植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1180-1191.DOI: 10.17521/cjpe.2023.0266 cstr: 32100.14.cjpe.2023.0266
吴风燕1,2, 吴永胜1,2,*(), 陈晓涵1,2, 冯骥1,2, 卢丽媛1,2, 查斯娜1,2, 王超宇1,2, 孟元发2, 尹强2
收稿日期:
2023-09-14
接受日期:
2024-05-27
出版日期:
2024-09-20
发布日期:
2024-06-11
通讯作者:
吴永胜 (基金资助:
WU Feng-Yan1,2, WU Yong-Sheng1,2,*(), CHEN Xiao-Han1,2, FENG Ji1,2, LU Li-Yuan1,2, CHASINA 1,2, WANG Chao-Yu1,2, MENG Yuan-Fa2, YIN Qiang2
Received:
2023-09-14
Accepted:
2024-05-27
Online:
2024-09-20
Published:
2024-06-11
Contact:
WU Yong-Sheng (Supported by:
摘要:
为评价固沙植物北沙柳(Salix psammophila)、黑沙蒿(Artemisia ordosica)和柠条锦鸡儿(Caragana korshinskii)在不同水热梯度上的适应性, 分别在鄂尔多斯市达拉特旗、乌审旗和榆林市靖边县境内设置固定样地, 测定了上述3种固沙植物7-9月叶片碳稳定同位素组成(δ13C)和水分利用效率(WUE), 分析不同类型固沙植物WUE与气温、降雨量和干旱指数(AI)之间的关系。结果表明: (1)柠条锦鸡儿叶片δ13C和WUE最高, 北沙柳次之, 黑沙蒿最低, 且7月份3种固沙植物叶片δ13C和WUE均显著高于8和9月份; (2)北沙柳叶片δ13C和WUE随着AI的增加无显著差异, 而AI最高的达拉特旗, 柠条锦鸡儿和黑沙蒿叶片δ13C和WUE显著高于乌审旗和靖边县; 多因素方差分析结果表明, 固沙植物种类及其所处空间差异对植物叶片δ13C和WUE的影响最大; (3)线性回归分析结果表明, 除柠条锦鸡儿WUE对气温变化无显著响应外, 气温、降雨量和AI均显著影响了植物WUE。其中, 柠条锦鸡儿WUE对AI变化的响应最为敏感, 北沙柳对气温变化的响应更为敏感, 而黑沙蒿WUE对上述环境因子变化的响应较平稳。
吴风燕, 吴永胜, 陈晓涵, 冯骥, 卢丽媛, 查斯娜, 王超宇, 孟元发, 尹强. 鄂尔多斯高原3种固沙灌木水分利用效率的时空变化特征. 植物生态学报, 2024, 48(9): 1180-1191. DOI: 10.17521/cjpe.2023.0266
WU Feng-Yan, WU Yong-Sheng, CHEN Xiao-Han, FENG Ji, LU Li-Yuan, CHASINA , WANG Chao-Yu, MENG Yuan-Fa, YIN Qiang. Spatial-temporal variation of water use efficiency in three species of sand-fixing shrubs on the Ordos Plateau. Chinese Journal of Plant Ecology, 2024, 48(9): 1180-1191. DOI: 10.17521/cjpe.2023.0266
特征 Characteristic | 达拉特旗 Dalad Banner | 乌审旗 Uxin Banner | 靖边县 Jingbian County |
---|---|---|---|
地理坐标 Geographical coordinate | 110.00° E, 40.32° N | 110.33° E, 38.97° N | 108.88° E, 37.75° N |
气候类型 Climate type | 温带大陆干旱与半干旱区季风气候 Temperate continental arid and semi-arid monsoon climate (Zhang & Wang, | 温带大陆半干旱区季风性气候 Temperate continental semi-arid monsoon climate (Zhang, | 温带大陆半干旱区季风性气候 Temperate continental semi-arid monsoon climate (Wu et al., |
平均海拔 Average altitude (m) | 1 100 | 1 300 | 1 350 |
年降水量 Average annual precipitation (mm) | 311.4 (Wu et al., | 331.5 (Zhang, | 394.7 (Wu et al., |
年蒸发量 Average annual evaporation (mm) | 2 600 (Tang et al., | 2 500 (Zhang, | 2 482 (Chen et al., |
年平均气温 Average annual air temperature (℃) | 6.1 | 6.8 | 7.8 |
年均干旱指数(平均值±标准误) Average annual aridity index (mean ± SE) | 10.18 ± 4.10 | 8.75 ± 3.30 | 7.22 ± 2.02 |
土壤类型 Soil type | 风沙土、栗钙土、盐碱土、黏土等 Sandy soil, chestnut soil, saline soil, clay, et al. (Guo, | 栗钙土、草甸土、风沙土等 chestnut soil, meadow soil, sandy soil, et al. (Zhang, | 栗钙土、风沙土、棕钙土、灰钙土、黑垆土等 Chestnut soil, sandy soil, brown calcium soil, calcium grey soil, black clay, et al. (He, |
