane (Tm).
性状缩写 Abbreviation | 含义 Definition | 单位 Unit |
---|---|---|
P50 | 木质部导水率损失50%时的水势 Water potential at 50% loss of xylem conductivity | MPa |
WD | 木材密度 Wood density | g∙cm-3 |
SWC | 饱和含水量 Saturated water content | - |
MVL | 最大导管长度 Maximum vessel length | cm |
Dh | 导管水力直径 Hydraulically weighted vessel diameter | μm |
VD | 导管密度 Vessel density | no∙mm-2 |
VWR | 导管壁加固系数 Vessel wall reinforcement coefficient | - |
Vs | 独立导管指数=独立导管数/导管总数 Solitary vessel index = number of single vessels / total number of vessels | - |
Vg | 导管组指数=导管成组数/总导管数 Vessel grouping index = total number of vessel groups / total number of vessels | - |
VF | 导管占比 Vessel fraction | % |
APF | 轴向薄壁细胞占比 Axial parenchyma fraction | % |
RPF | 射线薄壁细胞占比 Ray parenchyma fraction | % |
TPF | 总薄壁细胞占比 Xylem total parenchyma fraction | % |
FF | 纤维细胞占比 Fiber fraction | % |
Ap | 纹孔膜表面积 Pit membrane area | μm2 |
APA | 纹孔口表面积 Pit aperture surface area | μm2 |
Apf | 纹孔口形状=纹孔口径的短轴/长轴 Pit aperture shape = the shortest/longest axis of the pit aperture | - |
Aap | 纹孔口面积占导管壁面积的百分比 Percentage of total aperture area in unit intervessel wall area | % |
Fpf | 纹孔占据导管壁面积的百分比 Percentage of total pit area in unit intervessel wall | % |
Tm | 纹孔膜厚度 Thickness of intervessel pit membrane | nm |
Lp | 纹孔腔深度 Depth of pit chamber from membrane surface to inner edge of pit aperture | nm |
表2 热带喀斯特季节性雨林12个树种相关性状缩写、含义及单位
Table 2 Trait abbreviation, definition and unit of 12 tree species in tropical karst seasonal rainforest
性状缩写 Abbreviation | 含义 Definition | 单位 Unit |
---|---|---|
P50 | 木质部导水率损失50%时的水势 Water potential at 50% loss of xylem conductivity | MPa |
WD | 木材密度 Wood density | g∙cm-3 |
SWC | 饱和含水量 Saturated water content | - |
MVL | 最大导管长度 Maximum vessel length | cm |
Dh | 导管水力直径 Hydraulically weighted vessel diameter | μm |
VD | 导管密度 Vessel density | no∙mm-2 |
VWR | 导管壁加固系数 Vessel wall reinforcement coefficient | - |
Vs | 独立导管指数=独立导管数/导管总数 Solitary vessel index = number of single vessels / total number of vessels | - |
Vg | 导管组指数=导管成组数/总导管数 Vessel grouping index = total number of vessel groups / total number of vessels | - |
VF | 导管占比 Vessel fraction | % |
APF | 轴向薄壁细胞占比 Axial parenchyma fraction | % |
RPF | 射线薄壁细胞占比 Ray parenchyma fraction | % |
TPF | 总薄壁细胞占比 Xylem total parenchyma fraction | % |
FF | 纤维细胞占比 Fiber fraction | % |
Ap | 纹孔膜表面积 Pit membrane area | μm2 |
APA | 纹孔口表面积 Pit aperture surface area | μm2 |
Apf | 纹孔口形状=纹孔口径的短轴/长轴 Pit aperture shape = the shortest/longest axis of the pit aperture | - |
Aap | 纹孔口面积占导管壁面积的百分比 Percentage of total aperture area in unit intervessel wall area | % |
Fpf | 纹孔占据导管壁面积的百分比 Percentage of total pit area in unit intervessel wall | % |
Tm | 纹孔膜厚度 Thickness of intervessel pit membrane | nm |
Lp | 纹孔腔深度 Depth of pit chamber from membrane surface to inner edge of pit aperture | nm |
图3 热带喀斯特季节性雨林12个树种木质部性状与解剖结构间的相关性。性状缩写见表2。*, p < 0.05。
Fig. 3 Pearson correlation of xylem traits and anatomical traits of 12 tree species in tropical karst seasonal rainforest. Traits abbreviations are shown in Table 2. *, p < 0.05.
