植物生态学报 ›› 2014, Vol. 38 ›› Issue (8): 795-808.DOI: 10.3724/SP.J.1258.2014.00075
所属专题: 生态系统碳水能量通量
• 研究论文 • 下一篇
王玉辉1,2, 井长青1,2, 白洁1, 李龙辉1,*(), 陈曦1, 罗格平1
收稿日期:
2013-11-05
接受日期:
2014-05-04
出版日期:
2014-11-05
发布日期:
2014-08-18
通讯作者:
李龙辉
作者简介:
*E-mail: lhli@ms.xjb.ac.cn基金资助:
WANG Yu-Hui1,2, JING Chang-Qing1,2, BAI Jie1, LI Long-Hui1,*(), CHEN Xi1, LUO Ge-Ping1
Received:
2013-11-05
Accepted:
2014-05-04
Online:
2014-11-05
Published:
2014-08-18
Contact:
LI Long-Hui
摘要:
亚洲中部干旱区地处欧亚大陆腹地, 干旱少雨, 生态环境十分脆弱, 研究该地区大气与地表之间的能量和物质交换对干旱区水资源利用和生态环境保护具有重要意义。该文分析了亚洲中部干旱区荒漠与草地生态系统能量、水汽和CO2通量的日变化及季节变化特征, 探究了水汽和CO2通量对主要环境因子的响应。通过分析亚洲中部干旱区3个站点的涡度相关资料发现: 亚洲中部干旱区荒漠和草地生态系统在生长季(4-10月)能量、水汽通量、净CO2通量和总初级生产力的日变化呈“单峰型”, 而荒漠生态系统呼吸日变化相对稳定; 草地生态系统白天的潜热通量占净辐射通量的比例明显高于荒漠生态系统; 草地生态系统在5-8月呈现较强的碳汇, 而荒漠生态系统表现为弱碳汇。亚洲中部干旱区草地和荒漠生态系统水汽通量和总初级生产力对降水、净辐射通量或光合有效辐射、饱和水汽压差、气温均表现出明显的敏感性。
王玉辉, 井长青, 白洁, 李龙辉, 陈曦, 罗格平. 亚洲中部干旱区3个典型生态系统生长季水碳通量特征. 植物生态学报, 2014, 38(8): 795-808. DOI: 10.3724/SP.J.1258.2014.00075
WANG Yu-Hui, JING Chang-Qing, BAI Jie, LI Long-Hui, CHEN Xi, LUO Ge-Ping. Characteristics of water and carbon fluxes during growing season in three typical arid ecosystems in central Asia. Chinese Journal of Plant Ecology, 2014, 38(8): 795-808. DOI: 10.3724/SP.J.1258.2014.00075
图1 哈萨克斯坦咸海站(KZ-Ara)、哈萨克斯坦巴尔喀什湖站(KZ-Bal)和中国新疆中国科学院阜康荒漠生态系统观测试验站(CN-Fuk)能量闭合状况。实线为拟合线, 其斜率代表能量闭合率, 虚线为1:1参考线。G, 土壤热通量; R2,决定系数; RMSE, 均方根误差; Rnet, 净辐射通量; Qle, 潜热通量; Qh, 感热通量。
Fig. 1 Energy balance closure at KZ-Ara (site located in Aral Lake, Kazakhstan), KZ-Bal (site located in Balkhash Lake, Kazakhstan) and CN-Fuk (Fukang Desert Ecosystem Observation and Experiment Station, Chinese Academy of Sciences in Xinjiang, China). The slope of the solid line (fitted line) represents energy closure ratio, and the dash line is the 1:1 reference. G, soil heat flux; R2, coefficient of determination; RMSE, root mean square error; Rnet, net radiation flux; Qle, latent heat flux; Qh, sensible heat flux.
