植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1213-1222.DOI: 10.17521/cjpe.2023.0176 cstr: 32100.14.cjpe.2023.0176
陈思佚1, 唐燕2, 何腾1, 江永康2, 杜光源1,*()
收稿日期:
2023-06-20
接受日期:
2023-09-11
出版日期:
2024-09-20
发布日期:
2023-09-26
通讯作者:
杜光源(
CHEN Si-Yi1, TANG Yan2, HE Teng1, JIANG Yong-Kang2, DU Guang-Yuan1,*()
Received:
2023-06-20
Accepted:
2023-09-11
Online:
2024-09-20
Published:
2023-09-26
Contact:
DU Guang-Yuan (摘要:
近年来, 气候变化引起秦岭森林树木死亡率升高和脆弱性加剧, 对秦岭的生物多样性和生态功能产生不利影响。该研究以秦岭森林的9个典型树种: 红桦(Betula albosinensis)、刺榛(Corylus ferox)、青榨槭(Acer davidii)、五尖槭(Acer maximowiczii)、麻栎(Quercus acutissima)、槲栎(Quercus aliena)、华山松(Pinus armandii)、云杉(Picea asperata)和华北落叶松(Larix principis-rupprechtii)为研究对象, 解析各树种木质部栓塞特性, 评估水力安全风险, 揭示秦岭森林退化的植物水力学机制, 为秦岭生态保护提供科学依据。该研究采用Cochard离心机法和Sperry离心机法测量不同水势下枝条的比导水率损失百分比(PLC), 建立木质部栓塞脆弱性曲线(VCs); 采用低压液流计法测定最大木质部比导水率(Kmax); 采用压力室法原位测定正午木质部水势(Pmd), 在此基础上解析各树种的水力安全边际(HSM), 评估水力失效风险。结果表明: 在9个树种中, 针叶树种华山松、云杉、华北落叶松和阔叶树种青榨槭具有“s”形栓塞脆弱性曲线, 而阔叶树种红桦、刺榛、麻栎、槲栎和五尖槭则为“r”形栓塞脆弱性曲线; 其PLC为50%时的木质部水势(P50)的大小关系为: 云杉<华北落叶松<华山松<青榨槭<五尖槭<红桦<槲栎<刺榛<麻栎; HSM的大小关系为: 麻栎<刺榛<红桦<华北落叶松<槲栎<五尖槭<青榨槭<华山松<云杉, 其中, 红桦、刺榛和麻栎的HSM接近0, 具有极高的水力失效风险。总体来看, 阔叶树种比针叶树种具有更高的水分运输效率, 但是其抗栓塞能力较差, 面临着更大的水力失效风险。
陈思佚, 唐燕, 何腾, 江永康, 杜光源. 秦岭9个树种的木质部栓塞特性与水力安全风险. 植物生态学报, 2024, 48(9): 1213-1222. DOI: 10.17521/cjpe.2023.0176
CHEN Si-Yi, TANG Yan, HE Teng, JIANG Yong-Kang, DU Guang-Yuan. Xylem embolism characteristics and hydraulic safety risks of nine tree species in Qinling Mountains. Chinese Journal of Plant Ecology, 2024, 48(9): 1213-1222. DOI: 10.17521/cjpe.2023.0176
图1 秦岭9个树种栓塞脆弱性曲线(平均值±标准差)。Ad, 青榨槭; Am, 五尖槭; Ba, 红桦; Cf, 刺榛; Lp, 华北落叶松; Par, 华山松; Pas, 云杉; Qac, 麻栎; Qal, 槲栎。
Fig. 1 Vulnerability curves of nine tree species in Qinling Mountains (mean ± SD). Ad, Acer davidii; Am, Acer maximowiczii; Ba, Betula albosinensis; Cf, Corylus ferox; Lp, Larix principis-rupprechtii; Par, Pinus armandii; Pas, Picea asperata; Qac, Quercus acutissima; Qal, Quercus aliena.
