植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 748-754.DOI: 10.3773/j.issn.1005-264x.2009.04.013
晨乐木格1, 刘茂松1,*(), 黄峥1, 陈斌1, 张明娟1,2, 徐驰1
收稿日期:
2008-12-17
修回日期:
2009-03-19
出版日期:
2009-12-17
发布日期:
2009-07-30
通讯作者:
刘茂松
作者简介:
*(msliu@nju.edu.cn)基金资助:
URIANKHAI Tselmeg1, LIU Mao-Song1,*(), HUANG Zheng1, CHEN Bin1, ZHANG Ming-Juan1,2, XU Chi1
Received:
2008-12-17
Revised:
2009-03-19
Online:
2009-12-17
Published:
2009-07-30
Contact:
LIU Mao-Song
摘要:
以宁夏沙湖的一个典型的干旱区草本型植物群落——芨芨草(Achnatherum splendens)-苦豆子(Sophora alopecuroides) (禾草-非禾草型)群落为研究对象, 自芨芨草-苦豆子聚生丛的基部向丛间裸地依次划分为植冠区、过渡区和空旷区3个分区, 通过比较分析两个优势种根系生物量密度在这3个分区的空间分布格局, 研究了干旱胁迫生境中芨芨草和苦豆子的根际关系。结果表明: 在水平方向上, 芨芨草根系总生物量主要集中分布于植冠区, 而苦豆子根系总生物量密度在3个分区间无显著差异; 在垂直方向上, 芨芨草的根系总生物量密度和细根生物量密度最大的土壤层次从植冠区到空旷区埋深渐深, 而苦豆子的根系总生物量在3个分区主要分布于10~30 cm土层, 但其细根生物量密度最大的土层从植冠区向外呈上升趋势; 同时发现, 在植冠区, 根系总生物量密度较高, 两种植物细根生物量密度最大的土壤层次不同, 但在空旷区和过渡区, 两种植物细根生物量密度的垂直分布格局趋于一致。群落中两个主要植物种的根系在植冠区具有垂直层次的分异性, 在不同分区间具有水平分布格局的差异性, 这可能是群落中两种主要植物种间为了避免根系间直接竞争共同适应干旱胁迫生境的重要机制。
晨乐木格, 刘茂松, 黄峥, 陈斌, 张明娟, 徐驰. 我国西北地区芨芨草-苦豆子群落根系分布与种间关系. 植物生态学报, 2009, 33(4): 748-754. DOI: 10.3773/j.issn.1005-264x.2009.04.013
URIANKHAI Tselmeg, LIU Mao-Song, HUANG Zheng, CHEN Bin, ZHANG Ming-Juan, XU Chi. DISTRIBUTION PATTERN OF ROOT BIOMASS AND INTER-SPECIFIC RELATIONSHIP IN ACHNATHERUM SPLENDENS-SOPHORA ALOPECUROIDES COMMUNITY IN NORTHWEST CHINA. Chinese Journal of Plant Ecology, 2009, 33(4): 748-754. DOI: 10.3773/j.issn.1005-264x.2009.04.013
平均高度 Average height (m) | 平均冠幅 Average crown diameter (m) | 盖度 Coverage (%) | |
---|---|---|---|
芨芨草 Achnatherum splendens | 1.13 | 0.79 | 42.58 |
苦豆子 Sophora alopecuroides | 0.32 | 0.20 | 2.19 |
碱蓬 Suaeda glauca | 0.18 | 0.29 | 0.31 |
藜 Chenopodium album | 0.32 | 0.23 | 0.12 |
蓟 Cirsium japonicum | 0.14 | 0.15 | 0.07 |
甘草 Glycyrrhiza uralensis | 0.19 | 0.16 | 0.05 |
披针叶黄华 Thermopsis lanceolata | 0.15 | 0.10 | <0.01 |
表1 群落概况
Table 1 Basic status of the study community
平均高度 Average height (m) | 平均冠幅 Average crown diameter (m) | 盖度 Coverage (%) | |
---|---|---|---|
芨芨草 Achnatherum splendens | 1.13 | 0.79 | 42.58 |
苦豆子 Sophora alopecuroides | 0.32 | 0.20 | 2.19 |
碱蓬 Suaeda glauca | 0.18 | 0.29 | 0.31 |
藜 Chenopodium album | 0.32 | 0.23 | 0.12 |
蓟 Cirsium japonicum | 0.14 | 0.15 | 0.07 |
甘草 Glycyrrhiza uralensis | 0.19 | 0.16 | 0.05 |
披针叶黄华 Thermopsis lanceolata | 0.15 | 0.10 | <0.01 |
植冠区 Under-canopy subarea | 过渡区 Transition subarea | 空旷区 Open area | ||
