植物生态学报 ›› 2008, Vol. 32 ›› Issue (6): 1346-1355.DOI: 10.3773/j.issn.1005-264x.2008.06.015
收稿日期:
2008-04-07
接受日期:
2008-05-30
出版日期:
2008-04-07
发布日期:
2008-11-30
通讯作者:
郭柯
作者简介:
*(guoke@ibcas.ac.cn)基金资助:
WEI Ya-Fen1,2, GUO Ke1,*(), CHEN Ji-Quan1,3
Received:
2008-04-07
Accepted:
2008-05-30
Online:
2008-04-07
Published:
2008-11-30
Contact:
GUO Ke
摘要:
土壤水分是鄂尔多斯高原沙地油蒿(Artemisia ordosica)群落自发演替的重要驱动因子之一, 其主要来源是大气降水。由于降水后总有部分水分被植物和表层土壤截留, 随后很快蒸发, 降水未能全部用于补充植物根系层土壤水分。减少的这部分降水不仅受年降水总量的影响, 也与各次降水过程有密切的关系。因此, 降水格局如何影响土壤水分的补充是探讨降水有效性、降水与植物群落关系需要解决的理论问题。该文从生态系统尺度出发, 利用涡度相关技术, 综合考虑生态系统水文平衡的各个环节, 通过分析降雨、蒸散特征, 对沙地土壤水分状况、生长季内降雨对土壤水分的补充进行了研究。结果表明, 2006年全年降水总量229.4 mm, 以降雨为主。降雨、蒸散主要集中在5~10月, 有效降雨约153.9 mm, 降雨效率68.9%。各次降雨的雨量、历时和强度等特征变异较大, 降雨效率随雨量的增大而增大。降雨特征与其它生物和非生物因素相结合, 影响生态系统蒸散及降雨对根系层土壤水分补充的有效性。5.0 mm以下的降雨一般有增加空气湿度、降温的作用, 一定程度上可以缓解旱情; 5.0 mm以上的降雨才能有效补充土壤水分, 对植物群落长期稳定发展具有积极的意义。
魏雅芬, 郭柯, 陈吉泉. 降雨格局对库布齐沙漠土壤水分的补充效应. 植物生态学报, 2008, 32(6): 1346-1355. DOI: 10.3773/j.issn.1005-264x.2008.06.015
WEI Ya-Fen, GUO Ke, CHEN Ji-Quan. EFFECT OF PRECIPITATION PATTERN ON RECRUITMENT OF SOIL WATER IN KUBUQI DESERT, NORTHWESTERN CHINA. Chinese Journal of Plant Ecology, 2008, 32(6): 1346-1355. DOI: 10.3773/j.issn.1005-264x.2008.06.015
日期 Day of year | 降雨量Rainfall (mm) | 降雨历时 Lasting time (h) | 降雨强度 Rainfall intensity 平均值±标准误差 Mean±SE (mm·h-1) | 蒸散速率 Evaportrans piration rate 平均值±标准误差 Mean±SE (W·m-2) | 单次蒸散量 Evaportrans piration (mm) |
---|---|---|---|---|---|
128 | 5.6 | 23.0 | 1.0±0.3 | 41.0±3.2 | 4.1 |
131 | 21.9 | 29.0 | 1.6±0.4 | 38.2±2.8 | 4.3 |
145 | 9.9 | 5.0 | 2.0±0.3 | 66.1±5.3 | 7.8 |
157 | 7.6 | 6.5 | 5.1±1.4 | 61.5±4.3 | 6.0 |
170 | 0.9 | 2.0 | 0.5±0.1 | 32.3±2.7 | 3.2 |
174 | 0.7 | 0.5 | 1.4±0.0 | 35.1±4.2 | 3.3 |
183 | 29 | 3.5 | 8.3±1.2 | 89.3±6.8 | 8.0 |
189 | 0.6 | 3.0 | 0.2±0.0 | 53.9±4.2 | 5.4 |
195 | 27.1 | 30.0 | 3.6±0.6 | 96.4±7.2 | 10.5 |
198 | 0.5 | 2.0 | 0.3±0.0 | 48.5±4.2 | 5.0 |
203 | 1.1 | 15.5 | 1.1±0.0 | 58.5±5.4 | 4.1 |
205 | 7.4 | 7.0 | 2.5±0.6 | 76.8±6.1 | 7.6 |
208 | 1.0 | 1.0 | 1.0±0.4 | 74.6±8.0 | 2.3 |
209 | 7.5 | 1.0 | 7.5±3.0 | 97.4±8.9 | 5.8 |
211 | 1.4 | 3.0 | 0.5±0.1 | 86.3±9.4 | 3.2 |
212 | 0.2 | 0.5 | 0.4±0.0 | 64.1±5.2 | 7.5 |
217 | 8.9 | 4.5 | 3.6±1.0 | 95.2±8.0 | 6.8 |
220 | 18.6 | 16.5 | 2.2±0.5 | 88.3±7.0 | 11.7 |
223 | 14.6 | 9.0 | 1.2±0.2 | 77.3±5.3 | 10.5 |
231 | 36.9 | 8.0 | 6.7±1.2 | 82.9±5.8 | 10.7 |
239 | 0.9 | 1.0 | 0.9±0.3 | 48.1±5.2 | 5.0 |
244 | 1.6 | 9.5 | 0.4±0.0 | 44.3±5.5 | 3.4 |
246 | 3.0 | 2.5 | 1.2±0.2 | 49.4±5.2 | 3.5 |
248 | 1.2 | 0.5 | 2.4±0.0 | 33.8±2.7 | 3.2 |
256 | 6.4 | 9.0 | 0.8±0.1 | 42.5±3.6 | 5.7 |
263 | 1.1 | 5.5 | 0.4±0.1 | 28.7±3.7 | 2.6 |
267 | 4.9 | 5.0 | 1.0±0.0 | 38.3±4.0 | 3.4 |