树种 Tree species | P12 (MPa) | P50 (MPa) | P88 (MPa) |
---|---|---|---|
麻栎 Quercus acutissima | -0.268 ± 0.098B | -0.788 ± 0.089E | -1.399 ± 0.227G |
刺榛 Corylus ferox | -0.259 ± 0.035B | -1.089 ± 0.054D | -1.893 ± 0.273EF |
槲栎 Quercus aliena | -0.769 ± 0.157A | -1.389 ± 0.021D | -2.236 ± 0.345E |
红桦 Betula albosinensis | -0.264 ± 0.082B | -1.554 ± 0.421D | -1.842 ± 0.083EF |
五尖槭 Acer maximowiczii | -0.267 ± 0.100B | -1.925 ± 0.213C | -2.765 ± 0.237D |
青榨槭 Acer davidii | -0.365 ± 0.088B | -3.050 ± 0.191B | -3.914 ± 0.144C |
华山松 Pinus armandii | -0.231 ± 0.078B | -3.283 ± 0.124B | -3.889 ± 0.331C |
云杉 Picea asperata | -0.282 ± 0.207B | -4.178 ± 0.281A | -5.290 ± 0.311A |
华北落叶松 Larix principis-rupprechtii | -0.276 ± 0.097B | -3.419 ± 0.178B | -4.568 ± 0.390B |
表1 秦岭9个树种的木质部水势特征值(平均值±标准差)
Table 1 Xylem water potential eigenvalues of nine species of trees in Qinling Mountains (mean ± SD)
树种 Tree species | P12 (MPa) | P50 (MPa) | P88 (MPa) |
---|---|---|---|
麻栎 Quercus acutissima | -0.268 ± 0.098B | -0.788 ± 0.089E | -1.399 ± 0.227G |
刺榛 Corylus ferox | -0.259 ± 0.035B | -1.089 ± 0.054D | -1.893 ± 0.273EF |
槲栎 Quercus aliena | -0.769 ± 0.157A | -1.389 ± 0.021D | -2.236 ± 0.345E |
红桦 Betula albosinensis | -0.264 ± 0.082B | -1.554 ± 0.421D | -1.842 ± 0.083EF |
五尖槭 Acer maximowiczii | -0.267 ± 0.100B | -1.925 ± 0.213C | -2.765 ± 0.237D |
青榨槭 Acer davidii | -0.365 ± 0.088B | -3.050 ± 0.191B | -3.914 ± 0.144C |
华山松 Pinus armandii | -0.231 ± 0.078B | -3.283 ± 0.124B | -3.889 ± 0.331C |
云杉 Picea asperata | -0.282 ± 0.207B | -4.178 ± 0.281A | -5.290 ± 0.311A |
华北落叶松 Larix principis-rupprechtii | -0.276 ± 0.097B | -3.419 ± 0.178B | -4.568 ± 0.390B |
图2 秦岭针叶树种木质部导水率损失的百分数达到50%时的木质部水势(P50)和阔叶树种木质部导水率损失的百分数达到88%时的木质部水势(P88)的差异(平均值±标准差)。不同大写字母表示针叶树种和阔叶树种的栓塞阈值之间的差异显著(p < 0.05)。
Fig. 2 Differences between water potentials at which 50% of hydraulic conductivity is lost (P50) of conifers and water potentials at which 88% of hydraulic conductivity is lost (P88) of broadleafs in Qinling Mountains (mean ± SD). Different uppercase letters indicate significant differences in embolism thresholds of conifers and broadleafs (p < 0.05).
图3 秦岭9个树种在自然状态下的木质部比导水率(Ks) (平均值±标准差)。Ad, 青榨槭; Am, 五尖槭; Ba, 红桦; Cf, 刺榛; Lp, 华北落叶松; Par, 华山松; Pas, 云杉; Qac, 麻栎; Qal, 槲栎。Ks预测值基于测量的Pmd (表2)和栓塞脆弱性曲线(图1)。不同大写字母表示树种间在自然状态下的木质部比导水率之间的差异显著(p < 0.05)。
Fig. 3 Natural xylem specific hydraulic conductivity of nine species of trees in Qinling Mountains (Ks) (mean ± SD). Ad, Acer davidii; Am, Acer maximowiczii; Ba, Betula albosinensis; Cf, Corylus ferox; Lp, Larix principis-rupprechtii; Par, Pinus armandii; Pas, Picea asperata; Qac, Quercus acutissima; Qal, Quercus aliena. The predicted Ks was calculated from measured Pmd (Table 2) and the vulnerability curves (Fig. 1). Different uppercase letters indicate significant differences in natural xylem specific hydraulic conductivity of nine species (p < 0.05).