图4 热带喀斯特季节性雨林12个树种饱和含水量(SWC)、木材密度(WD)与木质部导水率丧失50%时的水势(P50)之间的关系。树种符号颜色同表1, 灰色区域为95%的置信区间。
Fig. 4 Relationship between saturated water content (SWC), wood density (WD) and water potential at 50% loss of xylem conductivity (P50) of 12 tree species in tropical karst seasonal rainforest. Symbol and colors are as in Table 1, and grey areas are the 95% confidence intervals.
图5 热带喀斯特季节性雨林12个树种木质部性状与解剖结构的主成分分析(PCA), 树种符号颜色同表1, 性状缩写同表2。
Fig. 5 Principal components analysis (PCA) of xylem traits and anatomical traits of 12 tree species in tropical karst seasonal rainforest. Symbol and colors as in Table 1. Traits abbreviations are shown in Table 2.
[1] | Anfodillo T, Olson ME (2021). Tree mortality: testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority. Frontiers in Forests and Global Change, 4, 704670. DOI: 10.3389/ffgc.2021.704670. |
[2] | Aritsara ANA, Ni MY, Wang YQ, Yan CL, Zeng WH, Song HQ, Cao KF, Zhu SD (2023). Tree growth is correlated with hydraulic efficiency and safety across 22 tree species in a subtropical karst forest. Tree Physiology, 43, 1307-1318. |
[3] | Bai XY, Zhang SR, Ran C, Wu LH, Du CC, Dai L, Yang XY, Li ZL, Xue YY, Long MK, Li MH, Yang S, Luo Q, Zhang XY, Shen XQ, et al. (2023). Ten problems and solutions for restoration of karst ecosystem in Southwest China. Bulletin of Chinese Academy of Sciences, 38, 1903-1914. |
[白晓永, 张思蕊, 冉晨, 吴路华, 杜朝超, 代磊, 杨兴艺, 李姿霖, 薛盈盈, 龙明康, 李明会, 杨姝, 罗青, 张小芸, 沈晓倩, 等 (2023). 我国西南喀斯特生态修复的十大问题与对策. 中国科学院院刊, 38, 1903-1914.] | |
[4] | Barbosa ACF, Pace MR, Witovisk L, Angyalossy V (2010). A new method to obtain good anatomical slides of heterogeneous plant parts. IAWA Journal, 31, 373-383. |
[5] |
Bittencourt PRL, Oliveira RS, da Costa ACL, Giles AL, Coughlin I, Costa PB, Bartholomew DC, Ferreira LV, Vasconcelos SS, Barros FV, Junior JAS, Oliveira AAR, Mencuccini M, Meir P, Rowland L (2020). Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Global Change Biology, 26, 3569-3584.
DOI PMID |
[6] |
Brodribb TJ, Cochard H (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149, 575-584.