野生植物 Natural plants | 小叶杨、北沙柳、山竹岩黄耆、沙枣、沙棘、黑沙蒿、塔落岩黄耆、沙蓬、狗尾草等 Populus simonii, Salix psammophila, Hedysarum fruticosum, Elaeagnus angustifolia, Hippophae rhamnoides, Artemisia ordosica, Hedysarum fruticosum var. laeve, Agriophyllum pungens, Setaria viridis, et al. (Zhang, | 沙棘、猪毛菜、香青兰、柽柳、黑沙蒿、北沙柳、短花针茅、中间锦鸡儿、小叶锦鸡儿、草麻黄等 Hippophae rhamnoides, Salsola collina, Dracocephalum moldavica, Tamarix ramosissima, Artemisia ordosica, Salix psammophila, Stipa breviflora, Caragana liouana, C. microphylla, Ephedra sinica et al. (Zhang, | 黑沙蒿、短花针茅、沙蓬、软毛虫实、早园竹、猪毛菜、柠条锦鸡儿、山竹岩黄耆、沙拐枣、沙鞭等 Artemisia ordosica, Stipa breviflora, Agriophyllum squarrosum, Corispermum puberulum, Phyllostachys propinqua, Salsola collina, Caragana korshinskii, Hedysarum fruticosum, Calligonum mongolicum, Psammochloa villosa, et al. (Wu et al., |
表1 鄂尔多斯高原研究区自然地理基本特征
Table 1 Characteristics of the natural environment in the study area on the Ordos Plateau
特征 Characteristic | 达拉特旗 Dalad Banner | 乌审旗 Uxin Banner | 靖边县 Jingbian County |
---|---|---|---|
地理坐标 Geographical coordinate | 110.00° E, 40.32° N | 110.33° E, 38.97° N | 108.88° E, 37.75° N |
气候类型 Climate type | 温带大陆干旱与半干旱区季风气候 Temperate continental arid and semi-arid monsoon climate (Zhang & Wang, | 温带大陆半干旱区季风性气候 Temperate continental semi-arid monsoon climate (Zhang, | 温带大陆半干旱区季风性气候 Temperate continental semi-arid monsoon climate (Wu et al., |
平均海拔 Average altitude (m) | 1 100 | 1 300 | 1 350 |
年降水量 Average annual precipitation (mm) | 311.4 (Wu et al., | 331.5 (Zhang, | 394.7 (Wu et al., |
年蒸发量 Average annual evaporation (mm) | 2 600 (Tang et al., | 2 500 (Zhang, | 2 482 (Chen et al., |
年平均气温 Average annual air temperature (℃) | 6.1 | 6.8 | 7.8 |
年均干旱指数(平均值±标准误) Average annual aridity index (mean ± SE) | 10.18 ± 4.10 | 8.75 ± 3.30 | 7.22 ± 2.02 |
土壤类型 Soil type | 风沙土、栗钙土、盐碱土、黏土等 Sandy soil, chestnut soil, saline soil, clay, et al. (Guo, | 栗钙土、草甸土、风沙土等 chestnut soil, meadow soil, sandy soil, et al. (Zhang, | 栗钙土、风沙土、棕钙土、灰钙土、黑垆土等 Chestnut soil, sandy soil, brown calcium soil, calcium grey soil, black clay, et al. (He, |
野生植物 Natural plants | 小叶杨、北沙柳、山竹岩黄耆、沙枣、沙棘、黑沙蒿、塔落岩黄耆、沙蓬、狗尾草等 Populus simonii, Salix psammophila, Hedysarum fruticosum, Elaeagnus angustifolia, Hippophae rhamnoides, Artemisia ordosica, Hedysarum fruticosum var. laeve, Agriophyllum pungens, Setaria viridis, et al. (Zhang, | 沙棘、猪毛菜、香青兰、柽柳、黑沙蒿、北沙柳、短花针茅、中间锦鸡儿、小叶锦鸡儿、草麻黄等 Hippophae rhamnoides, Salsola collina, Dracocephalum moldavica, Tamarix ramosissima, Artemisia ordosica, Salix psammophila, Stipa breviflora, Caragana liouana, C. microphylla, Ephedra sinica et al. (Zhang, | 黑沙蒿、短花针茅、沙蓬、软毛虫实、早园竹、猪毛菜、柠条锦鸡儿、山竹岩黄耆、沙拐枣、沙鞭等 Artemisia ordosica, Stipa breviflora, Agriophyllum squarrosum, Corispermum puberulum, Phyllostachys propinqua, Salsola collina, Caragana korshinskii, Hedysarum fruticosum, Calligonum mongolicum, Psammochloa villosa, et al. (Wu et al., |
样地 Site | 物种 Species | δ13C (‰) | WUE (μmol∙mol-1) | ||||
---|---|---|---|---|---|---|---|