树种 Tree species | Pmd (MPa) | HSM (MPa) | Kmax (kg·MPa-1·s-1·m-1) | Ks (kg·MPa-1·s-1·m-1) |
---|---|---|---|---|
麻栎 Quercus acutissima | -0.688 ± 0.122E | -0.110 ± 0.054E | 4.637 ± 0.842A | 2.660 ± 0.483B |
刺榛 Corylus ferox | -1.111 ± 0.103D | -0.013 ± 0.096E | 1.240 ± 0.371D | 0.610 ± 0.183D |
红桦 Betula albosinensis | -1.367 ± 0.111C | 0.001 ± 0.421E | 1.810 ± 0.572C | 1.092 ± 0.345C |
华北落叶松 Larix principis-rupprechtii | -2.478 ± 0.227A | 0.887 ± 0.178D | 0.197 ± 0.077F | 0.131 ± 0.051E |
槲栎 Quercus aliena | -0.470 ± 0.050F | 0.934 ± 0.021CD | 3.293 ± 0.648B | 3.142 ± 0.618A |
五尖槭 Acer maximowiczii | -0.792 ± 0.183E | 1.216 ± 0.213CD | 0.694 ± 0.358DEF | 0.462 ± 0.238DE |
青榨槭 Acer davidii | -1.737 ± 0.087B | 1.315 ± 0.191C | 1.054 ± 0.529DE | 0.721 ± 0.362D |
华山松 Pinus armandii | -1.277 ± 0.078CD | 1.850 ± 0.124B | 0.541 ± 0.081EF | 0.391 ± 0.059DE |
云杉 Picea asperata | -1.438 ± 0.301C | 2.969 ± 0.426A | 0.261 ± 0.132F | 0.194 ± 0.098E |
表2 秦岭9个树种的水势特征和比导水率(平均值±标准差)
Table 2 Xylem water potential characteristics and xylem-specific hydraulic conductivity of nine tree species in Qinling Mountains (mean ± SD)
树种 Tree species | Pmd (MPa) | HSM (MPa) | Kmax (kg·MPa-1·s-1·m-1) | Ks (kg·MPa-1·s-1·m-1) |
---|---|---|---|---|
麻栎 Quercus acutissima | -0.688 ± 0.122E | -0.110 ± 0.054E | 4.637 ± 0.842A | 2.660 ± 0.483B |
刺榛 Corylus ferox | -1.111 ± 0.103D | -0.013 ± 0.096E | 1.240 ± 0.371D | 0.610 ± 0.183D |
红桦 Betula albosinensis | -1.367 ± 0.111C | 0.001 ± 0.421E | 1.810 ± 0.572C | 1.092 ± 0.345C |
华北落叶松 Larix principis-rupprechtii | -2.478 ± 0.227A | 0.887 ± 0.178D | 0.197 ± 0.077F | 0.131 ± 0.051E |
槲栎 Quercus aliena | -0.470 ± 0.050F | 0.934 ± 0.021CD | 3.293 ± 0.648B | 3.142 ± 0.618A |
五尖槭 Acer maximowiczii | -0.792 ± 0.183E | 1.216 ± 0.213CD | 0.694 ± 0.358DEF | 0.462 ± 0.238DE |
青榨槭 Acer davidii | -1.737 ± 0.087B | 1.315 ± 0.191C | 1.054 ± 0.529DE | 0.721 ± 0.362D |
华山松 Pinus armandii | -1.277 ± 0.078CD | 1.850 ± 0.124B | 0.541 ± 0.081EF | 0.391 ± 0.059DE |
云杉 Picea asperata | -1.438 ± 0.301C | 2.969 ± 0.426A | 0.261 ± 0.132F | 0.194 ± 0.098E |
图4 秦岭9个树种的水力安全边际(HSM) (平均值±标准差)。Ad, 青榨槭; Am, 五尖槭; Ba, 红桦; Cf, 刺榛; Lp, 华北落叶松; Par, 华山松; Pas, 云杉; Qac, 麻栎; Qal, 槲栎。
Fig. 4 Hydraulic safety margin of nine species of trees in Qinling Mountains (HSM) (mean ± SD). Ad, Acer davidii; Am, Acer maximowiczii; Ba, Betula albosinensis; Cf, Corylus ferox; Lp, Larix principis-rupprechtii; Par, Pinus armandii; Pas, Picea asperata; Qac, Quercus acutissima; Qal, Quercus aliena.
[1] | Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, et al.(2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology & Evolution, 1, 1285-1291. |
[2] | An R, Meng F, Yin PX, Du GY (2018). Comparison of methods for detecting vulnerability of xylem embolism in Robinia pseudoacacia. Chinese Journal of Plant Ecology, 42, 1113-1119. |
[安瑞, 孟凤, 尹鹏先, 杜光源 (2018). 刺槐木质部栓塞脆弱性检测的方法比较. 植物生态学报, 42, 1113-1119.]