图2 哈萨克斯坦咸海站(KZ-Ara)、巴尔喀什湖站(KZ-Bal)和中国新疆中国科学院阜康荒漠生态系统观测试验站(CN-Fuk)能量各分量的日变化(平均值±标准偏差)。G, 土壤热通量; Rnet, 净辐射通量; Qle, 潜热通量; Qh, 感热通量。正值表示地表吸收能量, 能量由大气流向地表; 负值则表示地表向大气释放能量。实线为研究时段的平均值, 阴影表示标准偏差, 虚线表示零参考线。KZ-Ara、KZ-Bal和CN-Fuk的研究时段分别为2012年5-8月、2012年5-9月和2009年4-10月。
Fig. 2 The diurnal variations of energy fluxes at KZ-Ara (site located in Aral Lake, Kazakhstan), KZ-Bal (site located in Balkhash Lake, Kazakhstan) and CN-Fuk (Fukang Desert Ecosystem Observation and Experiment Station, Chinese Academy of Sciences in Xinjiang, China) (mean ± SD). G, soil heat flux; Rnet, net radiation flux; Qle, latent heat flux; Qh, sensible heat flux. Positive values indicate the ecosystem absorbs energy from the atmosphere; negative values indicate ecosystem releases energy to the atmosphere. The solid line represents average values of energy fluxes during observational periods, the shading illustrates the standard deviations, and the dash line is the zero reference line. The data period used is May to August 2012 for KZ-Ara, May to September 2012 for KZ-Bal, and April to October 2009 for CN-Fuk.
图3 哈萨克斯坦咸海站(KZ-Ara)、巴尔喀什湖站(KZ-Bal)和中国新疆中国科学院阜康荒漠生态系统观测试验站(CN-Fuk)的水汽通量(ET)的日变化(平均值±标准偏差)。实线为研究时段的平均值, 阴影表示标准偏差, 虚线表示零参考线。KZ-Ara、KZ-Bal和CN-Fuk的研究时段分别为2012年5-8月、2012年5-9月和2009年4-10月。
Fig. 3 The diurnal variations of water fluxes (ET) at KZ-Ara (site located in Aral Lake, Kazakhstan), KZ-Bal (site located in Balkhash Lake, Kazakhstan) and CN-Fuk (Fukang Desert Ecosystem Observation and Experiment Station, Chinese Academy of Sciences in Xinjiang, China) (mean ± SD). The solid line represents average values, the shading illustrates the standard deviations, and the dash line is the zero reference. The data period used is May to August 2012 for KZ-Ara, May to September 2012 for KZ-Bal, and April to October 2009 for CN-Fuk.
图4 哈萨克斯坦咸海站(KZ-Ara)、巴尔喀什湖站(KZ-Bal)和中国新疆中国科学院阜康荒漠生态系统观测试验站(CN-Fuk)的水汽通量(ET)与降水量的季节变化。实线为ET, 柱状表示降水。KZ-Ara、KZ-Bal和CN-Fuk的研究时段分别为2012年5-8月、2012年5-9月和2009年4-10月。
Fig. 4 Seasonal variations of water fluxes (ET) and precipitation at KZ-Ara (site located in Aral Lake, Kazakhstan), KZ-Bal (site located in Balkhash Lake, Kazakhstan) and CN-Fuk (Fukang Desert Ecosystem Observation and Experiment Station, Chinese Academy of Sciences in Xinjiang, China). The line represents ET and bars indicate precipitations. The data period used is May to August 2012 for KZ-Ara, May to September 2012 for KZ-Bal, and April to October 2009 for CN-Fuk.
图5 哈萨克斯坦咸海站(KZ-Ara)、巴尔喀什湖站(KZ-Bal)和中国新疆中国科学院阜康荒漠生态系统观测试验站(CN-Fuk)半小时尺度的水汽通量(ET)与净辐射通量(Rnet)(A, D, G)、饱和水汽压差(VPD) (B, E, H)和气温(C, F, I)的响应曲线。虚线表示95%的置信区间的外廓线。
Fig. 5 Responses of half hourly water flux (ET) to net radiation flux (Rnet) (A, D, G), vapor pressure deficit (VPD) (B, E, H) and air temperature (C, F, I) at KZ-Ara (site located in Aral Lake, Kazakhstan), KZ-Bal (site located in Balkhash Lake, Kazakhstan) and CN-Fuk (Fukang Desert Ecosystem Observation and Experiment Station, Chinese Academy of Sciences in Xinjiang, China). Dash line indicates the 95% confidence boundary.
