植物生态学报 ›› 2024, Vol. 48 ›› Issue (9): 1104-1117.DOI: 10.17521/cjpe.2024.0022 cstr: 32100.14.cjpe.2024.0022
收稿日期:
2024-01-24
接受日期:
2024-06-20
出版日期:
2024-09-20
发布日期:
2024-06-24
通讯作者:
贾国栋(基金资助:
NIU Yun-Ming1, JIA Guo-Dong1,2,*(), WANG Xin1, LIU Zi-He1
Received:
2024-01-24
Accepted:
2024-06-20
Online:
2024-09-20
Published:
2024-06-24
Contact:
JIA Guo-Dong (Supported by:
摘要:
通过探究亚热带湿润气候区庐山不同海拔优势植物的水龄和考虑时间来源的用水策略, 为该地区的生态保护和资源利用提供科学依据和支持。以庐山松属(Pinus) (低海拔的马尾松(P. massoniana)、高海拔的黄山松(P. taiwanensis))和栎属(Quercus) (低海拔的栓皮栎(Q. variabilis)、高海拔的短柄枹栎(Q. serrata))共4个树种为研究对象, 于2020年7月至2021年8月, 利用稳定同位素技术和平均蒸腾水龄模型, 分析不同海拔优势植物的蒸腾水龄, 并结合水龄结果和MixSIAR来源混合模型, 分析植物用水策略和季节性变化; 同步监测大气温度、湿度, 土壤含水率, 根系分布等数据分析蒸腾水龄与植物水分来源的季节性变化。结果显示: (1)庐山地区植物主要利用当季降水, 蒸腾水龄为8.67-16.68 d。对于同属植物, 高海拔树种蒸腾水龄小于低海拔树种。且在观测期内马尾松的水龄呈“单谷状”, 黄山松呈“单峰状”。(2)低海拔树种用水策略在雨季前期主要利用浅层土壤水, 随着雨季到来主要吸水层向下移动至深层, 并在雨季后期稳定在深层土壤, 而高海拔树种在雨季后期主要吸水层稳定在土壤中层。(3)相较之下, 考虑时间滞后的低海拔植物用水策略对浅层(0-20 cm)土壤水的依赖减弱, 对深层(60-100 cm)土壤水的吸收比例增加, 高海拔相反。
牛云明, 贾国栋, 王欣, 刘子赫. 庐山不同海拔植物蒸腾水龄动态及用水策略. 植物生态学报, 2024, 48(9): 1104-1117. DOI: 10.17521/cjpe.2024.0022
NIU Yun-Ming, JIA Guo-Dong, WANG Xin, LIU Zi-He. Dynamic changes of transpiration water age and water utilization strategies for trees at different altitudes in Lushan area. Chinese Journal of Plant Ecology, 2024, 48(9): 1104-1117. DOI: 10.17521/cjpe.2024.0022
样地 Plot | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 林下灌木 Shrub | 坡度 Slope (°) | 坡向 Aspect | 样地规格 Plot standard (m2) |
---|---|---|---|---|---|---|
栓皮栎、马尾松混交林 QPMF1 | 29.50° N, 115.88° E | 130 | QA, LC | 15 | 半阴坡 Half shady slope | 40 × 40 |
短柄枹栎、黄山松混交林 QPMF2 | 29.56° N, 115.98° E | 1 100 | LR, CS | 20 | 阴坡 Shady slope | 40 × 40 |
表1 庐山山区样地概况
Table 1 Summary information of forest plots in Lushan Mountain
样地 Plot | 经纬度 Longitude and latitude | 海拔 Altitude (m) | 林下灌木 Shrub | 坡度 Slope (°) | 坡向 Aspect | 样地规格 Plot standard (m2) |
---|---|---|---|---|---|---|
栓皮栎、马尾松混交林 QPMF1 | 29.50° N, 115.88° E | 130 | QA, LC | 15 | 半阴坡 Half shady slope | 40 × 40 |
短柄枹栎、黄山松混交林 QPMF2 | 29.56° N, 115.98° E | 1 100 | LR, CS | 20 | 阴坡 Shady slope | 40 × 40 |
图2 2020-2021年庐山地区不同海拔气象因子季节性变化。A, 低海拔。B, 高海拔。
Fig. 2 Seasonal variation of meteorological factors at different altitudes in Lushan area in 2020-2021. A, Low altitude. B, High altitude.
