植物生态学报 ›› 2006, Vol. 30 ›› Issue (6): 969-975.DOI: 10.17521/cjpe.2006.0124
王昆1,2,3(), 刘颖慧1, 高琼1,*(
), 莫兴国2
收稿日期:
2006-01-09
接受日期:
2006-04-14
出版日期:
2006-01-09
发布日期:
2006-11-30
通讯作者:
高琼
作者简介:
* E-mail: gaoq@bnu.edu.cn基金资助:
WANG Kun1,2,3(), LIU Ying-Hui1, GAO Qiong1,*(
), MO Xing-Guo2
Received:
2006-01-09
Accepted:
2006-04-14
Online:
2006-01-09
Published:
2006-11-30
Contact:
GAO Qiong
摘要:
植物根系水力再分配(Hydraulic redistribution)是近几年提出的对植物根系水力提升现象一种更准确的描述。Ryel等(2002)建立的根系水力再分配模型(以下简称Ryel模型)模拟结果表明根系水力再分配是土壤水分动态的一个重要组成部分。该文基于Ryel模型,对模型中涉及的重要参数进行敏感性分析,更准确地阐述参数变化下根系水力再分配模型的行为动态,从而定量分析环境及植物自身等因素对根系水力再分配的影响。Ryel模型时间尺度和土层厚度的设定限制了模型的应用,该文通过参数调整,将模型从时间尺度为小时、土层厚度均一转换到时间尺度为天、土层厚度不等,并应用到内蒙古皇甫川流域。
王昆, 刘颖慧, 高琼, 莫兴国. 植物根系水力再分配模型参数分析与尺度转换. 植物生态学报, 2006, 30(6): 969-975. DOI: 10.17521/cjpe.2006.0124
WANG Kun, LIU Ying-Hui, GAO Qiong, MO Xing-Guo. PARAMETER ANALYSIS AND SCALING OF PLANT ROOT HYDRAULIC REDISTRIBUTION MODEL. Chinese Journal of Plant Ecology, 2006, 30(6): 969-975. DOI: 10.17521/cjpe.2006.0124
参数名称 Parameters | 符号 Symbol | 数值 Value | 单位 Unit | |
---|---|---|---|---|
饱和容积含水量 Volumetric soil water content at saturation | θs | 0.5 | cm3·cm-3 | |
剩余容积含水量 Residual volumetric soil water content | θr | 0.02 | cm3·cm-3 | |
土壤饱和导水率 Soil hydraulic conductivity | Ks | 0.247 | cm·h-1 | |
全部活跃根系的最大径向导度 Root conductivity for water for all roots | CRT | 0.097 | cm·MPa-1·h-1 | |
根系导度降至50%时的土壤水势 Soil ψ/water potential where root conductivity reduced by 50% | ψ50 | -1.0 | MPa | |
最大蒸腾速率 Maximum transpiration rate | ERT,max | 1 | cm·d-1 | |
形状指数 Shaping parameter | b | 3.22 | ||
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | a | 0.001 851 | cm-1 | |
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | n | 1.429 2 |
表1 模型中的参数
Table 1 Parameters of the model
参数名称 Parameters | 符号 Symbol | 数值 Value | 单位 Unit | |
---|---|---|---|---|
饱和容积含水量 Volumetric soil water content at saturation | θs | 0.5 | cm3·cm-3 | |
剩余容积含水量 Residual volumetric soil water content | θr | 0.02 | cm3·cm-3 | |
土壤饱和导水率 Soil hydraulic conductivity | Ks | 0.247 | cm·h-1 | |
全部活跃根系的最大径向导度 Root conductivity for water for all roots | CRT | 0.097 | cm·MPa-1·h-1 | |
根系导度降至50%时的土壤水势 Soil ψ/water potential where root conductivity reduced by 50% | ψ50 | -1.0 | MPa | |
最大蒸腾速率 Maximum transpiration rate | ERT,max | 1 | cm·d-1 | |
形状指数 Shaping parameter | b | 3.22 | ||
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | a | 0.001 851 | cm-1 | |
土壤水分特征曲线拟合参数 Fitting parameter for soil water retention curve | n | 1.429 2 |
图2 100 d内总蒸腾量以及水力再分配水量与总蒸腾量比值随根系导水率的变化
Fig.2 Total transpiration and ratio of water redistributed by roots to total transpiration for 100-day with root water conductance
图3 100 d内总蒸腾量以及水力再分配水量与总蒸腾量比值随根系导水率的变化
Fig.3 Total transpiration and ratio of water redistributed by roots to total transpiration for 100-day with root water conductance
参数名称 Parameters | 原模型 Model | 尺度转换后 Scaling |