平均值±标准误 Mean ± SE | 最大值 Max | 最小值 Min | 平均值±标准误 Mean ± SE | 最大值 Max | 最小值 Min | ||
达拉特旗 Dalad Banner | 北沙柳 Salix psammophila | -27.14 ± 0.29 | -24.20 | -29.10 | 73.44 ± 2.59 | 99.95 | 55.74 |
黑沙蒿 Artemisia ordosica | -28.16 ± 0.27 | -25.92 | -29.48 | 64.27 ± 2.43 | 84.47 | 52.30 | |
柠条锦鸡儿 Caragana korshinskii | -25.57 ± 0.28 | -24.74 | -26.91 | 87.60 ± 2.51 | 95.16 | 75.56 | |
乌审旗 Uxin Banner | 北沙柳 Salix psammophila | -27.11 ± 0.51 | -25.51 | -28.34 | 73.74 ± 4.59 | 88.23 | 62.67 |
黑沙蒿 Artemisia ordosica | -28.73 ± 0.27 | -27.51 | -29.60 | 59.10 ± 2.42 | 70.16 | 51.26 | |
柠条锦鸡儿 Caragana korshinskii | -27.41 ± 0.47 | -25.82 | -29.02 | 71.03 ± 4.27 | 85.36 | 56.48 | |
靖边县 Jingbian County | 北沙柳 Salix psammophila | -27.69 ± 0.15 | -26.98 | -29.32 | 68.53 ± 1.37 | 74.98 | 61.85 |
黑沙蒿 Artemisia ordosica | -28.76 ± 0.13 | -27.97 | -29.46 | 58.80 ± 1.53 | 65.99 | 52.97 | |
柠条锦鸡儿 Caragana korshinskii | -27.92 ± 0.56 | -24.21 | -29.70 | 66.41 ± 5.16 | 79.89 | 50.30 |
表2 鄂尔多斯高原3种固沙灌木的碳稳定同位素组成(δ13C)和水分利用效率(WUE)
Table 2 Carbon stable isotope composition (δ13C) and water use efficiency (WUE) in three species of sand-fixing shrubs on the Ordos Plateau
样地 Site | 物种 Species | δ13C (‰) | WUE (μmol∙mol-1) | ||||
---|---|---|---|---|---|---|---|
平均值±标准误 Mean ± SE | 最大值 Max | 最小值 Min | 平均值±标准误 Mean ± SE | 最大值 Max | 最小值 Min | ||
达拉特旗 Dalad Banner | 北沙柳 Salix psammophila | -27.14 ± 0.29 | -24.20 | -29.10 | 73.44 ± 2.59 | 99.95 | 55.74 |
黑沙蒿 Artemisia ordosica | -28.16 ± 0.27 | -25.92 | -29.48 | 64.27 ± 2.43 | 84.47 | 52.30 | |
柠条锦鸡儿 Caragana korshinskii | -25.57 ± 0.28 | -24.74 | -26.91 | 87.60 ± 2.51 | 95.16 | 75.56 | |
乌审旗 Uxin Banner | 北沙柳 Salix psammophila | -27.11 ± 0.51 | -25.51 | -28.34 | 73.74 ± 4.59 | 88.23 | 62.67 |
黑沙蒿 Artemisia ordosica | -28.73 ± 0.27 | -27.51 | -29.60 | 59.10 ± 2.42 | 70.16 | 51.26 | |
柠条锦鸡儿 Caragana korshinskii | -27.41 ± 0.47 | -25.82 | -29.02 | 71.03 ± 4.27 | 85.36 | 56.48 | |
靖边县 Jingbian County | 北沙柳 Salix psammophila | -27.69 ± 0.15 | -26.98 | -29.32 | 68.53 ± 1.37 | 74.98 | 61.85 |
黑沙蒿 Artemisia ordosica | -28.76 ± 0.13 | -27.97 | -29.46 | 58.80 ± 1.53 | 65.99 | 52.97 | |
柠条锦鸡儿 Caragana korshinskii | -27.92 ± 0.56 | -24.21 | -29.70 | 66.41 ± 5.16 | 79.89 | 50.30 |
图1 鄂尔多斯高原3种固沙灌木叶片碳稳定同位素组成(δ13C)在时间(A)和地点(B)上的变化特征(平均值±标准误)。不同大写字母表示不同物种间δ13C差异显著(p < 0.05), 不同小写字母表示同种固沙植物δ13C在不同月份或不同地点间差异显著(p < 0.05)。
Fig. 1 Characteristics of temporal (A) and sites (B) in leaf carbon stable isotope composition (δ13C) in three species of sand-fixing shrubs on the Ordos Plateau (mean ± SE). Different uppercase letters represent significant differences in δ13C between different species (p < 0.05), and different lowercase letters represent significant differences in δ13C of the same sand-fixing plant in different months or different spaces (p < 0.05).