图3 庐山地区不同海拔氢氧稳定同位素组成(δ2H、δ18O)。A, 低海拔。B, 高海拔。
Fig. 3 Hydrogen and oxygen stable isotope composition (δ2H, δ18O) at different altitudes in Lushan area. A, Low altitude. B, High altitude.
图4 研究期内庐山低海拔(A)和高海拔(B)不同土层含水率变化特征。
Fig. 4 Characteristics of water content changes in different soil layers at low (A) and high altitudes (B) during the research period.
图5 庐山地区的根系生物量分布。A, 马尾松。B, 黄山松。C, 栓皮栎。D, 短柄枹栎。
Fig. 5 Distribution of root biomass of Lushan area. A, Pinus massoniana. B, Pinus taiwanensis. C, Quercus variabilis. D, Quercus serrata.
树种 Species | 日期 Date | 平均水龄 Average water age | 中位数 Median | 标准差 Standard deviation | 平均水龄 Average water age | 中位数 Median | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
马尾松 Pinus massoniana | 2020-09-10 | 16.68a | 16.41 | 7.09 | 19.90a | 18.03 | 7.93 |
2021-03-04 | 10.19b | 9.41 | 5.07 | ||||
2021-05-08 | 18.56a | 16.52 | 4.80 | ||||
黄山松 Pinus taiwanensis | 2020-09-10 | 11.79bc | 10.18 | 4.54 | 12.85a | 12.85 | 3.03 |
2021-03-04 | 15.90a | 16.71 | 5.10 | ||||
2021-05-08 | 9.41b | 8.90 | 3.36 | ||||
栓皮栎 Quercus variabilis | 2020-09-10 | 13.67ab | 10.03 | 8.61 | 14.84a | 11.86 | 8.12 |
2021-03-04 | 11.39b | 5.23 | 9.64 | ||||
2021-05-08 | 13.62a | 13.37 | 8.16 | ||||
短柄枹栎 Quercus serrata | 2020-09-10 | 8.67c | 7.40 | 6.19 | 8.86a | 8.69 | 4.02 |
2021-03-04 | 8.42b | 6.72 | 6.31 | ||||
2021-05-08 | 9.76a | 6.41 | 6.30 |
表2 庐山地区不同海拔优势植物平均蒸腾水龄(d)
Table 2 Average transpiration water age of dominated trees at different altitudes in Lushan area (d)
树种 Species | 日期 Date | 平均水龄 Average water age | 中位数 Median | 标准差 Standard deviation | 平均水龄 Average water age | 中位数 Median | 标准差 Standard deviation |
---|---|---|---|---|---|---|---|
马尾松 Pinus massoniana | 2020-09-10 | 16.68a | 16.41 | 7.09 | 19.90a | 18.03 | 7.93 |
2021-03-04 | 10.19b | 9.41 | 5.07 | ||||
2021-05-08 | 18.56a | 16.52 | 4.80 | ||||
黄山松 Pinus taiwanensis | 2020-09-10 | 11.79bc | 10.18 | 4.54 | 12.85a | 12.85 | 3.03 |
2021-03-04 | 15.90a | 16.71 | 5.10 | ||||
2021-05-08 | 9.41b | 8.90 | 3.36 | ||||
栓皮栎 Quercus variabilis | 2020-09-10 | 13.67ab | 10.03 | 8.61 | 14.84a | 11.86 | 8.12 |
2021-03-04 | 11.39b | 5.23 | 9.64 | ||||
2021-05-08 | 13.62a | 13.37 | 8.16 | ||||
短柄枹栎 Quercus serrata | 2020-09-10 | 8.67c | 7.40 | 6.19 | 8.86a | 8.69 | 4.02 |
2021-03-04 | 8.42b | 6.72 | 6.31 | ||||
2021-05-08 | 9.76a | 6.41 | 6.30 |
图6 庐山优势植物水分来源季节性变化(平均值±标准差)。A, 马尾松。B, 黄山松。C, 栓皮栎。D, 短柄枹栎。
Fig. 6 Seasonal variation of typical water sources for trees in Lushan area (mean ± SD). A, Pinus massoniana. B, Pinus taiwanensis. C, Quercus variabilis. D, Quercus serrata.