---|---|---|---|---|
芨芨草根系生物量密度 Root biomass densities of Achnatherum splendens (g·m-3) | 根系总生物量 Total root biomass | 268.37 ± 36.61 | 106.54 ± 21.90 | 69.52 ± 12.30 |
细根生物量 Fine root biomass | 47.53 ± 7.65 | 24.38 ± 3.96 | 17.20 ± 3.27 | |
苦豆子根系生物量密度 Root biomass densities of Sophora alopecuroides (g·m-3) | 根系总生物量 Total root biomass | 166.70 ± 25.75 | 148.77 ± 17.08 | 161.37 ± 24.02 |
细根生物量 Fine root biomass | 2.95 ±1.37 | 1.76 ± 0.58 | 2.79 ± 0.74 |
表2 不同分区芨芨草和苦豆子根系生物量密度(平均值±标准误差)
Table 2 Root biomass densities of Achnatherum splendens and Sophora alopecuroides in 3 subareas of the community (mean ± SE)
植冠区 Under-canopy subarea | 过渡区 Transition subarea | 空旷区 Open area | ||
---|---|---|---|---|
芨芨草根系生物量密度 Root biomass densities of Achnatherum splendens (g·m-3) | 根系总生物量 Total root biomass | 268.37 ± 36.61 | 106.54 ± 21.90 | 69.52 ± 12.30 |
细根生物量 Fine root biomass | 47.53 ± 7.65 | 24.38 ± 3.96 | 17.20 ± 3.27 | |
苦豆子根系生物量密度 Root biomass densities of Sophora alopecuroides (g·m-3) | 根系总生物量 Total root biomass | 166.70 ± 25.75 | 148.77 ± 17.08 | 161.37 ± 24.02 |
细根生物量 Fine root biomass | 2.95 ±1.37 | 1.76 ± 0.58 | 2.79 ± 0.74 |
图1 芨芨草-苦豆子群落根系生物量密度分布 a: 植冠区根系总生物量 Total roots biomass in under-canopy subarea b: 植冠区细根生物量 Fine roots biomass in under-canopy subarea c: 过渡区根系总生物量 Total roots biomass in transition subarea d: 过渡区细根生物量 Fine roots biomass in transition subarea e: 空旷区根系总生物量 Total roots biomass in open area f: 空旷区细根生物量 Fine roots biomass in open area
Fig. 1 Distribution of root biomass density in the Achnatherum splendens-Sophora alopecuroides community
[1] | Breshears DD (2006). The grassland-forest continuum: trends in ecosystem properties for woody plant mosaics? Frontier in Ecology and the Environment, 4, 96-104. |
[2] |
Callaway RM, Pennings SC, Richards CL (2003). Phenotypic plasticity and interactions among plants. Ecology, 84, 1115-1128.
DOI URL |
[3] |
Campbell BD, Grime JP, Mackey JML (1991). A trade-off between scale and precision in resource foraging. Oecologia, 87, 532-538.
DOI URL PMID |
[4] |
Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583-595.
DOI URL PMID |
[5] |
Casper BB, Jackson RB (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570.
DOI URL |
[6] |
Casper BB, Cahill JF, Hyatt LA (1998). Above-ground competition does not alter biomass allocated to roots in Abutilon theophrasti. New Phytologist, 140, 231-238.