站点 Site | ET对Rnet的响应 Response of ET to Rnet | ET对VPD的响应 Response of ET to VPD | ET对气温的响应 Response of ET to air temperature | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ETmax | b | ETmax | k1 | k2 | k3 | ETmax | k1 | k2 | k3 | |||
KZ-Ara | 0.27 | 98.58 | 0.22 | 0.06 | 0.02 | 0.43 | 0.22 | 59.98 | 17 531.00 | 35.76 | ||
KZ-Bal | 1.19 | 500.64 | 0.70 | -1.27 | -23.66 | 3.37 | 0.74 | 0.13 | 15.24 | 37.48 | ||
CN-Fuk | 0.61 | 371.36 | 0.37 | 91 000.00 | 615 000.00 | 2.75 | 0.35 | -12 481.00 | -1 971 624.00 | 29.34 |
表1 图5中哈萨克斯坦咸海站(KZ-Ara)、哈萨克斯坦巴尔喀什湖站(KZ-Bal)和中国新疆中国科学院阜康荒漠生态系统观测试验站(CN-Fuk)的ET(水汽通量)与净辐射通量(Rnet)、饱和水汽压差(VPD)以及气温的响应方程的拟合参数
Table 1 Estimated values of the fitted model parameters in Fig. 5 in responses of ET (evaporation) to net solar radiation (Rnet), vapor pressure deficit (VPD) and air temperature at KZ-Ara (site located in Aral Lake, Kazakhstan), KZ-Bal (site located in Balkhash Lake, Kazakhstan) and CN-Fuk (Fukang Desert Ecosystem Observation and Experiment Station, Chinese Academy of Sciences in Xinjiang, China)
站点 Site | ET对Rnet的响应 Response of ET to Rnet | ET对VPD的响应 Response of ET to VPD | ET对气温的响应 Response of ET to air temperature | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ETmax | b | ETmax | k1 | k2 | k3 | ETmax | k1 | k2 | k3 | |||
KZ-Ara | 0.27 | 98.58 | 0.22 | 0.06 | 0.02 | 0.43 | 0.22 | 59.98 | 17 531.00 | 35.76 | ||
KZ-Bal | 1.19 | 500.64 | 0.70 | -1.27 | -23.66 | 3.37 | 0.74 | 0.13 | 15.24 | 37.48 | ||
CN-Fuk | 0.61 | 371.36 | 0.37 | 91 000.00 | 615 000.00 | 2.75 | 0.35 | -12 481.00 | -1 971 624.00 | 29.34 |
图6 哈萨克斯坦咸海站(KZ-Ara)和巴尔喀什湖站(KZ-Bal)生长季总初级生产力(GPP)、生态系统呼吸(Res)和净CO2通量(NEE)的日变化。NEE正值表示生态系统向大气释放CO2, 负值表示生态系统从大气吸收CO2。实线为研究时段的平均值, 阴影表示标准偏差, 虚线表示零参考线。KZ-Ara和KZ-Bal 的研究时段分别为2012年5-8月、2012年5-9月。
Fig. 6 Diurnal variations of gross primary productivity (GPP), ecosystem respiration (Res) and net ecosystem CO2 exchange (NEE) at KZ-Ara (site located in Aral Lake, Kazakhstan) and KZ-Bal (site located in Balkhash Lake, Kazakhstan) during growing season. The positive NEE indicates ecosystem releases CO2 into the atmosphere, while negative NEE indicates ecosystem absorbs CO2 from the atmosphere. The solid line represents average values of CO2 flux during observational periods, the shading illustrates the standard deviations, and the dash line is the zero reference. The data period used is May to August 2012 for KZ-Ara and May to September 2012 for KZ-Bal.
图7 哈萨克斯坦咸海站(KZ-Ara)和巴尔喀什湖站(KZ-Bal)生长季总初级生产力(GPP)、生态系统呼吸(Res)、净CO2通量(NEE)和降水(Precipitation)的季节变化。柱状表示降水, 虚线表示0参考线。KZ-Ara、KZ-Bal的研究时段分别为2012年5-8月、2012年5-9月。
Fig. 7 Seasonal variations of gross primary productivity (GPP), ecosystem respiration (Res), net ecosystem CO2 exchange (NEE), and precipitation at KZ-Ara (site located in Aral Lake, Kazakhstan) and KZ-Bal (site located in Balkhash Lake, Kazakhstan) during growing season. Black bars represent precipitation and the dash line is the zero reference. The data period used is May to August 2012 for KZ-Ara and May to September 2012 for KZ-Bal.