图8 考虑时间来源(A、C)与不考虑时间(B、D)来源的水分来源对比图(平均值±标准差)。A, 马尾松。B, 黄山松。C, 栓皮栎。D, 短柄枹栎。
Fig. 8 Comparison with water source takes time into account (A, C) and without considering time (B, D) (mean ± SD). A, Pinus massoniana. B, Pinus taiwanensis. C, Quercus variabilis. D, Quercus serrata.
[1] |
Allen ST, Kirchner JW, Braun S, Siegwolf RTW, Goldsmith GR (2019). Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23, 1199-1210.
DOI |
[2] | Amin A, Zuecco G, Geris J, Schwendenmann L, McDonnell JJ, Borga M, Penna D (2020). Depth distribution of soil water sourced by plants at the global scale: a new direct inference approach. Ecohydrology, 13, e2177. DOI: 10.1002/eco.2177. |
[3] | Ashraf MA, Ahmad MSA, Ashraf M, Al-Qurainy F, Ashraf MY (2011). Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop and Pasture Science, 62, 25-38. |
[4] |
Brinkmann N, Seeger S, Weiler M, Buchmann N, Eugster W, Kahmen A (2018). Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest. New Phytologist, 219, 1300-1313.
DOI PMID |
[5] | Cai L, Zhu WR, Wang HT, Zhang GC, Liu X, Yang JH, Wang YP (2015). Root morphology of six tree species in mountain area of middle south Shandong. Science of Soil and Water Conservation, 13(2), 83-91. |
[蔡鲁, 朱婉芮, 王华田, 张光灿, 刘霞, 杨吉华, 王延平 (2015). 鲁中南山地6个造林树种根系形态的比较. 中国水土保持科学, 13(2), 83-91.] | |
[6] |
Dawson TE, Pate JS (1996). Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology: a stable isotope investigation. Oecologia, 107, 13-20.
DOI PMID |
[7] | Delzon S (2015). New insight into leaf drought tolerance. Functional Ecology, 29, 1247-1249. |
[8] | Deng WP, Yu XX, Jia GD, Li YJ, Liu YJ (2014). Water sources of three typical plants in the Beijing mountain areas in rainy season. Arid Zone Research, 31, 649-657. |
[邓文平, 余新晓, 贾国栋, 李亚军, 刘瑜洁 (2014). 雨季北京山区3种典型植物的水分来源. 干旱区研究, 31, 649-657.] | |
[9] |
Dubbert M, Caldeira MC, Dubbert D, Werner C (2019). A pool-weighted perspective on the two-water-worlds hypothesis. New Phytologist, 222, 1271-1283.
DOI PMID |
[10] |
Eggemeyer KD, Awada T, Harvey FE, Wedin DA, Zhou X, Zanner CW (2009). Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland. Tree Physiology, 29, 157-169.
DOI PMID |
[11] | Else MA, Coupland D, Dutton L, Jackson MB (2001). Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in the xylem sap. Physiologia Plantarum, 111, 46-54. |
[12] | Ewe SM, Sternberg DL (2002). Seasonal water-use by the invasive exotic, Schinus terebinthifolius, in native and disturbed communities. Oecologia, 133, 441-448. |
[13] |
Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero- Casal C (2017). Hydrologic regulation of plant rooting depth. Proceedings of the National Academy of Sciences of the United States of America, 114, 10572-10577.