280 | 0.1 | 0.5 | 0.2±0.0 | 9.4±1.9 | 1.3 |
297 | 4.7 | 7.0 | 0.7±0.1 | 20.3±2.4 | 2.1 |
均值±标准误差 Mean±SE | 7.8±1.8 | 7.6±1.4 | 2.0±0.4 | 58.0±4.6 | 5.5±0.5 |
总计 Sum | 225.3 | 163.5 |
表1 夏半年各次降雨及蒸散特征
Table 1 Rainfall pattern and evaportranspiration characteristics in summer
日期 Day of year | 降雨量Rainfall (mm) | 降雨历时 Lasting time (h) | 降雨强度 Rainfall intensity 平均值±标准误差 Mean±SE (mm·h-1) | 蒸散速率 Evaportrans piration rate 平均值±标准误差 Mean±SE (W·m-2) | 单次蒸散量 Evaportrans piration (mm) |
---|---|---|---|---|---|
128 | 5.6 | 23.0 | 1.0±0.3 | 41.0±3.2 | 4.1 |
131 | 21.9 | 29.0 | 1.6±0.4 | 38.2±2.8 | 4.3 |
145 | 9.9 | 5.0 | 2.0±0.3 | 66.1±5.3 | 7.8 |
157 | 7.6 | 6.5 | 5.1±1.4 | 61.5±4.3 | 6.0 |
170 | 0.9 | 2.0 | 0.5±0.1 | 32.3±2.7 | 3.2 |
174 | 0.7 | 0.5 | 1.4±0.0 | 35.1±4.2 | 3.3 |
183 | 29 | 3.5 | 8.3±1.2 | 89.3±6.8 | 8.0 |
189 | 0.6 | 3.0 | 0.2±0.0 | 53.9±4.2 | 5.4 |
195 | 27.1 | 30.0 | 3.6±0.6 | 96.4±7.2 | 10.5 |
198 | 0.5 | 2.0 | 0.3±0.0 | 48.5±4.2 | 5.0 |
203 | 1.1 | 15.5 | 1.1±0.0 | 58.5±5.4 | 4.1 |
205 | 7.4 | 7.0 | 2.5±0.6 | 76.8±6.1 | 7.6 |
208 | 1.0 | 1.0 | 1.0±0.4 | 74.6±8.0 | 2.3 |
209 | 7.5 | 1.0 | 7.5±3.0 | 97.4±8.9 | 5.8 |
211 | 1.4 | 3.0 | 0.5±0.1 | 86.3±9.4 | 3.2 |
212 | 0.2 | 0.5 | 0.4±0.0 | 64.1±5.2 | 7.5 |
217 | 8.9 | 4.5 | 3.6±1.0 | 95.2±8.0 | 6.8 |
220 | 18.6 | 16.5 | 2.2±0.5 | 88.3±7.0 | 11.7 |
223 | 14.6 | 9.0 | 1.2±0.2 | 77.3±5.3 | 10.5 |
231 | 36.9 | 8.0 | 6.7±1.2 | 82.9±5.8 | 10.7 |
239 | 0.9 | 1.0 | 0.9±0.3 | 48.1±5.2 | 5.0 |
244 | 1.6 | 9.5 | 0.4±0.0 | 44.3±5.5 | 3.4 |
246 | 3.0 | 2.5 | 1.2±0.2 | 49.4±5.2 | 3.5 |
248 | 1.2 | 0.5 | 2.4±0.0 | 33.8±2.7 | 3.2 |
256 | 6.4 | 9.0 | 0.8±0.1 | 42.5±3.6 | 5.7 |
263 | 1.1 | 5.5 | 0.4±0.1 | 28.7±3.7 | 2.6 |
267 | 4.9 | 5.0 | 1.0±0.0 | 38.3±4.0 | 3.4 |
280 | 0.1 | 0.5 | 0.2±0.0 | 9.4±1.9 | 1.3 |
297 | 4.7 | 7.0 | 0.7±0.1 | 20.3±2.4 | 2.1 |
均值±标准误差 Mean±SE | 7.8±1.8 | 7.6±1.4 | 2.0±0.4 | 58.0±4.6 | 5.5±0.5 |
总计 Sum | 225.3 | 163.5 |
降雨级 Class | 组别 Group | 空气温度 Air temperature (℃) | 湿度 Relative humidity (%) | 可利用能量 Available energy (W·m-2) | 蒸散速率 ET rate (W·m-2) | 土壤含水量 VWC (%) |
---|---|---|---|---|---|---|
Ⅰ | 1 | 22.4±0.2a | 48.4±0.7a | 70.1±5.3a | 48.3±1.9 | 12.1±0.0a |
2 | 17.3±0.2b | 85.4±3.8b | 54.0±5.5a | 38.3±21.6 | 12.5±0.1a | |
3 | 21.0±0.3c | 56.9±1.1c | 96.0±5.9b | 49.7±2.3 | 11.7±0.0b | |
Ⅱ | 1 | 18.6±0.1a | 57.3±0.5a | 78.3±5.3a | 39.6±2.1a | 11. 9±0.0a |
2 | 10.8±0.8b | 88.8±1.9b | 38.5±6.1b | 35.8±6.7ab | 11.7±0.0b | |
3 | 15.7±0.1c | 68.3±0.7c | 93.3±5.5a | 50.1±2.4b | 11.8±0.0b | |
Ⅲ | 1 | 21.3±0.4a | 49.0±1.0a | 80.1±8.2a | 36.1±2.3a | 10.7±0.0a |
2 | 14.0±0.4b | 85.3±1.4b | 43.0±4.1b | 33.0±4.2a | 11.1±0.1b | |