DOI PMID |
[7] | Cai J, Tyree MT (2014). Measuring vessel length in vascular plants: Can we divine the truth? History, theory, methods, and contrasting models. Trees, 28, 643-655. |
[8] | Cao M, Wu C, Liu JC, Jiang YJ (2020). Increasing leaf δ13C values of woody plants in response to water stress induced by tunnel excavation in a karst trough valley: implication for improving water-use efficiency. Journal of Hydrology, 586, 124895. DOI: 10.1016/j.jhydrol.2020.124895. |
[9] | Carlquist S (1984). Vessel grouping in dicotyledon wood: significance and relationship to imperforate tracheary elements. Aliso, 10, 505-525. |
[10] | Carlquist S (2001). Comparative Wood Anatomy. Springer, Berlin. 448. |
[11] | Carlquist S (2009). Non-random vessel distribution in woods: patterns, modes, diversity, correlations. Aliso, 27, 39-58. |
[12] | Chen T, Huang ZH, Huang CM, Zhou QH, Wei H (2019). Habitat selection and utilization of langurs in Nonggang, Guangxi. Acta Ecologica Sinica, 39, 6908-6915. |
[陈婷, 黄中豪, 黄乘明, 周岐海, 韦华 (2019). 广西弄岗黑叶猴栖息地选择与利用. 生态学报, 3, 6908-6915.] | |
[13] | Chen Y, Maenpuen P, Zhang Y, Barai K, Katabuchi M, Gao H, Kaewkamol S, Tao L, Zhang J (2021). Quantifying vulnerability to embolism in tropical trees and lianas using five methods: Can discrepancies be explained by xylem structural traits?. New Phytologist, 229, 805-819. |
[14] | Cheng L, Li YL, Ning ZY, Yang HL, Zhan J, Yao B (2024). Response mechanisms of woody plants to drought stress: a review based on planthydraulic traits. Acta Ecologica Sinica, 44, 2688-2705. |
[程莉, 李玉霖, 宁志英, 杨红玲, 詹瑾, 姚博 (2024). 木本植物应对干旱胁迫的响应机制: 基于水力学性状视角. 生态学报, 44, 2688-2705.] | |
[15] | Christman MA, Sperry JS, Adler FR (2009). Testing the “rare pit” hypothesis for xylem cavitation resistance in three species of Acer. New Phytologist, 182, 664-674. |
[16] |
Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013). Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany, 64, 4779-4791.
DOI PMID |
[17] | Davis SD, Ewers FW, Sperry JS, Portwood KA, Crocker MC, Adams GC (2002). Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. American Journal of Botany, 89, 820-828. |
[18] | Delzon S, Douthe C, Sala A, Cochard H (2010). Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell & Environment, 33, 2101-2111. |
[19] | Dixon HH (1914). Transpiration and the ascent of sap in plants. Nature, 94, 558-559. |
[20] | Duursma R, Choat B (2017). Fitplc—An R package to fit hydraulic vulnerability curves. Journalof Plant Hydranulics, 4, e002. DOI: 10.20870/jph.2017.e002. |
[21] | Ewers FW, Fisher JB (1989). Techniques for measuring vessel lengths and diameters in stems of woody plants. American Journal of Botany, 76, 645-656. |
[22] | Fan DY, Jie SL, Liu CC, Zhang XY, Xu XW, Zhang SR, Xie ZQ (2011). The trade-off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area. Tree Physiology, 31, 865-877. |
[23] | Fichot R, Barigah TS, Chamaillard S, Le thiec D, Laurans F, Cochard H, Brignolas F (2010). Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids. Plant, Cell & Environment, 33, 1553-1568. |
[24] | Fu P, Jiang Y, Wang A, Brodribb TJ, Zhang J, Zhu S, Cao K (2012). Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals of Botany, 110, 189-199. |
[25] |
Geekiyanage N, Goodale UM, Cao K, Kitajima K (2019). Plant ecology of tropical and subtropical karst ecosystems. Biotropica, 51, 626-640.
DOI |
[26] | Guo Y, Xiang W, Wang B, Li D, Mallik AU, Chen HYH, Huang F, Ding T, Wen S, Lu S, Li X (2018). Partitioning beta diversity in a tropical karst seasonal rainforest in Southern China. Scientific Reports, 8, 1-12. |
[27] | Hacke UG (2015). Functional and Ecological Xylem Anatomy. Springer, Cham, Switzerland. |
[28] | Hacke UG, Jacobsen AL, Pratt RB (2009). Xylem function of arid-land shrubs from California, USA: an ecological and evolutionary analysis. Plant, Cell & Environment, 32, 1324-1333. |
[29] |
Hacke UG, Jansen S (2009). Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist, 182, 675-686.