DOI PMID |
[14] | Gaines KP, Meinzer FC, Duffy CJ, Thomas EM, Eissenstat DM (2016). Rapid tree water transport and residence times in a Pennsylvania Catchment. Ecohydrology, 9, 1554-1565. |
[15] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147, 13-31. |
[16] | Good SP, Noone D, Bowen G (2015). Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349, 175-177. |
[17] |
James SA, Meinzer FC, Goldstein G, Woodruff D, Jones T, Restom T, Mejia M, Clearwater M, Campanello P (2003). Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia, 134, 37-45.
PMID |
[18] | Jia GD, Yu XX, Deng WP, Fan DX (2013). Soil water use patterns of typical tree species in Beijing mountainous area. Journal of Basic Science and Engineering, 21, 403-411. |
[贾国栋, 余新晓, 邓文平, 樊登星 (2013). 北京山区典型树种土壤水分利用特征. 应用基础与工程科学学报, 21, 403-411.] | |
[19] | Lakshmanan V, Ray P, Craven KD (2017). Toward a resilient, functional microbiome: drought tolerance- alleviating microbes for sustainable agriculture. Methods in Molecular Biology, 1631, 69-84. |
[20] | Li H, He YX, Si R, Wang BJ, Liu KS (2021). Research progress on the effects of root niche differences on ecosystems. Pratacultural Science, 38, 501-513. |
[李慧, 何宜璇, 斯日木极, 王宝杰, 刘克思 (2021). 根系生态位差异对生态系统的影响. 草业科学, 38, 501-513.] | |
[21] |
Lin G, Phillips SL, Ehleringer JR (1996). Monosoonal precipitation responses of shrubs in a cold desert community on the Colorado Plateau. Oecologia, 106, 8-17.
DOI PMID |
[22] | Liu ZQ (2019). Water Migration Process and Utilization Mechanism of Typical Trees in North China. PhD dissertation, Beijing Forestry University, Beijing. |
[刘自强 (2019). 华北地区典型林木水分运移过程与利用机制研究. 博士学位论文, 北京林业大学, 北京.] | |
[23] | Liu ZQ, Yu XX, Jia GD, Jia JB, Lou YH, Zhang K (2016). Water use characteristics of Platycladus orientalis and Quercus variabilis in Beijing mountain area. Scientia Silvae Sinicae, 52(9), 22-30. |
[刘自强, 余新晓, 贾国栋, 贾剑波, 娄源海, 张坤 (2016). 北京山区侧柏和栓皮栎的水分利用特征. 林业科学, 52(9), 22-30.] | |
[24] | Luo ZD, Nie YP, Chen HS, Guan HD, Zhang XP, Wang KL (2023). Water age dynamics in plant transpiration: the effects of climate patterns and rooting depth. Water Resources Research, 59, e2022. DOI: 10.1029/2022WR033566. |
[25] | Luo ZD, Nie YP, Ding YL, Chen HS (2021). Replenishment and mean residence time of root-zone water for woody plants growing on rocky outcrops in a subtropical karst critical zone. Journal of Hydrology, 603, 127-136. |
[26] | McCole AA, Stern LA (2007). Seasonal water use patterns of Juniperus ashei on the Edwards Plateau, Texas, based on stable isotopes in water. Journal of Hydrology, 342, 238-248. |
[27] | Meinzer FC, Brooks JR, Domec JC, Gartner BL, Warren JM, Woodruff DR, Bible K, Shaw DC (2006). Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant, Cell & Environment, 29, 105-114. |
[28] |
Meusburger K, Trotsiuk V, Schmidt Walter P, Baltensweiler A, Brun P, Bernhard F, Gharun M, Habel R, Hagedorn F, Köchli R, Psomas A, Puhlmann H, Thimonier A, Waldner P, Zimmermann S, Walthert L (2022). Soil-plant interactions modulated water availability of Swiss forests during the 2015 and 2018 droughts. Global Change Biology, 28, 5928-5944.
