植物生态学报 ›› 2013, Vol. 37 ›› Issue (6): 503-516.DOI: 10.3724/SP.J.1258.2013.00052
所属专题: 生态系统碳水能量通量
杨利琼1,2,韩广轩1,*(),于君宝1,吴立新3,朱敏4,邢庆会1,2,王光美1,毛培利1
收稿日期:
2013-03-06
接受日期:
2013-04-24
出版日期:
2013-03-06
发布日期:
2013-06-05
通讯作者:
韩广轩
基金资助:
YANG Li-Qiong1,2,HAN Guang-Xuan1,*(),YU Jun-Bao1,WU Li-Xin3,ZHU Min4,XING Qing-Hui1,2,WANG Guang-Mei1,MAO Pei-Li1
Received:
2013-03-06
Accepted:
2013-04-24
Online:
2013-03-06
Published:
2013-06-05
Contact:
HAN Guang-Xuan
摘要:
近年来, 由于对湿地的不合理利用, 自然湿地被大面积地垦殖为农田, 导致湿地生态系统碳循环的模式发生改变, 从而影响了湿地生态系统碳汇功能。该研究通过涡度相关法, 对山东省东营市黄河三角洲芦苇(Phragmites australis)湿地和开垦多年的棉花(Gossypium spp.)农田的净生态系统CO2交换(NEE)进行了对比观测, 以探讨该地区典型生态系统NEE的变化规律及其影响因子, 揭示开垦对芦苇湿地NEE和碳汇功能的影响。结果表明: 在生长季, 湿地和农田生态系统NEE的日平均值各月均呈明显的“U”型变化曲线, 非生长季NEE的变幅很小。生长季湿地生态系统日最大净吸收值和释放值分别为16.04 g CO2·m-2·d-1(8月17日)和14.95 g CO2·m-2·d-1(8月9日); 农田生态系统日最大净吸收值和释放值分别为18.99 g CO2·m-2·d-1 (8月22日)和12.23 g CO2·m-2·d-1 (7月29日)。生长季白天两个生态系统NEE与光合有效辐射(PAR)之间呈直角双曲线关系; 非生长季NEE主要受土壤温度(Ts)的影响; 生态系统生长季夜间NEE受Ts和土壤含水量(SWC)的共同影响; 湿地和农田的生态系统呼吸熵(Q10)分别为2.30和3.78。2011年生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的汇, 总净固碳量分别为780.95和647.35 g CO2·m-2, 开垦降低了湿地的碳吸收能力; 而在2011年非生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的源, CO2总释放量分别为181.90和111.55 g CO2·m-2。全年湿地和农田生态系统总净固碳量分别为599.05和535.80 g CO2·m-2。
杨利琼,韩广轩,于君宝,吴立新,朱敏,邢庆会,王光美,毛培利. 开垦对黄河三角洲湿地净生态系统CO2交换的影响. 植物生态学报, 2013, 37(6): 503-516. DOI: 10.3724/SP.J.1258.2013.00052
YANG Li-Qiong,HAN Guang-Xuan,YU Jun-Bao,WU Li-Xin,ZHU Min,XING Qing-Hui,WANG Guang-Mei,MAO Pei-Li. Effects of reclamation on net ecosystem CO2 exchange in wetland in the Yellow River Delta, China. Chinese Journal of Plant Ecology, 2013, 37(6): 503-516. DOI: 10.3724/SP.J.1258.2013.00052
图1 2011年湿地和农田生态系统环境因子的季节变化。A, 气温。B, 5 cm深处土壤温度。C, 10 cm深处土壤温度。D, 20 cm深处土壤含水量。E, 降水量。
Fig. 1 Seasonal variations of environmental factors in wetland and cropland ecosystems in 2011. A, Air temperature. B, Soil temperature at 5 cm depth. C, Soil temperature at 10 cm depth. D, Soil water content at 20 cm depth. E, Precipitation.
图2 2011年湿地和农田净生态系统CO2交换(NEE)的日变化(平均值±标准误差)。
Fig. 2 Diurnal variations of the net ecosystem CO2 exchange (NEE) between wetland and cropland ecosystems in 2011 (mean ± SE).
图3 2011年湿地和农田生态系统总初级生产力(GPP)、生态系统呼吸(Reco)和净生态系统CO2交换(NEE)的季节变化。
Fig. 3 Seasonal variations in the ecosystem gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem CO2 exchange (NEE) between wetland and cropland ecosystems in 2011.