3 | 18.4±0.4c | 65.4±1.2c | 124.9±9.7c | 83.6±4.0b | 11.2±0.0b | |
Ⅳ | 1 | 20.9±0.3a | 58.1±0.9a | 76.3±6.8a | 54.6±4.1a | 10.6±0.0a |
2 | 15.9±0.4b | 90.6±0.6b | 43.7±4.6b | 49.6±4.6a | 12.0±0.2b | |
3 | 18.8±0.3c | 77.2±0.8c | 131.5±13.4c | 84.05±7.55b | 13.6±0.0c | |
Ⅴ | 1 | 27.2±0.2a | 40.4±0.5a | 60.7±6.1a | 44.9±2.5a | 10.8±0.0a |
2 | 21.4±0.4b | 78.0±2.0b | 155.7±24.2b | 143.4±19.2b | 13.2±0.2b | |
3 | 20.3±0.3c | 82.7±0.8b | 70.6±9.0a | 69.1±4.7c | 14.4±0.2c |
表2 雨前、雨中、雨后气象因子及土壤含水量方差分析
Table 2 One-way ANOVA for meteorological factors and soil volumetric water content (VWC) before and after rainfall events
降雨级 Class | 组别 Group | 空气温度 Air temperature (℃) | 湿度 Relative humidity (%) | 可利用能量 Available energy (W·m-2) | 蒸散速率 ET rate (W·m-2) | 土壤含水量 VWC (%) |
---|---|---|---|---|---|---|
Ⅰ | 1 | 22.4±0.2a | 48.4±0.7a | 70.1±5.3a | 48.3±1.9 | 12.1±0.0a |
2 | 17.3±0.2b | 85.4±3.8b | 54.0±5.5a | 38.3±21.6 | 12.5±0.1a | |
3 | 21.0±0.3c | 56.9±1.1c | 96.0±5.9b | 49.7±2.3 | 11.7±0.0b | |
Ⅱ | 1 | 18.6±0.1a | 57.3±0.5a | 78.3±5.3a | 39.6±2.1a | 11. 9±0.0a |
2 | 10.8±0.8b | 88.8±1.9b | 38.5±6.1b | 35.8±6.7ab | 11.7±0.0b | |
3 | 15.7±0.1c | 68.3±0.7c | 93.3±5.5a | 50.1±2.4b | 11.8±0.0b | |
Ⅲ | 1 | 21.3±0.4a | 49.0±1.0a | 80.1±8.2a | 36.1±2.3a | 10.7±0.0a |
2 | 14.0±0.4b | 85.3±1.4b | 43.0±4.1b | 33.0±4.2a | 11.1±0.1b | |
3 | 18.4±0.4c | 65.4±1.2c | 124.9±9.7c | 83.6±4.0b | 11.2±0.0b | |
Ⅳ | 1 | 20.9±0.3a | 58.1±0.9a | 76.3±6.8a | 54.6±4.1a | 10.6±0.0a |
2 | 15.9±0.4b | 90.6±0.6b | 43.7±4.6b | 49.6±4.6a | 12.0±0.2b | |
3 | 18.8±0.3c | 77.2±0.8c | 131.5±13.4c | 84.05±7.55b | 13.6±0.0c | |
Ⅴ | 1 | 27.2±0.2a | 40.4±0.5a | 60.7±6.1a | 44.9±2.5a | 10.8±0.0a |
2 | 21.4±0.4b | 78.0±2.0b | 155.7±24.2b | 143.4±19.2b | 13.2±0.2b | |
3 | 20.3±0.3c | 82.7±0.8b | 70.6±9.0a | 69.1±4.7c | 14.4±0.2c |
图2 各级降雨前后蒸散日动态 (a)、(b)、(c)、(d)、(e) 分别为Ⅰ~Ⅴ级降雨过程, 用竖线分隔为雨前、雨中、雨后3个阶段。图中横坐标为日期, 坐标值所在位置表示当天“0:00”时。图中下部的曲线表示蒸发过程, 参考坐标在图左侧。上部的柱状线表示雨量, 参考坐标在右侧 Fig. (a), (b), (c), (d) and (e) showedⅠ-Ⅴ class rainfall events. There are three phases divided by a vertical line in each figure. The horizontal axis is day of year. The numeric values indicate midnight of the day. The lines in the bottom of the figure represent evaportranspiration dynamics, corresponding to the left vertical axis. The bars show rainfall amount of the moment, corresponding to the right vertical axis
Fig. 2 Diurnal dynamics of evaportranspiration rate before and after rainfall events
降雨级 Class | 降雨效率 Mean efficiency (%) | 最小 Min (%) | 最大 Max (%) |
---|---|---|---|
II | 41.6±13.8 | 4.0 | 62.5 |
III | 54.9±8.4 | 27.0 | 88.2 |
IV | 68.6±7.1 | 58.2 | 82.1 |
V | 82.0±2.2 | 78.4 | 86.1 |
表3 各级降雨量对根系层土壤水分的补充效率