DOI PMID |
[29] | Miguez-Macho G, Fan Y (2021). Spatiotemporal origin of soil water taken up by vegetation. Nature, 598, 624-628. |
[30] | Nippert JB, Knapp AK (2007). Soil water partitioning contributes to species coexistence in tallgrass prairie. Oikos, 116, 1017-1029. |
[31] | Niu JZ, Yu XX, Zhao YT, Zhang DS, Chen LH, Zhang ZQ (2006). Study of soil preferential flow in the dark coniferous forest of Gongga Mountain, China. Journal of Plant Ecology (Chinese Version), 30, 732-742. |
[牛健植, 余新晓, 赵玉涛, 张东升, 陈丽华, 张志强 (2006). 贡嘎山暗针叶林土壤优先流形成因素的初步研究. 植物生态学报, 30, 732-742.]
DOI |
|
[32] | Niu YM, Jia GD, Liu ZH, Wang X, Liu ZQ (2022). Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area. Journal of Beijing Forestry University, 44(7), 16-24. |
[牛云明, 贾国栋, 刘子赫, 王欣, 刘自强 (2022). 北京山区栓皮栎对土壤水分吸收与利用. 北京林业大学学报, 44(7), 16-24.] | |
[33] | Pang ZQ, Yu DQ (2020). Plant root system-microbial interaction system under drought stress and its application. Plant Physiology Journal, 56, 109-126. |
[庞志强, 余迪求 (2020). 干旱胁迫下的植物根系-微生物互作体系及其应用. 植物生理学报, 56, 109-126.] | |
[34] | Qiu LB, Xiao TQ, Bai TJ, Mo XY, Huang JH, Deng WP, Liu YQ (2023). Seasonal dynamics and influencing factors of litterfall production and carbon input in typical forest community types in Lushan Mountain, China. Forests, 14, 341. DOI: 10.3390/f14020341. |
[35] | Rahimpour AM, Danesh-Yazdi M (2020). The effect of seasonal variation in precipitation and evapotranspiration on the transient travel time distributions. Advances in Water Resources, 142, 103618. DOI: 10.1016/j.advwatres.2020.103618. |
[36] | Schenk HJ, Jackson RB (2002). The global biogeography of roots. Ecological Monographs, 72, 311-328. |
[37] | Shi PJ, Gai HQ, Liu WZ, Li Z (2023). Links of apple tree water uptake strategies with precipitation and soil water dynamics in the deep loess deposits. Journal of Hydrology, 623, 129829. DOI: 10.1016/j.jhydrol.2023.129829. |
[38] | Sun WY, Song XY, Mu XM, Gao P, Wang F, Zhao GJ (2015). Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agricultural and Forest Meteorology, 209-210, 87-99. |
[39] | Suz LM, Barsoum N, Benham S, Dietrich HP, Fetzer KD, Fischer R, García P, Gehrman J, Kristöfel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sánchez G, et al.(2014). Environmental drivers of ectomycorrhizal communities in Europe’s temperate oak forests. Molecular Ecology, 23, 5628-5644. |
[40] | Wang J, Fu BJ, Lu N, Wang S, Zhang L (2019). Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems & Environment, 276, 55-63. |
[41] | Wang JM, Lu ZH, Wu JF, Xiao QL, Zhu MY, Wang HH (2010). The characteristics and distribution patterns of the soil types in MT. Lushan. Acta Agriculturae Universitatis Jiangxiensis, 32, 1284-1290. |
[王景明, 卢志红, 吴建富, 肖青亮, 朱美英, 王海辉 (2010). 庐山土壤类型的特点与分布规律. 江西农业大学学报, 32, 1284-1290.] | |
[42] | Wang X (2022). Temporal and Spatial Variation Characteristics and Influencing Factors of Water Use Sources of Dominant Tree Species in Typical Mountainous Areas. Master degree dissertation, Beijing Forestry University, Beijing. |
[王欣 (2022). 典型山区优势树种水分利用时空变化特征与影响因素研究. 硕士学位论文, 北京林业大学, 北京.] | |
[43] |
Wang X, Jia GD, Deng WP, Liu ZQ, Liu ZH, Qiu GF, Li WL (2021). Long-term water use characteristics and patterns of typical tree species in seasonal drought regions. Chinese Journal of Applied Ecology, 32, 1943-1950.