影响因素 Influencing factor | df | δ13C | 影响因素分布值 Distribution values of influencing factor (%) | |
---|---|---|---|---|
F | p | |||
月份 Month | 2 | 7.041 | 0.001 | 9.00 |
地点 Region | 2 | 13.479 | <0.001 | 16.14 |
物种 Species | 2 | 35.514 | <0.001 | 25.23 |
月份×地点 Month × region | 4 | 2.126 | 0.079 | 1.20 |
月份×物种 Month × species | 4 | 2.781 | 0.028 | 1.56 |
地点×物种 Region × species | 4 | 22.679 | <0.001 | 12.70 |
月份×地点×物种 Month × region × species | 8 | 3.894 | <0.001 | 4.40 |
表3 物种、月份、地点对固沙植物叶片碳稳定同位素组成(δ13C)影响的多因素方差分析结果
Table 3 Multivariate ANOVA results of the effect of species, months and region on the carbon stable isotope composition (δ13C) of sand-fixing plant leaves
影响因素 Influencing factor | df | δ13C | 影响因素分布值 Distribution values of influencing factor (%) | |
---|---|---|---|---|
F | p | |||
月份 Month | 2 | 7.041 | 0.001 | 9.00 |
地点 Region | 2 | 13.479 | <0.001 | 16.14 |
物种 Species | 2 | 35.514 | <0.001 | 25.23 |
月份×地点 Month × region | 4 | 2.126 | 0.079 | 1.20 |
月份×物种 Month × species | 4 | 2.781 | 0.028 | 1.56 |
地点×物种 Region × species | 4 | 22.679 | <0.001 | 12.70 |
月份×地点×物种 Month × region × species | 8 | 3.894 | <0.001 | 4.40 |
图2 固沙植物水分利用效率(WUE)在不同时间(A)和空间(B)上的变化特征(平均值±标准误)。不同大写字母表示不同物种间WUE差异显著(p < 0.05), 不同小写字母表示同种固沙植物WUE在不同月份或不同地点间差异显著(p < 0.05)。
Fig. 2 Characteristics of temporal (A) and spatial (B) changes in water use efficiency (WUE) of different types of sand-fixing plants (mean ± SE). Different uppercase letters represent significant differences in WUE between different species (p < 0.05), and different lowercase letters represent significant differences in WUE of the same sand-fixing plant in different months or different spaces (p < 0.05).
影响因素 Influencing factor | df | WUE | 影响因素分布值 Distribution values of influencing factor (%) | |
---|---|---|---|---|
F | p | |||
月份 Month | 2 | 7.120 | 0.001 | 9.00 |
地点 Region | 2 | 13.627 | <0.001 | 16.15 |
物种 Species | 2 | 35.816 | <0.001 | 25.26 |
月份×地点 Month × region | 4 | 2.129 | 0.079 | 1.20 |
月份×物种 Month × species | 4 | 2.772 | 0.028 | 1.55 |
地点×物种 Region × species | 4 | 22.667 | <0.001 | 12.70 |
月份×地点×物种 Month × region × species | 8 | 3.892 | <0.001 | 4.35 |
表4 物种、月份、地点对固沙植物叶片水分利用效率(WUE)影响的多因素方差分析结果
Table 4 Multivariate ANOVA results of the effects of species, months and region on water use efficiency (WUE) of sand-fixing plant leaves
影响因素 Influencing factor | df | WUE | 影响因素分布值 Distribution values of influencing factor (%) | |
---|---|---|---|---|
F | p | |||
月份 Month | 2 | 7.120 | 0.001 | 9.00 |
地点 Region | 2 | 13.627 | <0.001 | 16.15 |
物种 Species | 2 | 35.816 | <0.001 | 25.26 |
月份×地点 Month × region | 4 | 2.129 | 0.079 | 1.20 |
月份×物种 Month × species | 4 | 2.772 | 0.028 | 1.55 |
地点×物种 Region × species | 4 | 22.667 | <0.001 | 12.70 |
月份×地点×物种 Month × region × species | 8 | 3.892 | <0.001 | 4.35 |
图3 不同类型固沙植物水分利用效率(WUE)与气温、降雨量和干旱指数(AI)之间的线性回归分析结果。A、D、G, 柠条锦鸡儿。B、E、H, 北沙柳。C、F、I, 黑沙蒿。
Fig. 3 Results of linear regression analysis between water use efficiency (WUE) and air temperature, precipitation and aridity index (AI) of different types of sand fixation plants. A, D, G, Caragana korshinskii. B, E, H, Salix psammophila. C, F, I, Artemisia ordosica.