DOI PMID |
[30] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[31] |
Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
PMID |
[32] | Hacke UG, Spicer R, Schreiber SG, Plavcová L (2017). An ecophysiological and developmental perspective on variation in vessel diameter. Plant, Cell & Environment, 40, 831-845. |
[33] | Huang DL, Li ZG, Xiang WX, Cao KF, Zhu SD (2022). Hydraulic safety predicts long-term growth of economical timber tree species planted in a degraded tropical karst area. Trees, 36, 1497-1505. |
[34] | Huang TL, Tang LX, Chen L, Zhang QY (2019). Root architecture and ecological adaptation strategy of three shrubs in karst area. Science of Soil and Water Conservation, 17(1), 89-94. |
[黄同丽, 唐丽霞, 陈龙, 张乔艳 (2019). 喀斯特区3种灌木根系构型及其生态适应策略. 中国水土保持科学, 17(1), 89-94.] | |
[35] | Huang YS, Wu WH, Jiang RH, Liu SY, Liu Y, Li XK (2013). Primary study on species diversity of plant in Nonggang National Nature Reserve of Guangxi. Guihaia, 33, 346-355. |
[黄俞淞, 吴望辉, 蒋日红, 刘晟源, 刘演, 李先琨 (2013). 广西弄岗国家级自然保护区植物物种多样性初步研究. 广西植物, 33, 346-355.] | |
[36] |
Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005). Do xylem fibers affect vessel cavitation resistance? Plant Physiology, 139, 546-556.
DOI PMID |
[37] | Jansen S, Baas P, Gasson P, Smets E (2003). Vestured pits: Do they promote safer water transport? International Journal of Plant Sciences, 164, 405-413. |
[38] |
Jansen S, Choat B, Pletsers A (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96, 409-419.
DOI PMID |
[39] |
Lechthaler S, Colangeli P, Gazzabin M, Anfodillo T (2019). Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany, 70, 6195-6201.
DOI PMID |
[40] | Lemoine D, Cochard H, Granier A (2002). Within crown variation in hydraulic architecture in beech (Fagus sylvatica L): evidence for a stomatal control of xylem embolism. Annals of Forest Science, 59, 19-27. |
[41] | Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723. |
[42] | Levionnois S, Jansen S, Wandji RT, Beauchêne J, Ziegler C, Coste S, Stahl C, Delzon S, Authier L, Heuret P (2021). Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees. New Phytologist, 229, 1453-1466. |
[43] |
Li R, Dang W, Cai J, Zhang SX, Jiang ZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. Chinese Journal of Plant Ecology, 40, 255-263.
DOI |
[李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报, 40, 255-263.]
DOI |
|
[44] |
Li R, Jiang ZM, Zhang SX, Cai J (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848.
DOI |
[李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.]
DOI |
|
[45] | Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ, Schmitt M, Schuldt B, Jansen S (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA Journal, 37, 152-171. |
[46] |
Liang X, Ye Q, Liu H, Brodribb TJ (2021). Wood density predicts mortality threshold for diverse trees. New Phytologist, 229, 3053-3057.
DOI PMID |
[47] | Liu CC, Liu YG, Fan DY, Guo K (2012). Plant drought tolerance assessment for re-vegetation in heterogeneous karst landscapes of southwestern China. Flora, 207, 30-38. |
[48] | Liu CC, Wang B, Guo K, Li XK, Hou MF, Liu YG (2021). Karst vegetation classification system of China. Guihaia, 41, 1618-1631. |
[刘长成, 王斌, 郭柯, 李先琨, 侯满福, 刘玉国 (2021). 中国喀斯特植被分类系统. 广西植物, 41, 1618-1631.] | |
[49] | Liu P, He WT, Wei HX, Hu SY, Zhou YM, Wang YT (2023). Hydraulic traits in Populus simonii Carr. at stands of categorized ages in a semi-arid area of western Liaoning, Northeast China. Forests, 14, 1759. DOI: 10.3390/f14091759. |
[50] |
Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788-803.