DOI |
[王欣, 贾国栋, 邓文平, 刘自强, 刘子赫, 邱贵福, 李文立 (2021). 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32, 1943-1950.]
DOI |
|
[44] | Wang XR, Wang ZQ, Han YZ, Gu JC, Guo DL, Mei L (2005). Variations of fine root diameter with root order in manchurian ash and dahurian larch plantations. Acta Phytoecologica Sinica, 29, 871-877. |
[王向荣, 王政权, 韩有志, 谷加存, 郭大立, 梅莉 (2005). 水曲柳和落叶松不同根序之间细根直径的变异研究. 植物生态学报, 29, 871-877.]
DOI |
|
[45] | Wen LS, Deng WP, Deng LW, Mo XY, Xiao TQ, Qiu LB, Liu YQ (2021). Seasonal water utilization strategies of plants at different altitudes in the Lushan Mountain. Journal of Soil and Water Conservation, 35, 341-348. |
[温林生, 邓文平, 邓力维, 莫兴悦, 肖廷琦, 邱凌波, 刘苑秋 (2021). 庐山不同海拔植物季节水分利用策略. 水土保持学报, 35, 341-348.] | |
[46] | Wu YM, Han L, Liu KY, Hu X, Fu ZQ, Chen LX (2023). Water source of Robinia pseudoacacia and Platycladus orientalis plantations under different soil moisture conditions in the Loess Plateau of Western Shanxi, China. Chinese Journal of Applied Ecology, 34, 588-596. |
[吴应明, 韩璐, 刘柯言, 胡旭, 付照琦, 陈立欣 (2023). 晋西黄土区不同土壤水分条件下刺槐和侧柏人工林的水分利用来源. 应用生态学报, 34, 588-596.]
DOI |
|
[47] | Xi L, Li SY, Xia XY, Wang J, Ma XL, Kenijialimu M, Maimaiti A, Wang WX (2022). Heterogeneity of soil nutrients and environmental interpretation in Picea schrenkiana var. tianschanica forest. Journal of Central South University of Forestry & Technology, 42(10), 93-101. |
[席丽, 李思瑶, 夏晓莹, 王杰, 马小龙, 米尔扎提·柯尼加里木, 阿丽耶·麦麦提, 王卫霞 (2022). 天山云杉林土壤养分空间异质性及环境解释. 中南林业科技大学学报, 42(10), 93-101.] | |
[48] | Yang F, Lin YY, Chen LX, Han L, Wu YM, Yu YJ (2022). Soil water use and niche characteristics of dominant tree species in arbor layer and shrub layer in two plantations of Pinus tabulaeformis and Robinia pseudoacacia in loess region of western Shanxi Province. Scientia Silvae Sinicae, 58(6), 1-12. |
[杨菲, 林毅雁, 陈立欣, 韩璐, 吴应明, 喻雅洁 (2022). 晋西黄土区油松和刺槐2种人工林内乔灌优势种的土壤水分利用及水分生态位特征. 林业科学, 58(6), 1-12.] | |
[49] | Ye X, Huang MY, Qin ZY, Zhu WT, Xie L, Zhao P (2023). Rainstorm infiltration process of primeval forest of Gongga Mountain based on stable water isotope and undisturbed soil column. Journal of Soil and Water Conservation, 37, 211-219. |
[叶鑫, 黄美玉, 秦子怡, 朱婉婷, 谢莲, 赵鹏 (2023). 基于稳定水同位素和原状土柱的贡嘎山原始森林暴雨入渗过程. 水土保持学报, 37, 211-219.] | |
[50] |
Yin ZF, Sun HG, Tan ZF, Liu W (2023). Research progress on productivity of mixed forest. Chinese Journal of Applied Ecology, 34, 3135-3143.