---|---|---|
饱和水分导度 Soil hydraulic conductivity | 0.247 cm·h-1 | 0.247×24 cm·h-1 |
根系的最大水分导度 Root conductivity for water for all roots | 0.097 cm·MPa-1·h-1 | 0.097×24 cm·MPa-1·h-1 |
最大蒸腾速率 Maximum transpiration rate | 1/24 cm·d-1 | 1 cm·d-1 |
根系水力再分配调节系数 Multiplier for day (1) or night (0) | 1(10 h)~0(14 h) | 10/24 |
表2 模型尺度转换时参数变化
Table 2 Parameter changes when scaling
参数名称 Parameters | 原模型 Model | 尺度转换后 Scaling |
---|---|---|
饱和水分导度 Soil hydraulic conductivity | 0.247 cm·h-1 | 0.247×24 cm·h-1 |
根系的最大水分导度 Root conductivity for water for all roots | 0.097 cm·MPa-1·h-1 | 0.097×24 cm·MPa-1·h-1 |
最大蒸腾速率 Maximum transpiration rate | 1/24 cm·d-1 | 1 cm·d-1 |
根系水力再分配调节系数 Multiplier for day (1) or night (0) | 1(10 h)~0(14 h) | 10/24 |
图4 以天为时间尺度、不同厚度4个土层100 d的容积含水量、土壤水势与日蒸腾对比
Fig.4 Daily volume water content, soil water potential and daily transpiration for four different thicknesses of soil layers
[1] |
Brooks JR, Meinzer FC, Warren JM, Domec JC, Coulombe R (2006). Hydraulic redistribution in a Douglas-fir forest: lessons from system manipulations. Plant, Cell and Environment, 29,138-150.
DOI URL PMID |
[2] |
Caldwell MM, Dawson TE, Richards JH (1998). Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia, 113,151-161.
URL PMID |
[3] |
Caldwell MM, Richards JH (1989). Hydraulic lift water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia, 79,1-5.
DOI URL PMID |
[4] |
Dawson TE (1993). Hydraulic lift and water use by plants: implications for water balance, performace and plant-plant interactions. Oecologia, 95,565-574.
DOI URL PMID |
[5] | Fan XL(樊小林), Shi WG(石卫国), Cao XH(曹新华) (1995). Hydraulic lift and its effect on soil water potential and nutrient availability. Ⅰ. Hydraulic lift of millet and the effect of HL and root absorption on soil water content. Journal of Soil and Water Conservation (水土保持学报), 9(4),36-42. (in Chinese with English abstract) |
[6] | Fan XL(樊小林), Cao XH(曹新华), Guo LB(郭立斌), Qin FL(秦芳玲) (1996). Hydraulic lift and its effect on soil water potential and nutrient availability. Ⅱ. Effect of the interaction of soil water and nutrient and hydraulic lift on the plant growth. Journal of Soil Erosion and Soil and Water Conservation (土壤侵蚀与水土保持学报), 2(4),71-76. (in Chinese with English abstract) |
[7] | Gao QZ(高清竹) (2003). Land Use Security Pattern for Farming-Pastoral Zone of North China, a Case Study at Changchuan Watershed(农牧交错带长川流域土地利用安全格局研究). PhD dissertation, Beijing Normal University, Beijing,19-51. (in Chinese with English abstract) |
[8] | Han WX(韩文轩), Fang JY(方精云) (2003). Allometry and its application in ecological scaling. Acta Scientiarum Naturalium Universitatis Pekinensis (北京大学学报(自然科学版)), 39,583-593. (in Chinese with English abstract) |
[9] |
Horton JL, Hart SC (1998). Hydraulic lift—a potentially important ecosystem process. Trends in Ecology and Evolution, 13,232-235.