图8 哈萨克斯坦咸海站(KZ-Ara)和巴尔喀什湖站(KZ-Bal)半小时尺度的总初级生产力(GPP)与光合有效辐射 (PAR)(A, D)、饱和水汽压差(VPD) (B, E)和气温(C, F)的响应曲线。虚线表示95%的置信区间的外廓线。
Fig. 8 Responses of half hourly gross primary productivity (GPP) to photosynthetically active radiation (PAR) (A, D), vapor pressure deficit (VPD) (B, E) and air temperature (C, F) at KZ-Ara (site located in Aral Lake, Kazakhstan) and KZ-Bal (site located in Balkhash Lake, Kazakhstan). Dash line indicates the 95% confidence boundary.
站点 Site | GPP对PAR的响应 Response of GPP to PAR | GPP对VPD的响应 Response of GPP to VPD | GPP对气温的响应 Response of GPP to air temperature | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GPPmax | b | GPPmax | k1 | k2 | k3 | GPPmax | k1 | k2 | k3 | |||
KZ-Ara | 10.29 | 359.42 | 7.86 | 0.08 | 0.32 | 1.06 | 7.72 | 0.32 | 62.94 | 33.04 | ||
KZ-Bal | 36.24 | 464.86 | 29.12 | 0.06 | 0.94 | 4.65 | 29.58 | 8 685.86 | 2 291 884.00 | 35.37 |
表2 图8中哈萨克斯坦咸海站(KZ-Ara)和巴尔喀什湖站(KZ-Bal)的总初级生产力(GPP)与光合有效辐射 (PAR)、饱和水汽压差(VPD)和气温的响应方程的拟合参数
Table 2 Estimated values of the fitted model parameters in Fig. 8 in responses of gross primary productivity (GPP) to photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and air temperature at KZ-Ara (site located in Aral Lake, Kazakhstan) and KZ-Bal (site located in Balkhash Lake, Kazakhstan)
站点 Site | GPP对PAR的响应 Response of GPP to PAR | GPP对VPD的响应 Response of GPP to VPD | GPP对气温的响应 Response of GPP to air temperature | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GPPmax | b | GPPmax | k1 | k2 | k3 | GPPmax | k1 | k2 | k3 | |||
KZ-Ara | 10.29 | 359.42 | 7.86 | 0.08 | 0.32 | 1.06 | 7.72 | 0.32 | 62.94 | 33.04 | ||
KZ-Bal | 36.24 | 464.86 | 29.12 | 0.06 | 0.94 | 4.65 | 29.58 | 8 685.86 | 2 291 884.00 | 35.37 |
[1] | Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001). FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415-2434. |
[2] | Bell TW, Menzer O, Troyo-Diéquez E, Oechel WC (2012). Carbon dioxide exchange over multiple temporal scales in an arid shrub ecosystem near La Paz, Baja California Sur, Mexico. Global Change Biology, 18, 2570-2582. |
[3] |
Berbigier P, Bonnefond JM, Mellmann P (2001). CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology, 108, 183-197.
DOI URL |
[4] |
Beringer J, Tapper NJ (2000). The influence of subtropical cold fronts on the surface energy balance of a semi-arid site. Journal of Arid Environments, 44, 437-450.
DOI URL |
[5] |
Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449.