DOI |
|
[3] | Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012a). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233-237. |
[4] | Anderegg WRL, Kane JM, Anderegg LDL (2012b). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36. |
[5] |
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
DOI PMID |
[6] | Anderegg WRL, Konings AG, Trugman AT, Yu K, Bowling DR, Gabbitas R, Karp DS, Pacala S, Sperry JS, Sulman BN, Zenes N (2018). Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature, 561, 538-541. |
[7] | Bhaskar R, Ackerly DD (2006). Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum, 127, 353-359. |
[8] |
Brodribb TJ, Cochard H (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149, 575-584.
DOI PMID |
[9] | Brum M, Teodoro GS, Abrahão A, Oliveira RS (2017). Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot. Plant and Soil, 420, 467-480. |
[10] |
Chitra-Tarak R, Xu C, Aguilar S, Anderson-Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD, Kueppers LM, Kunert N, Kupers SJ, McDowell NG, Newman BD, et al.(2021). Hydraulically- vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytologist, 231, 1798-1813.
DOI PMID |
[11] | Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE (2018). Triggers of tree mortality under drought. Nature, 558, 531-539. |
[12] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al.(2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[13] | Cochard H (2002). A technique for measuring xylem hydraulic conductance under high negative pressures. Plant, Cell & Environment, 25, 815-819. |
[14] |
Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013). Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany, 64, 4779-4791.
DOI PMID |
[15] | Dai YX, Wang L, Wan XC (2015). Progress on researches of drought-induced tree mortality mechanisms. Chinese Journal of Ecology, 34, 3228-3236. |
[代永欣, 王林, 万贤崇 (2015). 干旱导致树木死亡机制研究进展. 生态学杂志, 34, 3228-3236.] | |
[16] |
Delzon S, Cochard H (2014). Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. New Phytologist, 203, 355-358.
DOI PMID |
[17] |
Dulamsuren C, Abilova SB, Bektayeva M, Eldarov M, Schuldt B, Leuschner C, Hauck M (2019). Hydraulic architecture and vulnerability to drought-induced embolism in southern boreal tree species of Inner Asia. Tree Physiology, 39, 463-473.
DOI PMID |
[18] | Gao HZ, Huang X, Su H, Qiao PF, Jiang ZM, Shen YR, Cai J (2022). Structure and dynamic characteristics of Betula albo-sinensis populations in two regions in the Qinling Mountains of northwestern China. Journal of Beijing Forestry University, 44(9), 12-20. |
[高洪治, 黄欣, 宿昊, 乔鹏飞, 姜在民, 申耀荣, 蔡靖 (2022). 秦岭两地区红桦种群结构与动态特征. 北京林业大学学报, 44(9), 12-20.] | |
[19] |
Hartmann H, Moura CF, Anderegg WRL, Ruehr NK, Salmon Y, Allen CD, Arndt SK, Breshears DD, Davi H, Galbraith D, Ruthrof KX, Wunder J, Adams HD, Bloemen J, Cailleret M, et al.(2018). Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 218, 15-28.
DOI PMID |
[20] | Hu HF, Wang SP, Guo ZD, Xu B, Fang JY (2015). The stage- classified matrix models project a significant increase in biomass carbon stocks in China’s forests between 2005 and 2050. Scientific Reports, 5, 11203. DOI: 10.1038/srep11203. |
[21] | Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723. |
[22] | Maherali H, Pockman WT, Jackson RB (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199. |
[23] |
Martínez-Vilalta J, Mencuccini M, Alvarez X, Camacho J, Loepfe L, Piñol J (2012). Spatial distribution and packing of xylem conduits. American Journal of Botany, 99, 1189-1196.
DOI PMID |
[24] |
Martin-StPaul N, Delzon S, Cochard H (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437-1447.
DOI PMID |
[25] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought. New Phytologist, 178, 719-739.
DOI PMID |
[26] | Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009). Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23, 922-930. |
[27] |
Osonubi O, Davies WJ (1981). Root growth and water relations of oak and birch seedlings. Oecologia, 51, 343-350.