DOI |
[尹再芳, 孙洪刚, 谭梓峰, 刘威 (2023). 混交林生产力研究进展. 应用生态学报, 34, 3135-3143.]
DOI |
|
[51] | Yu FZ, Zhang ZQ, Chen LQ, Shen ZP (2016). Soil characteristics and health assessment for different forest vegetation in Lushan. Resources and Environment in the Yangtze Basin, 25, 1062-1069. |
[于法展, 张忠启, 陈龙乾, 沈正平 (2016). 庐山不同森林植被类型土壤特性及其健康评价. 长江流域资源与环境, 25, 1062-1069.] | |
[52] | Yuan GF, Zhang P, Xue SS, Zhuang W (2012). Change characteristics in soil water content in root zone and evidence of root hydraulic lift in Tamarix ramosissima thickets on sand dunes. Chinese Journal of Plant Ecology, 36, 1033-1042. |
[袁国富, 张佩, 薛沙沙, 庄伟 (2012). 沙丘多枝柽柳灌丛根层土壤含水量变化特征与根系水力提升证据. 植物生态学报, 36, 1033-1042.]
DOI |
|
[53] | Zhang SM, Ye LM, Zhou YZ, Wang XX, Xu YK, Jiang J, Liu ZQ (2023). Water use sources and its influencing factors of Pinus massoniana and Quercus acutissima community in hilly region of southern China. Chinese Journal of Applied Ecology, 34, 1729-1736. |
[张岁梦, 叶丽敏, 周肄智, 王晓霞, 许元科, 姜姜, 刘自强 (2023). 南方丘陵区马尾松-麻栎群落水分利用来源及其影响因素. 应用生态学报, 34, 1729-1736.]
DOI |
|
[54] | Zhang YX, Ma YX, Ma XZ, Zhang JW, Wang YL, Yu HS (2023). Soil nutrient characteristics of Ulmus pumila L. forest at different ages in Daqingshan. Journal of Agricultural Science and Technology, 25(12), 168-176. |
[张月欣, 麻云霞, 马秀枝, 张金旺, 王月林, 俞海生 (2023). 大青山不同林龄榆树林的土壤酶和养分特征. 中国农业科技导报, 25(12), 168-176.] |
[1] | 马理辉,吴普特,汪有科. 黄土丘陵半干旱区密植枣林随树龄变化的根系空间分布特征[J]. 植物生态学报, 2012, 36(4): 292-301. |
[2] | 顾东祥, 汤亮, 徐其军, 雷晓俊, 曹卫星, 朱艳. 水氮处理下不同品种水稻根系生长分布特征[J]. 植物生态学报, 2011, 35(5): 558-566. |
[3] | 晨乐木格, 刘茂松, 黄峥, 陈斌, 张明娟, 徐驰. 我国西北地区芨芨草-苦豆子群落根系分布与种间关系[J]. 植物生态学报, 2009, 33(4): 748-754. |
[4] | 唐罗忠, 黄宝龙, 生原喜久雄, 户田浩人. 高水位条件下池杉根系的生态适应机制和膝根的呼吸特性[J]. 植物生态学报, 2008, 32(6): 1258-1267. |
[5] | 王昆, 刘颖慧, 高琼, 莫兴国. 植物根系水力再分配模型参数分析与尺度转换[J]. 植物生态学报, 2006, 30(6): 969-975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19