URL PMID |
[6] | Breckle SW, Wucherer W, Dimeyeva LA, Ogar NP (2012). Aralkum—a Man-Made Desert. Springer-Verlag, New York. 127-159. |
[7] | Chen RS, Kang ES, Zhao WZ, Zhang ZH, Yang JP, Zhang JS (2004). Trees transpiration response to meteorological variables in arid regions of Northwest China. Acta Ecologica Sinica, 24, 477-485. (in Chinese with English abstract) |
[ 陈仁升, 康尔泗, 赵文智, 张智慧, 杨建平, 张济世 (2004). 中国西北干旱区树木蒸腾对气象因子的响应. 生态学报, 24, 477-485.] | |
[8] | Chen X, Jiang FQ, Wang YJ, Li YM, Hu RJ (2013). Characteristics of the eco-geographical pattern in arid land of central Asia. Arid Zone Research, 30, 385-390. (in Chinese with English abstract) |
[ 陈曦, 姜逢清, 王亚俊, 李耀明, 胡汝骥 (2013). 亚洲中部干旱区生态地理格局研究. 干旱区研究, 30, 385-390.] | |
[9] | Du Q, Liu GZ, Feng JW, Wang L, Huang JP, Zhang W, Bernhofer C (2012). Carbon exchange characteristics of grassland ecosystems in semiarid regions. Science China Earth Sciences, 42, 711-722. (in Chinese) |
[ 杜群, 刘辉志, 冯健武, 王雷, 黄建平, 张武, Bernhofer C, (2012). 半干旱区草原生态系统的碳交换特征. 中国科学: 地球科学, 42, 711-722.] | |
[10] | Gao YH, Li XR, Liu LC, Jia RL, Yang HT, Li G, Wei YP (2012). Seasonal variation of carbon exchange from a revegetation area in a Chinese desert. Agricultural and Forest Meteorology, 156, 134-142. |
[11] | Hastings SJ, Oechel WC, Muhlia-Melo A (2005). Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology, 11, 927-939. |
[12] | Hu YQ, Zuo HC (1996). Experimental study in Heihe was a significant achievement. Bulletin of the Chinese Academy of Sciences, 11, 447-451. (in Chinese) |
[ 胡隐樵, 左洪超 (1996). 黑河实验(HEIFE)研究获重大成果. 中国科学院院刊, 11, 447-451.] | |
[13] | Jasoni RL, Smith SD, Arnone JA III (2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biology, 11, 749-756. |
[14] | Kalthoff N, Fiebig-Wittmaack M, Meißner C, Kohler M, Uriarte M, Bischoff-Gauß I, Gonzales E (2006). The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. Journal of Arid Environments, 65, 420-443. |
[15] | Knorr W, Schnitzler KG, Govaerts Y (2001). The role of bright desert regions in shaping North African climate. Geophysical Research Letters, 28, 3489-3492. |
[16] | Lal R (2002). Carbon sequestration in dryland ecosystems of West Asia and North Africa. Land Degradation & Development, 13, 45-59. |
[17] |
Lal R (2004). Carbon sequestration in dryland ecosystems. Environmental Management, 33, 528-544.
URL PMID |
[18] | Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini T, Verma S, Vesala T, Wilson K, Wofsy S (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97-120. |
[19] | Li BF, Chen YN, Shi X (2012). Why does the temperature rise faster in the arid region of northwest China? Journal of Geophysical Research: Atmospheres (1984-2012), 117 (D16115). doi: 10.1029/2012JD017953. |
[20] | Li L, van der Tol C, Chen X, Jing C, Su B, Luo G, Tian X (2013). Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem. Journal of Hydrology, 502, 145-155. |
[21] |
Li LH, Chen X, van der Tol C, Luo GP, Su ZB (2014). Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan. Ecology and Evolution, 4, 14-26.
DOI URL PMID |
[22] | Li SG, Eugster W, Asanuma J, Kotani A, Davaa G, Oyunbaatar D, Sugita M (2008). Response of gross ecosystem productivity, light use efficiency, and water use efficiency of Mongolian steppe to seasonal variations in soil moisture. Journal of Geophysical Research: Biogeosciences (2005-2012), 113(G1). doi: 10.1029/2006JG000349. |
[23] | Li XZ, Liu XD, Ma ZG (2004). Analysis on the drought characteristics in the main arid regions in the world since recent hundred-odd years. Arid Zone Research, 21, 97-103. (in Chinese with English abstract) |
[ 李新周, 刘晓东, 马柱国 (2004). 近百年来全球主要干旱区的干旱化特征分析. 干旱区研究, 21, 97-103.] | |
[24] | Lioubimtseva E, Henebry GM (2009). Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. Journal of Arid Environments, 73, 963-977. |
[25] | Liu R, Li Y, Wang QX (2012a). Variations in water and CO2 fluxes over a saline desert in western China. Hydrological Processes, 26, 513-522. |
[26] | Liu R, Pan LP, Jenerette GD, Wang QX, Cieraad E, Li Y (2012b). High efficiency in water use and carbon gain in a wet year for a desert halophyte community. Agricultural and Forest Meteorology, 162-163, 127-135. |
[27] | Liu R, Wang QX, Tang LS, Li Y (2009). Seasonal variation in water, heat and CO2 fluxes and its driving forces over a saline desert. Acta Ecologica Sinica, 29, 67-75. (in Chinese with English abstract) |