Table 3 Efficiency of different classes of rainfall to recruitment of root layer soil water
降雨级 Class | 降雨效率 Mean efficiency (%) | 最小 Min (%) | 最大 Max (%) |
---|---|---|---|
II | 41.6±13.8 | 4.0 | 62.5 |
III | 54.9±8.4 | 27.0 | 88.2 |
IV | 68.6±7.1 | 58.2 | 82.1 |
V | 82.0±2.2 | 78.4 | 86.1 |
[1] | Breshears D, Barnes F (1999). Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland/forest continuum: a unified conceptual model. Landscape Ecology, 14,465-478. |
[2] | Buhe C, Cubasch U, Lin YH, Ji LR (2003). The change of north China climate in transient simulations using the IPCC SRES A2 and B2 scenarios with a coupled atmosphere-ocean general circulation model. Advances in Atmospheric Sciences, 20,755-766. |
[3] | Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107,43-69. |
[4] | French KH, Binley A, Kharkhordin I, Kulessa B, Krylov SS (2006). Cold regions hydrogeophysics: physical characterization and monitoring. Applied Hydrogeophysics, 71,195-232. |
[5] | Guo K (郭柯) (2000). Cyclic succession of Artemisia ordosica krasch community in the Mu Us sandy grassland. Acta Phytoecologica Sinica(植物生态学报), 24,243-247. (in Chinese with English abstract) |
[6] | Guo K (郭柯), Dong XJ (董学军), Liu ZM (刘志茂) (2000). Characteristics of soil moisture content on sand dunes in Mu Us sandy grassland: Why Artemisia odorsica declines on old fixed sand dunes. Acta Phytoecologica Sinica (植物生态学报), 24,275-279. (in Chinese with English abstract) |
[7] | Hu XL (胡小龙), Zhang WJ (张文军), Fan WY (樊文颖) (1996). Studies on the characteristics of soil moisture under Artemisia community in different coverage in the Maowusu sandy land. Inner Mongolia Forestry Science and Technology (内蒙古林业科学), 3/4,32-37. (in Chinese with English abstract) |
[8] | Liu JS (刘峻杉), Gao Q (高琼), Guo K (郭柯) (2008). Actual evaporation of bare sand dunes in Maowusu, China and its response to precipitation pattern. Journal of Plant Ecology (Chinese Version)(植物生态学报), 32,123-132. (in Chinese with English abstract) |
[9] | Liu XZ (刘贤赵), Kang SZ (康绍忠) (1999). Some developments and review of rainfall- infiltration-runoff yield research. Bulletin of Soil and Water Conservation (水土保持通报), 19(2),57-62. (in Chinese with English abstract) |
[10] |
Loik ME, Breshears DD, Lauenroth WK, Belnap J (2004). A multi-scale perspective of water pulses in dryland ecosystems: climatology and ecohydrology of the western USA.. Oecologia, 141,269-281.
URL PMID |
[11] | Nagler PL, Glenn EP, Kim H, Emmerich W, Scott RL, Huxman TE, Huete AR (2007). Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. Journal of Arid Environments, 70,443-462. |