[1] | An H, An Y (2011). Soil moisture dynamics and water balance of Salix psammophila shrubs in south edge of Mu Us Sandy Land. Journal of Applied Ecology, 22, 2247-2252. |
[安慧, 安钰 (2011). 毛乌素沙地南缘沙柳灌丛土壤水分及水量平衡. 应用生态学报, 22, 2247-2252.] | |
[2] | Bchir A, Escalona JM, Gallé A, Hernández-Montes E, Tortosa I, Braham M, Medrano H (2016). Carbon isotope discrimination (δ13C) as an indicator of vine water status and water use efficiency (WUE): looking for the most representative sample and sampling time. Agricultural Water Management, 167, 11-20. |
[3] | Cao JR (2021). Water Use Efficiency and Its Influencing Mechanism of Soil and Water Conservation Forest Vegetation in Hilly and Gully Region of Northern Shaanxi. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. |
[曹佳锐(2021). 陕北丘陵沟壑区水土保持林植被水分利用效率及其影响机制. 硕士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[4] | Cao SK, Feng Q, Si JH, Chang ZQ, Xi HY, Zhuo MC (2009a). Summary on research methods of water use efficiency in plant. Journal of Desert Research, 29, 853-858. |
[曹生奎, 冯起, 司建华, 常宗强, 席海洋, 卓玛错 (2009a). 植物水分利用效率研究方法综述. 中国沙漠, 29, 853-858.] | |
[5] | Cao SK, Feng Q, Si JH, Chang ZQ, Zhuo MC, Xi HY, Su YH (2009b). Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 29, 3882-3892. |
[曹生奎, 冯起, 司建华, 常宗强, 卓玛错, 席海洋, 苏永红 (2009b). 植物叶片水分利用效率研究综述. 生态学报, 29, 3882-3892.] | |
[6] | Chen J, Chang S, Anyia AO (2011). The physiology and stability of leaf carbon isotope discrimination as a measure of water use efficiency in barley on the Canadian prairies. Journal of Agronomy and Crop Science, 197, 1-11. |
[7] | Chen XH, Wu YS, Hai CX (2023). Effects of surface dew under different types on sand-fixing shurbs in the southern margin of Mu Us Sandy Land, Northern China. Journal of Desert Research, 43(1), 83-95. |
[陈晓涵, 吴永胜, 海春兴 (2023). 毛乌素沙地南缘固沙灌丛下地表凝结水特征. 中国沙漠, 43(1), 83-95.]
DOI |
|
[8] | Cowan IR (1982). Regulation of water use in relation to carbon gain in higher plants//Lange OL, Nobel PS, Osmond CB, Ziegler H. Physiological Plant Ecology II. Springer, Berlin. 589-613. |
[9] | Cui QL, He YL, Li ZS (2022). Spatial and temporal variation of vegetation water use efficiency and its relationship with climatic factors on the Tibetan Plateau. Journal of Applied Ecology, 33, 1525-1532. |
[崔茜琳, 何云玲, 李宗善 (2022). 青藏高原植被水分利用效率时空变化及与气候因子的关系. 应用生态学报, 33, 1525-1532.]
DOI |
|
[10] | Fan JJ, Ning J, Meng XJ, Zhu YS, Sun XM, Zhang XY (2012). Stable carbon isotopic compositions of C3 plant responses to the temperature and moisture and their application in water use efficiency. Chinese Journal of Soil Science, 43, 1502-1507. |
[樊金娟, 宁静, 孟宪菁, 朱延姝, 孙晓敏, 张心昱 (2012). C3植物叶片稳定碳同位素对温度、湿度的响应及其在水分利用中的研究进展. 土壤通报, 43, 1502-1507. | |
[11] | Farquhar GD, Richards RA (1984). Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 116, 539-552. |
[12] | Feng HY, An LZ, Chen T, Xu SJ, Qiang WY, Liu G, Wang XL (2003). Relationships between stable carbon isotope composition and environmental factors in plants of the pedicularis L. Journal of Claciology and Geocryology, 25(1), 88-93. |
[冯虎元, 安黎哲, 陈拓, 徐世健, 强维亚, 刘光, 王勋陵 (2003). 马先蒿属(Pedicularis L.)植物稳定碳同位素组成与环境因子之间的关系. 冰川冻土, 25(1), 88-93.] | |
[13] |
Francey RJ, Gifford RM, Sharkey TD, Weir B (1985). Physiological influences on carbon isotope discrimination in Huon pine (Lagarostrobos franklinii). Oecologia, 66, 211-218.