[ 刘冉, 王勤学, 唐立松, 李彦 (2009). 盐生荒漠地表水热与二氧化碳通量的季节变化及驱动因素. 生态学报, 29, 67-75.] | |
[28] | Liu S, Li SG, Yu GR, Sun XM, Zhang LM, Sugita M, Li YN, Zhang XZ, Wang YF (2010). Surface energy exchanges in grassland ecosystems along a precipitation gradient. Acta Ecologica Sinica, 30, 557-567. (in Chinese with English abstract) |
[ 刘帅, 李胜功, 于贵瑞, 孙晓敏, 张雷明, 杉田伦明, 李英年, 张宪洲, 王艳芬 (2010). 不同降水梯度下草地生态系统地表能量交换. 生态学报, 30, 557-567.] | |
[29] | Liu XC, Yang JL, Zheng Y, Wei WS (2006). Analysis on the effects of climatic change on the ecological environment in the Fukang Oasis. Arid Zone Research, 23, 167-171. (in Chinese with English abstract) |
[ 刘新春, 杨金龙, 郑奕, 魏文寿 (2006). 阜康绿洲环境变化的气候特征. 干旱区研究, 23, 167-171.] | |
[30] | Ma H, Chen YN, Li WH (2014). Characteristics of energy balance of riparian Tamarix shrubs in desert. Journal of Desert Research, 34, 108-117. (in Chinese with English abstract) |
[ 马虹, 陈亚宁, 李卫红 (2014). 荒漠河岸柽柳(Tamarix chinensis)灌丛的能量平衡特征. 中国沙漠, 34, 108-117.] | |
[31] |
Maestre FT, Cortina J (2003). Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology, 23, 199-209.
DOI URL |
[32] | Malek E, Bingham GE (1997). Partitioning of radiation and energy balance components in an inhomogeneous desert valley. Journal of Arid Environments, 37, 193-207. |
[33] | Mielnick P, Dugas WA, Mitchell K, Havstad K (2005). Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan Desert grassland. Journal of Arid Environments, 60, 423-436. |
[34] | Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439. |
[35] | Snyder KA, Scott RL, McGwire K (2012). Multiple year effects of a biological control agent ( Diorhabda carinulata) on Tamarix(saltcedar) ecosystem exchanges of carbon dioxide and water. Agricultural and Forest Meteorology, 164, 161-169. |
[36] | Starodubtsev VM, Truskavetskiy SR (2011). Desertification processes in the Ili River delta under anthropogenic pressure. Water Resources, 38, 253-256. |
[37] | van der Tol C (2012). Validation of remote sensing of bare soil ground heat flux. Remote Sensing of Environment, 121, 275-286. |
[38] | Vickers D, Mahrt L (1997). Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14, 512-526. |
[39] | Wang CH, Dong WJ, Wei ZG, Ma WT (2002). The simulation and analysis of land-surface processes on the typical arid area. Plateau Meteorology, 21, 466-472. (in Chinese with English abstract) |
[ 王澄海, 董文杰, 韦志刚, 马文婷 (2002). 典型干旱地区陆面特征的模拟及分析. 高原气象, 21, 466-472.] | |
[40] | Wang L, Liu HZ, Ketzer B, Schaffrath D, Bernhofer C (2009). Influence of grazing intensity on energy and mass exchange between the surface and atmosphere over semi-arid grassland in Inner Mongolia. Chinese Journal of Atmospheric Sciences, 33, 1201-1211. (in Chinese with English abstract) |
[ 王雷, 刘辉志, Ketzer B, Schaffrath D, Bernhofer C, (2009). 放牧强度对内蒙古半干旱草原地气间能量和物质交换的影响. 大气科学, 33, 1201-1211.] | |
[41] | Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100. |
[42] | Whitley R, Medlyn B, Zeppel M, Macinnis-Ng C, Eamus D (2009). Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. Journal of Hydrology, 373, 256-266. |
[43] | Whitley R, Taylor D, Macinnis-Ng C, Zeppel M, Yunusa I, O’Grady A, Froend R, Medlyn B, Eamus D (2013). Developing an empirical model of canopy water flux describing the common response of transpiration to solar radiation and VPD across five contrasting woodlands and forests. Hydrological Processes, 27, 1133-1146. |
[44] | Whitley R, Zeppel M, Armstrong N, Macinnis-Ng C, Yunusa I, Eamus D (2008). A modified Jarvis-Stewart model for predicting stand-scale transpiration of an Australian native forest. Plant and Soil, 305, 35-47. |
[45] | Whitley RJ, Macinnis-Ng CMO, Hutley LB, Beringer J, Zeppel M, Williams M, Taylor D, Eamua D (2011). Is productivity of mesic savannas light limited or water limited? Results of a simulation study. Global Change Biology, 17, 3130-3149. |
[46] | Williams M, Malhi Y, Nobre AD, Rastetter EB, Grace J, Pereira MGP (1998). Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rain forest: a modelling analysis. Plant, Cell & Environment, 21, 953-968. |
[47] | Wohlfahrt G, Fenstermaker LF, Arnone JA III (2008). Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biology, 14, 1475-1487. |
[48] |
Xu H, Li Y, Xu GQ, Zou T (2007). Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant, Cell & Environment, 30, 399-409.