URL PMID |
[10] | Jia HK(贾海坤), Liu YH(刘颖慧), Xu X(徐霞), Wang K(王昆), Gao Q(高琼) (2005). Intermedia woodland in Huangfuchuan watershed: relationships among slope, aspect, plant density and soil water content. Acta Phytoecologica Sinica(植物生态学报), 29,910-917. (in Chinese with English abstract) |
[11] | King AW (1990). Translating models across scales in the landscape. In: Turner MG, Gardner RH eds. Quantitative Methods in Landscape Ecology, Ecological Studies. Springer, New York, 82,479-517. |
[12] | Lee JE, Oliveira RS, Dawson TE, Fung I (2005). Root functioning modifies seasonal climate. Proceedings of National Academy of Sciences of the United States of America, 102,17576-17581. |
[13] | Leffler AJ, Peek MS, Ryel RJ, Ivans CY, Caldwell MM (2005). Hydraulic redistribution through the root systems of senesced plants. Ecology, 86,633-642. |
[14] | Lü YH(吕一河), Fu BJ(傅伯杰) (2001). Ecological scale and scaling. Acta Ecologia Sinica(生态学报), 21,2096-2105. (in Chinese with English abstract) |
[15] |
Meinzer FC, Brooks JR, Bucci S, Goldstein G, Scholz FG, Warren JM (2004). Converging patterns of uptake and hydraulic redistribution of soil water in contrasting woody vegetation types. Tree Physiology, 24,919-928.
URL PMID |
[16] |
Richards JH, Caldwell MM (1987). Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73,486-489.
DOI URL PMID |
[17] |
Ryel RJ, Caldwell MM, Yoder CK, Or D, Leffler AJ (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130,173-184.
URL PMID |
[18] |
Schulze ED, Caldwell MM, Canadell J, Mooney HA, Jackson RB, Parson D, Scholes R, Sala OE, Trimborn P (1998). Downward flux of water through roots (i.e. inverse hydraulic lift)in dry Kalahari sands. Oecologia, 115,460-462.
DOI URL PMID |
[19] | Smart DR, Carlisle E, Goebel M, Nú†en BA (2005). Transverse hydraulic redistribution by a grapevine. Plant, Cell and Environment, 28,157-166. |
[20] | van Genuchten MT (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44,892-898. |
[21] | Yang J(杨吉力), Gao QZ(高清竹), Li GQ(李国强), He LH(何立环), Jin ZP(金争平), Wang ZW(王正文) (2002). A study on the water ecology of dominant artificial shrubs in Huangfuchuan watershed. Journal of Natural Resources (自然资源学报), 17,87-94. (in Chinese with English abstract) |
[22] |
Zou CB, Barnes PW, Archer S, McMurtry CR (2005). Soil moisture redistribution as a mechanism of facilitation in savanna tree-shrub clusters. Oecologia, 145,32-40.
DOI URL PMID |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[5] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[6] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[7] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[8] | 李唐吉, 王懋林, 曹颖, 徐刚, 杨琪祺, 任思源, 胡尚连. 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响[J]. 植物生态学报, 2021, 45(12): 1365-1379. |
[9] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[10] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[11] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[12] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[13] | 杨军军, 封建民, 何志斌. 基于热比率法的青海云杉林蒸腾量估算[J]. 植物生态学报, 2018, 42(2): 195-201. |
[14] | 张振振, 赵平, 赵秀华, 张锦秀, 朱丽薇, 欧阳磊, 张笑颜. 环境因子对常绿阔叶树种脱耦联系数及冠层气孔导度估算的影响[J]. 植物生态学报, 2018, 42(12): 1179-1191. |
[15] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19