DOI PMID |
[14] | Fu XD, Yan JJ, Shawuli D, Liu HJ, Cui D, Chen C (2021). Spatiotemporal variation of water use efficiency and its influencing factors in the grassland ecosystem of Ili River valley. Research of Soil and Water Conservation, 28(1), 124-131. |
[付秀东, 闫俊杰, 沙吾丽•达吾提, 刘海军, 崔东, 陈晨(2021). 伊犁河谷草地生态系统水分利用效率时空变化及影响因素. 水土保持研究, 28(1), 124-131.] | |
[15] | Gebrekirstos A, Worbes M, Teketay D, Fetene M, Mitlöhner R (2009). Stable carbon isotope ratios in tree rings of co-occurring species from semi-arid tropics in Africa: patterns and climatic signals. Global and Planetary Change, 66, 253-260. |
[16] | Guo R (2017). Studies on Ecological Benefit Evaluation of Three Kinds of Public Welfare Forest Types in Dalate Qi. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[郭融(2017). 达拉特旗3种类型公益林生态效益评价研究. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[17] | He TH (2009). The Environment Changes of Mu Us Desert in Historical Period. PhD dissertation, Lanzhou University, Lanzhou. |
[何彤慧 (2009). 毛乌素沙地历史时期环境变化研究. 博士学位论文, 兰州大学, 兰州.] | |
[18] | Hou QQ, Pei TT, Yu XJ, Chen Y, Ji ZX, Xie BP (2022). The seasonal response of vegetation water use efficiency to temperature and precipitation in the Loess Plateau, China. Global Ecology and Conservation, 33, e01984. DOI: 10.1016/j.gecco.2021.e01984. |
[19] | Hu AY, Fu WD, Chen YF, Yan L, Ai MX, Chen R, Shi CC, Liu XH (2023). Soil moisture dynamics and its response to precipitation in different cover types of the Mu Us sandy land. Research of Soil and Water Conservation, 30(6), 133-142. |
[胡安焱, 付稳东, 陈云飞, 颜林, 艾美霞, 陈瑞, 石长春, 刘秀花 (2023). 毛乌素沙地不同覆被类型土壤水分动态及其对降水的响应. 水土保持研究, 30(6), 133-142.] | |
[20] | Hu HY, Li HX, Ni B, Shi B, Xu DM, Xie YZ (2019). Characteristic of typical vegetation community and water use efficiency of dominant plants in desert steppe of Ningxia. Journal of Zhejiang University, 45, 460-471. |
[胡海英, 李惠霞, 倪彪, 师斌, 许冬梅, 谢应忠 (2019). 宁夏荒漠草原典型群落的植被特征及其优势植物的水分利用效率. 浙江大学学报, 45, 460-471.] | |
[21] | Huang FZ, Li DX, Wang B, Xiang WS, Guo YL, Wen SJ, Chen T, Li XK (2019). Foliar stable carbon isotope composition and water use efficiency of plant in the Karst seasonal rain forest. Chinese Journal of Applied Ecology, 30, 1833-1839. |
[黄甫昭, 李冬兴, 王斌, 向悟生, 郭屹立, 文淑均, 陈婷, 李先琨 (2019). 喀斯特季节性雨林植物叶片碳同位素组成及水分利用效率. 应用生态学报, 30, 1833-1839.]
DOI |
|
[22] | Huang M, Piao S, Zeng Z, Peng S, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Yao Y, Yang H, Wang Y (2016). Seasonal responses of terrestrial ecosystem water use efficiency to climate change. Global Change Biology, 226, 2165-2177. |
[23] |
Jin LY, Li J, Wang X, Chen FH (2004). The temporal and spatial distribution of surface dry-wet conditions over northwestern China in recent 50 years. Acta Geographica Sinica, 59, 847-854.
DOI |
[靳立亚, 李静, 王新, 陈发虎 (2004). 近50年来中国西北地区干湿状况时空分布. 地理学报, 59, 847-854.] | |
[24] | Körner C, Farquhar GD, Wong SC (1991). Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia, 881, 30-40. |
[25] | Lambers H, Oliveira RS (2019). Plant water relations//Lambers H, Oliveira RS. Plant Physiological Ecology. Springer, Cham, Switzerland. 187-263. |
[26] | Li MX, Peng CH, Wang M, Yang YZ, Zhang KR, Li P, Yang Y, Ni J, Zhu QA (2017). Spatial patterns of leaf δ13C and its relationship with plant functional groups and environmental factors in China. Journal of Geophysical Research: Biogeosciences, 122, 1564-1575. |
[27] | Li XR, Zhang ZS, Huang L, Wang XP (2013). Review of the ecohydrological processes and feedback mechanisms controlling sand-binding vegetation systems in sandy desert regions of China. Chinese Science Bulletin, 58(S1), 397-410. |
[李新荣, 张志山, 黄磊, 王新平 (2013). 我国沙区人工植被系统生态-水文过程和互馈机理研究评述. 科学通报, 58(S1), 397-410.] | |
[28] | Li YB, Chen T, Zhang YF, An LZ (2007). The relation of seasonal pattern in stable carbon compositions to meteorological variables in the leaves of Sabina przewalskii Kom. and Sabina chinensis (Lin.) Ant. Environmental Geology, 51, 1279-1284. |
[29] | Liu B, Guan HD, Zhao WZ, Yang YT, Li SB (2017). Groundwater facilitated water-use efficiency along a gradient of groundwater depth in arid northwestern China. Agricultural and Forest Meteorology, 233, 235-241. |
[30] | Liu LK, Liang LT, Gao P, Fan CS, Wang HH, Wang H (2021). Coupling relationship and interactive response between ecological protection and high-quality development in the Yellow River Basin. Journal of Natural Resources, 36(1), 176-195. |
[刘琳轲, 梁流涛, 高攀, 范昌盛, 王宏豪, 王瀚 (2021). 黄河流域生态保护与高质量发展的耦合关系及交互响应. 自然资源学报, 36(1), 176-195.]