DOI URL |
[7] | Ehleringer JR (1994). Variations in gas exchange characteristics among desert plants. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynjournal, Ecological Studies 100. Springer, Berlin, 302-388. |
[8] | Fan WB (范文波), Lei Y (雷雨), Mo L (莫亮), Zheng YK (郑耀凯), Chen B (陈兵), Liu LY (刘丽英) (2006). Studies on improving microclimate of desert by Achnatherum splendens. Journal of Shihezi University (Natural Science),(石河子大学学报(自然科学版)), 24, 213-216. (in Chinese with English abstract) |
[9] |
Gersani M, Brown JS, O’brien EE, Maina GM, Abramsky Z (2001). Tragedy of the commons as a result of root competition. Journal of Ecology, 89, 660-669.
DOI URL PMID |
[10] | Hao ZY (郝仲勇), Yang PL (杨培岭), Liu HL (刘洪禄), Yao CM (姚春梅) (1998). Experimental investigation on root system distribution of apple tree. Journal of China Agricultural University (中国农业大学学报), 3(6), 63-66. (in Chinese with English abstract) |
[11] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
DOI URL PMID |
[12] |
Kizito F, Dragila M, Sène M, Lufafa A, Diedhiou I, Dick RP, Selker JS, Dossa E, Khouma M, Badiane A, Ndiaye S (2006). Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with pearl millet in Senegal, West Africa. Journal of Arid Environments, 67, 436-455.
DOI URL |
[13] |
Knoop WT, Walker BH (1985). Interactions of woody and herbaceous vegetation in a southern African savanna. Journal of Ecology, 73, 235-253.
DOI URL |
[14] |
Liu XK (刘小恺), Liu MS (刘茂松), Huang Z (黄铮), Xu C (徐驰), Zhang MJ (张明娟), Wang HJ (王汉杰) (2009). Pattern analysis of inter-specific relationships in four typical arid communities in Sand Lake, Ningxia Hui Autonomous Region, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 320-330. (in Chinese with English abstract)
DOI URL |
[15] |
Martens SN, Breshears DD, Meyer CW, Barnes FJ (1997). Scales of above-ground and below-ground competition in a semi-arid woodland detected from spatial pattern. Journal of Vegetation Science, 8, 655-664.
DOI URL |
[16] |
Meyer KM, Ward D, Wiegand K, Moustakas A (2007). Multi-proxy evidence for competition between savanna woody species. Perspectives in Plant Ecology, Evolution and Systematics, 10, 63-72.
DOI URL |
[17] |
Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4, 25-51.
DOI URL |
[18] |
Peek MS, Forseth IN (2005). Non-destructive estimation of lateral root distribution in an arid land perennial. Plant and Soil, 273, 211-217.
DOI URL |
[19] |
Rodríguez MV, Bertiller MB, Bisigato A (2007). Are fine roots of both shrubs and perennial grasses able to occupy the upper soil layer? A case study in the arid Patagonian Monte with non-seasonal precipitation. Plant and Soil, 300, 281-288.
DOI URL |
[20] |
Schenk HJ, Jackson RB (2002). Rooting depths, lateral root spreads and below-ground / above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480-494.
DOI URL |
[21] | Shan LS (单立山), Zhang XM (张希明), Hua YH (花永辉), Wei J (魏疆), Yan HL (闫海龙), Xie TT (解婷婷) (2007). Response of root distribution of Haloxylon ammodendron seedlings to irrigation amounts in the Taklimakan desert, China. Journal of Plant Ecology (Chinese Version)(植物生态学报), 31, 769-776. (in Chinese with English abstract) |
[22] |
Simmons MT, Archer SR, Teague WR, Ansley RJ (2008). Tree (Prosopis glandulosa) effects on grass growth: an experimental assessment of above- and belowground interactions in a temperate savanna. Journal of Arid Environments, 72, 314-325.