DOI URL PMID |
[49] | Yang FL, Zhou GS, Hunt JE, Zhang F (2011). Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China. Agriculture Ecosystems & Environment, 142, 318-328. |
[50] |
Yang FL, Zhou GS (2013). Sensitivity of temperate desert steppe carbon exchange to seasonal droughts and precipitation variations in Inner Mongolia, China. PLoS ONE, 8(2), e55418.
URL PMID |
[51] | Yong JWG, Wong SC, Farquhar GD (1997). Stomatal responses to changes in vapour pressure difference between leaf and air. Plant, Cell & Environment, 20, 1213-1216. |
[52] | Yu GR, Fu YL, Sun XM, Wen XF, Zhang LM (2006). Progress and development of the China network of the terrestrial ecosystem (ChinaFLUX). Scientia Sinica Series D, 36(Suppl. 1), 1-21. (in Chinese) |
[ 于贵瑞, 伏玉玲, 孙晓敏, 温学发, 张雷明 (2006). 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路. 中国科学: D 辑, 36(增刊1), 1-21.] | |
[53] | Zhang LH, Chen YN, Li WH, Zhao RG, Ge HT (2008). Soil respiration in desert ecosystems of the arid region. Acta Ecologica Sinica, 28, 1911-1922. (in Chinese with English abstract) |
[ 张丽华, 陈亚宁, 李卫红, 赵锐锋, 葛洪涛 (2008). 干旱区荒漠生态系统的土壤呼吸. 生态学报, 28, 1911-1922.] | |
[54] | Zhang WL, Chen SP, Miao HX, Lin GH (2008). Effects on carbon flux of conversion of grassland steppe to cropland in China. Journal of Plant Ecology (Chinese Version), 32, 1301-1311. (in Chinese with English abstract) |
[ 张文丽, 陈世苹, 苗海霞, 林光辉 (2008). 开垦对克氏针茅草地生态系统碳通量的影响. 植物生态学报, 32, 1301-1311.] | |
[55] | Zhu H, Zhao CY, Li J, Li YJ, Wang F (2006). Analysis on respiration of soil in scrublands and its affecting factors in arid areas. Arid Land Geography, 29, 856-860. (in Chinese with English abstract) |
[ 朱宏, 赵成义, 李君, 李玉杰, 王锋 (2006). 干旱区荒漠灌木林地土壤呼吸及其影响因素分析. 干旱区地理, 29, 856-860.] |
[1] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[2] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[3] | 王晶苑, 魏杰, 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
[4] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[5] | 王彦兵, 游翠海, 谭星儒, 陈波宇, 许梦真, 陈世苹. 中国北方干旱半干旱区草原生态系统能量平衡闭合的季节和年际变异[J]. 植物生态学报, 2022, 46(12): 1448-1460. |
[6] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[7] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[8] | 李红琴, 张亚茹, 张法伟, 马文婧, 罗方林, 王春雨, 杨永胜, 张雷明, 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用[J]. 植物生态学报, 2022, 46(12): 1437-1447. |
[9] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[10] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
[11] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[12] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[13] | 张峰, 周广胜. 玉米农田冠层光合参数的多光谱遥感反演[J]. 植物生态学报, 2014, 38(7): 710-719. |
[14] | 杨利琼,韩广轩,于君宝,吴立新,朱敏,邢庆会,王光美,毛培利. 开垦对黄河三角洲湿地净生态系统CO2交换的影响[J]. 植物生态学报, 2013, 37(6): 503-516. |
[15] | 张法伟, 李英年, 曹广民, 李凤霞, 叶广继, 刘吉宏, 魏永林, 赵新全. 青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子[J]. 植物生态学报, 2012, 36(3): 187-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19