DOI |
|
[31] |
Liu XZ, Zhang Y, Su Q, Tian YL, Quan B, Wang GA (2014). Research progress in responses of modern terrestrial plant carbon isotope composition to climate change. Advances in Earth Science, 29, 1341-1354.
DOI |
[刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安 (2014). 现代陆生植物碳同位素组成对气候变化的响应研究进展. 地球科学进展, 29, 1341-1354.]
DOI |
|
[32] | Lloret F, Peñuelas J, Ogaya R (2004). Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. Journal of Vegetation Science, 15, 237-244. |
[33] | Meng M, Ni J, Zhang ZG (2004). Aridity index and its applications in geo-ecological study. Acta Phytoecologica Sinica, 28, 853-861. |
[孟猛, 倪健, 张治国 (2004). 地理生态学的干燥度指数及其应用评述. 植物生态学报, 28, 853-861.]
DOI |
|
[34] | Morecroft M, Woodward F, Marris R (1992). Altitudinal trends in leaf nutrient contents, leaf size and δ13C of Alchemilla alpina. Functional Ecology, 6, 730-740. |
[35] | Ren SJ, Yu GR (2011). Carbon isotope composition (δ13C) of C3 plants and water use efficiency in China. Chinese Journal of Plant Ecology, 35, 119-124. |
[任书杰, 于贵瑞 (2011). 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率. 植物生态学报, 35, 119-124.]
DOI |
|
[36] |
Roussel M, Dreyer E, Montpied P, Le-Provost G, Guehl JM, Brendel O (2009). The diversity of 13C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance. Journal of Experimental Botany, 60, 2419-2431.
DOI PMID |
[37] | Schleser GH (1990). Investigations of the δ13C pattern in leaves of Fagus sylvatica L. Journal of Experimental Botany, 41, 565-572. |
[38] | Sun B, Dilcher DL, Beerling DJ, Zhang C, Yan D, Kowalski E (2003). Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proceedings of the National Academy of Sciences of the United States of America, 100, 7141-7146. |
[39] | Tang KY, Yan ZJ, Yin Q, Gao L, Wang H, Yu J, Meng YF, Wang YQ, Zhao HS (2018). Study on plant diversity of different dunes in the eastern Kubuqi desert. Chinese Journal of Grassland, 40(6), 71-77. |
[唐宽燕, 闫志坚, 尹强, 高丽, 王慧, 于洁, 孟元发, 王育青, 赵虎生 (2018). 库布齐沙地不同沙丘类型植物多样性研究. 中国草地学报, 40(6), 71-77.] | |
[40] | Wang LX, Li XQ, Guo LL (2006). The distribution of δ13C value of C3 plant and its response to climate in arid and semiarid central East Asia. Quaternary Sciences, 26, 955-961. |
[王丽霞, 李心清, 郭兰兰 (2006). 中东亚干旱半干旱区C3植物δ13C值的分布及其对气候的响应. 第四纪研究, 26, 955-961.] | |
[41] |
Wu YS, Yin RP, Tian XM, Ha S (2018). Development characteristics of biological crusts under artificial vegetation in southern Mu Us sandy land. Journal of Desert Research, 38, 339-344.
DOI |
[吴永胜, 尹瑞平, 田秀民, 哈斯 (2018). 毛乌素沙地南缘人工植被区生物结皮发育特征. 中国沙漠, 38, 339-344.]
DOI |
|
[42] | Xu DY, Kang XW, Liu ZL, Zhuang DF, Pan JJ (2009). Study on the relative roles of climate change and human activities in the desertification process in Ordos Region. Science in China (Series D: Earth Sciences), 39, 516-528. |
[许端阳, 康相武, 刘志丽, 庄大方, 潘剑君 (2009). 气候变化和人类活动在鄂尔多斯地区沙漠化过程中的相对作用研究. 中国科学(D辑: 地球科学), 39, 516-528.] | |
[43] | Xu X, Guan H, Skrzypek G, Simmons CT (2017). Response of leaf stable carbon isotope composition to temporal and spatial variabilities of aridity index on two opposite hillslopes in a native vegetated catchment. Journal of Hydrology, 553, 214-223. |
[44] | Yang KY (2019). Characteristics of Photosynthesis and Water Use of Caragana intermedia Plantation and Related Factors in Alpine Sandy Land. PhD dissertation, Chinese Academy of Forestry Sciences, Beijing. |
[杨凯悦 (2019). 高寒沙区柠条人工林光合耗水特性及影响因素研究. 博士学位论文, 中国林业科学研究院, 北京.] | |
[45] | Yang SY, Zhao XN, Gao XD, Yu LY (2022). Difference of water use efficiency between ecological and economic forest and its response to environment using carbon isotope in the Loess Plateau of China. Journal of Soil and Water Conservation, 36(4), 247-252. |
[杨树烨, 赵西宁, 高晓东, 于流洋 (2022). 基于δ13C值的黄土高原生态林和经济林水分利用效率差异及对环境响应分析. 水土保持学报, 36(4), 247-252.] | |
[46] | Zan GS, Wang CP, Li F, Liu Z, Sun T (2023). Main results and analyses of the sixth national desertification and sanding survey. Forest Resources Management, (1), 1-7. |
[昝国盛, 王翠萍, 李锋, 刘政, 孙涛 (2023). 第六次全国荒漠化和沙化调查主要结果及分析. 林业资源管理, (1), 1-7.] | |