[12] | Ribolzi O, Hermida M, Karambiri H, Delhoume JP, Thiombiano L (2006). Effects of aeolian processes on water infiltration in sandy Sahelian rangeland in Burkina Faso. Catena, 67,145-154. |
[13] | Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002). Energy balance closure at Fluxnet sites. Agricultural and Forest Meteorology, 113,223-243. |
[14] | Xu K (许昆) (2004). Analysis on relationship between the precipitation and ground water replenishment. Ground Water (地下水), 26(4),57-62. (in Chinese with English abstract) |
[15] | Xu YL, Zhang Y, Lin ED, Lin WT, Dong WJ, Jones R, Hassell D, Wilson S (2006). Analyses on the climate change responses over China under SRES B2 scenario using PRECIS. Chinese Science Bulletin, 51,2260-2267. |
[16] | Yang BZ (杨宝珍), Dong XJ (董学军), Gao Q (高琼) (1994). A study on the transpiration and water deficit regime of the Artemisia ordosica community. Acta Phytoecologica Sinica(植物生态学报), 18,161-170. (in Chinese with English abstract) |
[17] | Yang J (杨劼), Gao QZ (高清竹), Wu LJ (乌力吉), Tian QS (田青松), Liang JS (梁津松) (1999). Relationship of transpiration characteristics of Artemisia ordosica and environmental factors in Kubuqi desert. Acta Scientiarum Natrualium University NeiMongol (内蒙古大学学报(自然科学版)), 30,372-376. (in Chinese with English abstract) |
[18] | Zhang DK (张德魁), Wang JH (王继和), Ma QL (马全林) (2007). Summary of Artemisia ordosica studies. Pratacultural Science (草业科学), 24,30-35. (in Chinese with English abstract) |
[19] | Zhang XS (张新时) (1994). Principles and optimal models for development of Maowusu sandy grassland. Acta Phytoecologica Sinica (植物生态学报), 18,1-16. (in Chinese with English abstract) |
[20] | Zhou JL (周金龙), Dong XG (董新光), Wang B (王斌) (2002). Research on precipitation recharge of phreatic water in Xinjiang plain area. Northwest Water Resources and Water Engineering (西北水资源与水工程), 13(4),10-14. (in Chinese with English abstract) |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[4] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[5] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[6] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[7] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[8] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[9] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[10] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[11] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[12] | 张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠. 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023, 47(2): 275-288. |
[13] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[14] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[15] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19