DOI PMID |
[28] | Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, et al.(2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. |
[29] | Pockman WT, Sperry JS, O’Leary JW (1995). Sustained and significant negative water pressure in xylem. Nature, 378, 715-716. |
[30] | Rowland L, da Costa ACL, Galbraith DR, O’liveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528, 119-122. |
[31] | Ruehr NK, Law BE, Quandt D, Williams M (2014). Effects of heat and drought on carbon and water dynamics in a regenerating semi-arid pine forest: a combined experimental and modeling approach. Biogeosciences, 11, 4139-4156. |
[32] | Solomon DS, Zhang L, Brann TB, Larrick DS (2003). Mortality patterns following spruce budworm infestation in unprotected spruce-fir forests in Maine. Northern Journal of Applied Forestry, 20, 148-153. |
[33] | Sperry JS, Donnelly JR, Tyree MT (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35-40. |
[34] | Swann ALS, Hoffman FM, Koven CD, Randerson JT (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences of the United States of America, 113, 10019-10024. |
[35] |
Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013). Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 33, 672-683.
DOI PMID |
[36] | van der Sande MT, Poorter L, Schnitzer SA, Engelbrecht BMJ, Markesteijn L (2019). The hydraulic efficiency-safety trade-off differs between lianas and trees. Ecology, 100, e02666. DOI: 10.1002/ecy.2666. |
[37] |
Venturas MD, Sperry JS, Hacke UG (2017). Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59, 356-389.
DOI |
[38] | Wheeler TD, Stroock AD (2008). The transpiration of water at negative pressures in a synthetic tree. Nature, 455, 208-212. |
[39] | Yang FM, Wang NA, Wang SG, Niu ZM (2015). Spatial and temporal patterns of precipitation in the West Qinling over the past 60 years. Arid Land Geography, 38, 867-879. |
[杨凤梅, 王乃昂, 王式功, 牛震敏 (2015). 近 60 a来西秦岭及周边地区降水的分布格局. 干旱区地理, 38, 867-879.] | |
[40] |
Young DJN, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM (2017). Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 20, 78-86.
DOI PMID |
[41] |
Zhang LW, Song CY, Yan JP (2011). Spatio-temporal trends of annual extreme temperature in northern and southern Qinling Mountains. Scientia Geographica Sinica, 31, 1007-1011.
DOI |
[张立伟, 宋春英, 延军平 (2011). 秦岭南北年极端气温的时空变化趋势研究. 地理科学, 31, 1007-1011.] | |
[42] | Zhang XW, Li Y, Fang YM (2014). Geographical distribution and prediction of potential rangers of Quercus acutissima in China. Acta Botanica Boreali-Occidentalia Sinica, 34, 1685-1692. |
[张兴旺, 李垚, 方炎明 (2014). 麻栎在中国的地理分布及潜在分布区预测. 西北植物学报, 34, 1685-1692.] | |
[43] | Zhang YP, Xu JL, Su W, Zhao XP, Xu XL (2019). Spring precipitation effects on formation of first row of earlywood vessels in Quercus variabilis at Qinling Mountain (China). Trees, 33, 457-468. |
[44] | Zhao F, Zhang BP, Zhu LQ, Yao YH, Cui YP, Liu JJ (2019). Spectra structures of altitudinal belts and their significance for determining the boundary between warm temperate and subtropical zones in the Qinling—Daba Mountains. Acta Geographica Sinica, 74, 889-901. |
[赵芳, 张百平, 朱连奇, 姚永慧, 崔耀平, 刘俊杰 (2019). 秦巴山地垂直带谱结构的空间分异与暖温带—亚热带界线问题. 地理学报, 74, 889-901.]
DOI |
|
[45] |
Zhao M, Running SW (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943.
DOI PMID |
[46] | Zhao T, Bai HY, Li JQ, Ma Q, Wang PT (2023). Changes of vegetation potential distribution pattern in the Qinling Mountains in Shaanxi Province in the context of climate warming. Acta Ecologica Sinica, 43, 1843-1852. |
[赵婷, 白红英, 李九全, 马琪, 王鹏涛 (2023). 气候变暖背景下秦岭陕西段植被潜在分布区格局变化. 生态学报, 43, 1843-1852.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[3] | 安瑞, 孟凤, 尹鹏先, 杜光源. 刺槐木质部栓塞脆弱性检测的方法比较[J]. 植物生态学报, 2018, 42(11): 1113-1119. |
[4] | 李荣, 党维, 蔡靖, 张硕新, 姜在民. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263. |
[5] | 李荣, 姜在民, 张硕新, 蔡靖. 木本植物木质部栓塞脆弱性研究新进展[J]. 植物生态学报, 2015, 39(8): 838-848. |
[6] | 徐新武, 樊大勇, 谢宗强, 张守仁, 张想英. 不同冲洗液对毛白杨和油松枝条水力导度和抵抗空穴化能力测定值的影响[J]. 植物生态学报, 2009, 33(1): 150-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19