[47] | Zhang JZ, Wang YY (2017). Ecological benefit evaluation of returning farmland to forest and grassland in sandy area of Dalad Banner, Inner Mongolia. Western Resources, (2), 164-166. |
[张景忠, 王云毅 (2017). 内蒙古达拉特旗风沙区退耕还林还草生态效益评价. 西部资源, (2), 164-166.] | |
[48] | Zhang L, Sun P, Huettmann F, Liu S (2022). Where should China practice forestry in a warming world. Global Change Biology, 28, 2461-2475. |
[49] | Zhang WJ (2008). Study on Vegetation and Soil Restoration Effect of Living Sand Barrier in Horqin Sandy Land. PhD dissertation, Beijing Forestry University, Beijing. |
[张文军 (2008). 科尔沁沙地活沙障植被及土壤恢复效应的研究. 博士学位论文, 北京林业大学, 北京.] | |
[50] | Zhang XL (2022a). Study on Water Utilization Characteristics of Different Types of Sand-fixation Shrubs in the Hobq Desert Based on Stable Isotope Techniques. Master degree dissertation, Inner Mongolia Normal University, Hohhot. |
[张细林 (2022a). 基于稳定同位素技术的库布齐沙漠4种固沙灌木水分利用特征研究. 硕士学位论文, 内蒙古师范大学, 呼和浩特.] | |
[51] | Zhang Y (2022b). Study on the Change of Land Use and Vegetation Coverage in Wushen Banner. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[张雨 (2022b). 乌审旗土地利用与植被覆盖度变化研究. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[52] |
Zhang Y, Yang G, Han XY, Kang J, Shen CL, Wen YQ (2023). Spatiotemporal evolition of vegetation coverage and its driving forces in Wushen Banner. Caoxue, (6), 18-28.
DOI |
[张雨, 杨光, 韩雪莹, 康健, 申丛林, 温雅琴 (2023). 乌审旗植被覆盖度时空演变及其影响因子分析. 草学, (6), 18-28.] | |
[53] | Zhao LJ, Wang XG, Zhang YC, Xie C, Liu QY, Meng F (2019). Plant water use strategies in the Shapotou artificial sand-fixed vegetation of the southeastern margin of the Tengger Desert, northwestern China. Journal of Mountain Science, 16, 898-908. |
[54] | Zhao LJ, Xiao HL, Liu XH, Luo F, Li SZ, Lu MF (2005). Seasonal variations of leaf δ13C of desert plants and its response to climatic factor changes in different micro- habitats in Shapotou Station. Journal of Glaciology and Geocryology, 27, 747-754. |
[赵良菊, 肖洪浪, 刘晓宏, 罗芳, 李守中, 陆明峰 (2005). 沙坡头不同微生境下油蒿和柠条叶片δ13C的季节变化及其对气候因子的响应. 冰川冻土, 27, 747-754.] | |
[55] | Zhao Y, Wang L (2018). Plant water use strategy in response to spatial and temporal variation in precipitation patterns in China: a stable isotope analysis. Forests, 9, 123. DOI: 10.3390/f9030123. |
[56] | Zheng HX, Liu J (2011). Long-term trends of aridity index and its sensitivity to climate factors in Northeast China: 1971-2008. Geographical Research, 30, 1765-1774. |
[郑红星, 刘静 (2011). 东北地区近40年干燥指数变化趋势及其气候敏感性. 地理研究, 30, 1765-1774.] | |
[57] | Zheng SX, Shangguan ZP (2007). Spatial patterns of foliar stable carbon isotope compositions of C3 plant species in the Loess Plateau of China. Ecological Research, 22, 342-353. |
[58] | Zhou YC, Zhang WB, Cheng XL, Xu XY (2019). Progress in the study of plant and soil carbon isotope composition in response to environmental changes. Research in Environmental Sciences, 32, 565-572. |
[周咏春, 张文博, 程希雷, 徐新阳 (2019). 植物及土壤碳同位素组成对环境变化响应研究进展. 环境科学研究, 32, 565-572.] | |
[59] | Zhu JJ (2013). A review of the present situation and future prospect of science of protective forest. Chinese Journal of Plant Ecology, 37, 872-888. |
[朱教君 (2013). 防护林学研究现状与展望. 植物生态学报, 37, 872-888.]
DOI |
[1] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[4] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[5] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[6] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[7] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[8] | 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素[J]. 植物生态学报, 2019, 43(7): 566-575. |
[9] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[10] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[11] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[12] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[13] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[14] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[15] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19