DOI URL |
[23] | Stark JM (1994). Causes of soil nutrient heterogeneity at different scales. In: Caldwell MM, Pearcy RW eds. Exploitation of Environmental Heterogeneity by Plants, Ecophysiological Processes Above- and Belowground. Academic Press, San Diego, 255-284. |
[24] | Sun DY (孙栋元), Wang H (王辉), Ma ZW (马仲武), Yang JL (杨君珑) (2007). Soil water variation of fencing sandy land in arid desert area. Journal of Northwest Forestry University (西北林学院学报), 22(2), 49-53. (in Chinese with English abstract) |
[25] |
Trumbore SE, Gaudinski JB (2003). The secret lives of roots. Science, 302, 1344-1345.
DOI URL PMID |
[26] | Wang J (王珺), Liu MS (刘茂松), Sheng S (盛晟), Xu C (徐驰), Liu XK (刘小恺), Wang HJ (王汉杰) (2008). Spatial distributions of soil water, salts and roots in an arid arbor-herb community. Acta Ecologica Sinica (生态学报), 28, 4120-4127. (in Chinese with English abstract) |
[27] | Wang K (王库), Xu LY (徐礼煜), Yu TF (于天富) (2002). Effect of Achnatherum splendens (Trin.) Nevski, a soil and water conservation plant, on soil nutrients. Soil (土壤), 3, 170-172. (in Chinese) |
[28] | Wei LY (韦兰英), Shangguan ZP (上官周平) (2006). Relationship between vertical distribution of root in different successional stages of herbaceous vegetation and soil environment in Loess Plateau. Acta Ecologica Sinica (生态学报), 26, 3740-3748. (in Chinese with English abstract) |
[29] |
Wilcoxa CS, Fergusona JW, Fernandezb GCJ, Nowaka RS (2004). Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite. Journal of Arid Environments, 56, 129-148.
DOI URL |
[30] | Zhang C (张程), Zhang MJ (张明娟), Xu C (徐驰), Liu MS (刘茂松), Wang HJ (王汉杰), Hu HB (胡海波) (2007). Analysis of aggregation in desert plant species in Sand Lake, Ningxia Hui Autonomous Region, China. Journal of Plant Ecology (Chinese Version)(植物生态学报), 31, 32-39. (in Chinese with English abstract) |
[31] |
Zhang QM (张琴妹), Zhang C (张程), Liu MS (刘茂松), Yu W (郁文), Xu C (徐驰), Wang HJ (王汉杰) (2007). The influences of arboraceous layer on spatial patterns and morphological characteristics of herbaceous layer in an arid plant community. Acta Ecologica Sinica (生态学报), 27, 1265-1272. (in Chinese with English abstract)
DOI URL |
[32] |
Zhang ZS, Li XR, Wang TW, Xin P, Xue QW, Liu LC (2008). Distribution and seasonal dynamics of roots in a revegetated stand of Artemisia ordosica Kracsh. in the Tengger Desert (North China). Arid Land Research and Management, 22, 195-211.
DOI URL |
[1] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[2] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[3] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[4] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[5] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[6] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[7] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[8] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[9] | 李亚飞, 于静洁, 陆凯, 王平, 张一驰, 杜朝阳. 额济纳三角洲胡杨和多枝柽柳水分来源解析[J]. 植物生态学报, 2017, 41(5): 519-528. |
[10] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[11] | 刘玉冰, 李新荣, 李蒙蒙, 刘丹, 张雯莉. 中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J]. 植物生态学报, 2016, 40(11): 1189-1207. |
[12] | 马勇刚, 张弛, 陈曦. 利用遥感数据优化物候模型时样本选择的新方法[J]. 植物生态学报, 2015, 39(3): 264-274. |
[13] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[14] | 王玉辉, 井长青, 白洁, 李龙辉, 陈曦, 罗格平. 亚洲中部干旱区3个典型生态系统生长季水碳通量特征[J]. 植物生态学报, 2014, 38(8): 795-808. |
[15] | 熊育久,邱国玉,谢芳. 内蒙古太仆寺旗退耕草地植物种类变化与水分收支[J]. 植物生态学报, 2014, 38(5): 425-439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19