PMID |
[51] |
Martínez-Vilalta J, Mencuccini M, Alvarez X, Camacho J, Loepfe L, Piñol J (2012). Spatial distribution and packing of xylem conduits. American Journal of Botany, 99, 1189-1196.
DOI PMID |
[52] | Martins SCV, McAdam SAM, Deans RM, DaMatta FM, Brodribb TJ (2016). Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves. Plant, Cell & Environment, 39, 694-705. |
[53] |
McCulloh K, Sperry JS, Lachenbruch B, Meinzer FC, Reich PB, Voelker S (2010). Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests. New Phytologist, 186, 439-450.
DOI PMID |
[54] | McCulloh KA, Domec JC, Johnson DM, Smith DD, Meinzer FC (2019). A dynamic yet vulnerable pipeline: integration and coordination of hydraulic traits across whole plants. Plant, Cell & Environment, 42, 2789-2807. |
[55] |
McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A, Espirito-Santo F, Fisher R, Fontes CG, Galbraith D, Goodsman D, et al. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219, 851-869.
DOI PMID |
[56] |
Medeiros JS, Lens F, Maherali H, Jansen S (2019). Vestured pits and scalariform perforation plate morphology modify the relationships between angiosperm vessel diameter, climate and maximum plant height. New Phytologist, 221, 1802-1813.
DOI PMID |
[57] |
Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MAF, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng JM, Ziemińska K, Jansen S (2016). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytologist, 209, 1553-1565.
DOI PMID |
[58] | Ni MY, Aina A, Wang YQ, Huang DL, Xiang W, Wan CY, Zhu SD (2021). Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region. Chinese Journal of Plant Ecology, 45, 394-403. |
[倪鸣源, Aina A, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹 (2021). 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析. 植物生态学报, 45, 394-403.] | |
[59] | Ou ZL, Su ZM, Li XK (2004). Flora of karst vegetation in Guangxi. Guihaia, 4, 302-310. |
[欧祖兰, 苏宗明, 李先琨 (2004). 广西岩溶植被植物区系. 广西植物, 4, 302-310.] | |
[60] |
Pammenter NW, Vander Willigen C (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology, 18, 589-593.
PMID |
[61] | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167. |
[62] | Peters JMR, López R, Nolf M, Hutley LB, Wardlaw T, Cernusak LA, Choat B (2021). Living on the edge: a continental-scale assessment of forest vulnerability to drought. Global Change Biology, 27, 3620-3641. |
[63] |
Plavcová L, Hoch G, Morris H, Ghiasi S, Jansen S (2016). The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. American Journal of Botany, 103, 603-612.
DOI PMID |
[64] | Pratt RB, Castro V, Fickle JC, Madsen A, Jacobsen AL (2020). Factors controlling drought resistance in grapevine (Vitis vinifera, chardonnay): application of a new micro-CT method to assess functional embolism resistance. American Journal of Botany, 107, 618-627. |
[65] | Pratt RB, Jacobsen AL (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913. |
[66] |
Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798.
DOI PMID |
[67] |
Rosner S, Klein A, Müller U, Karlsson B (2007). Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure. Tree Physiology, 27, 1165-1178.
DOI PMID |
[68] |
Santiago LS, De Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Hérault B, Fortunel C, Bonal D (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 218, 1015-1024.
DOI PMID |
[69] | Scholz A, Klepsch M, Karimi Z, Jansen S (2013a). How to quantify conduits in wood? Frontiers in Plant Science, 4, 56. |
[70] | Scholz A, Rabaey D, Stein A, Cochard H, Smets E, Jansen S (2013b). The evolution and function of vessel and pit characters with respect to cavitation resistance across 10 Prunus species. Tree Physiology, 33, 684-694. |
[71] |
Sperry JS, Tyree MT (1988). Mechanism of water stress-induced xylem embolism. Plant Physiology, 88, 581-587.
DOI PMID |
[72] | Tan FS, Song HQ, Li ZG, Zhang QW, Zhu SD (2019). Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s southwest karst landscape, China. Chinese Journal of Plant Ecology, 43, 227-237. |
[谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹 (2019). 桂西南喀斯特季雨林木本植物的水力安全. 植物生态学报, 43, 227-237.]
DOI |
|
[73] |
Tixier A, Herbette S, Jansen S, Capron M, Tordjeman P, Cochard H, Badel E (2014). Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Annals of Botany, 114, 325-334.
DOI PMID |
[74] |
Trueba S, Delzon S, Isnard S, Lens F (2019). Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates. Journal of Experimental Botany, 70, 3227-3240.
DOI PMID |
[75] | Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, 335-360. |
[76] |
Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003). Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiology, 132, 1439-1447.
PMID |
[77] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. 5-25. |
[78] | Venturas MD, MacKinnon ED, Dario HL, Jacobsen AL, Pratt RB, Davis SD (2016). Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during california’s historic drought of 2014. PLoS ONE, 11, e0159145. DOI: 10.1371/journal.pone.0159145. |
[79] |
Venturas MD, Sperry JS, Hacke UG (2017). Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59, 356-389.
DOI |
[80] | Wan CY, Yu JR, Zhu SD (2023). Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species. Chinese Journal of Plant Ecology, 47, 1386-1397. |
[万春燕, 余俊瑞, 朱师丹 (2023). 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异. 植物生态学报, 47, 1386-1397.]
DOI |
|
[81] |
Wang B, Huang YS, Li XK, Xiang WS, Ding T, Huang FZ, Lu SH, Han WH, Wen SJ, He LJ (2014). Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, Southern China. Biodiversity Science, 22, 141-156.
DOI |
[王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 黄甫昭, 陆树华, 韩文衡, 文淑均, 何兰军 (2014). 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布. 生物多样性, 22, 141-156.] | |
[82] |
Wason JW, Anstreicher KS, Stephansky N, Huggett BA, Brodersen CR (2018). Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees. New Phytologist, 219, 77-88.
DOI PMID |
[83] | Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment, 36, 1938-1949. |
[84] | Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005). Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812. |
[85] | Zhang HX, Li S, Zhang SX, Xiong XY, Cai J (2013). Relationships between xylem vessel structure and embolism vulnerability in four Populus clones. Scientia Silvae Sinicae, 49(5), 54-61. |
[张海昕, 李姗, 张硕新, 熊晓艳, 蔡靖 (2013). 4个杨树无性系木质部导管结构与栓塞脆弱性的关系. 林业科学, 49(5), 54-61.] | |
[86] | Zhang QW, Zhu SD, Jansen S, Cao KF (2021). Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China. Functional Ecology, 35, 566-577. |
[87] | Zhao H, Huang J, Zhang YJ, Lu YJ, Jiang ZM, Cai J (2020). Influence of open vessel proportion on the types of embolism vulnerability curves. Scientia Silvae Sinicae, 56(5), 50-59. |
[赵涵, 黄瑾, 张友静, 鲁彦君, 姜在民, 蔡靖 (2020). 开口导管比例对栓塞脆弱性曲线类型的影响. 林业科学, 56(5), 50-59.] | |
[88] | Zhao H, Li YY, Liao SH, Jiang ZM, Cai J (2023). Further test of pneumatic method in constructing vulnerability curves using six tree species with contrasting xylem anatomy. Forests, 14, 293. DOI: 10.3390/f14020293. |
[89] | Zhu SD, Chen YJ, Fu PL, Cao KF (2017). Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiology, 37, 1469-1477. |
[90] | Ziemińska K, Butler DW, Gleason SM, Wright IJ, Westoby M (2013). Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS, 5, plt046. DOI: 10.1093/aobpla/plt046. |
[1] | 郑景明, 刘洪妤. 采用Strauss-Hardcore模型研究不同导管构型被子植物的导管空间分布特征[J]. 植物生态学报, 2021, 45(9): 1024-1032. |
[2] | 樊大勇, 谢宗强. 木质部导管空穴化研究中的几个热点问题[J]. 植物生态学报, 2004, 28(1): 126-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19