图4 2011年湿地和农田生态系统总初级生产力(GPP)、生态系统呼吸(Reco)和净生态系统CO2交换(NEE)的季节动态(平均值±标准误差)。**, p < 0.01; *, p < 0.05。
Fig. 4 Seasonal variations in the ecosystem gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem CO2 exchange (NEE) between wetland and cropland ecosystems in 2011 (mean ± SE). **, p < 0.01; *, p < 0.05.
图5 2011年湿地和农田生态系统总初级生产力(GPP)、生态系统呼吸(Reco)和净生态系统CO2交换(NEE)的累计动态变化。
Fig. 5 Dynamic changes in accumulated ecosystem gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem CO2 exchange (NEE) between wetland and cropland ecosystems in 2011.
图6 2011年湿地和农田生长季白天净生态系统CO2交换(NEE)和光合有效辐射(PAR)的关系。
Fig. 6 Relationships between daytime net ecosystem CO2 exchange (NEE) and photosynthetic active radiation (PAR) between wetland and cropland ecosystems during growing season in 2011.
类型 Type | 月份 Month | 最大光合速率 Maximum photo- synthesis rate (Amax ) (mg CO2·m-2·s-1) | 表观光量子产率 Apparent quantum yield (α) (mg CO2·μmol-1· photon) | 白天生态系统暗呼吸速率 Dark ecosystem respiration in daytime (Re) (mg CO2·m-2·s-1) | R2 |
---|---|---|---|---|---|
湿地 Wetland | 5 | 0.60 | 0.002 7 | 0.33 | 0.45 |
6 | 1.06 | 0.008 1 | 0.65 | 0.47 | |
7 | 0.94 | 0.002 5 | 0.31 | 0.62 | |
8 | 0.83 | 0.002 1 | 0.23 | 0.60 | |
9 | 0.37 | 0.001 3 | 0.12 | 0.43 | |
10 | 0.29 | 0.001 8 | 0.16 | 0.30 | |
农田 Cropland | 5 | 0.25 | 0.000 4 | 0.09 | 0.44 |
6 | 0.59 | 0.002 0 | 0.26 | 0.45 | |
7 | 0.89 | 0.002 8 | 0.35 | 0.58 | |
8 | 0.97 | 0.002 2 | 0.26 | 0.58 | |
9 | 0.48 | 0.003 2 | 0.23 | 0.37 | |
10 | 0.23 | 0.000 8 | 0.09 | 0.43 |
表1 2011年湿地和农田生长季各月白天净生态系统CO2交换(NEE)和光合有效辐射(PAR)根据Michaelis-Menten模型(方程(3))模拟参数的比较
Table 1 Comparison of analog parameters from daytime net ecosystem CO2 exchange (NEE) and photosynthetic active radiation (PAR) using a Michaelis-Menten model (Eq. (3)) between wetland and cropland ecosystems during growing season in 2011
类型 Type | 月份 Month | 最大光合速率 Maximum photo- synthesis rate (Amax ) (mg CO2·m-2·s-1) | 表观光量子产率 Apparent quantum yield (α) (mg CO2·μmol-1· photon) | 白天生态系统暗呼吸速率 Dark ecosystem respiration in daytime (Re) (mg CO2·m-2·s-1) | R2 |
---|---|---|---|---|---|
湿地 Wetland | 5 | 0.60 | 0.002 7 | 0.33 | 0.45 |
6 | 1.06 | 0.008 1 | 0.65 | 0.47 | |
7 | 0.94 | 0.002 5 | 0.31 | 0.62 | |
8 | 0.83 | 0.002 1 | 0.23 | 0.60 | |
9 | 0.37 | 0.001 3 | 0.12 | 0.43 | |
10 | 0.29 | 0.001 8 | 0.16 | 0.30 | |
农田 Cropland | 5 | 0.25 | 0.000 4 | 0.09 | 0.44 |
6 | 0.59 | 0.002 0 | 0.26 | 0.45 | |
7 | 0.89 | 0.002 8 | 0.35 | 0.58 | |
8 | 0.97 | 0.002 2 | 0.26 | 0.58 | |
9 | 0.48 | 0.003 2 | 0.23 | 0.37 | |
10 | 0.23 | 0.000 8 | 0.09 | 0.43 |
项目 Item | 类型 Type | 5 cm深处土壤温度 Soil temperature at 5 cm depth | 10 cm深处土壤温度 Soil temperature at 10 cm depth | 10 cm深处土壤含水量 Soil water content at 10 cm depth | 20 cm深处土壤含水量 Soil water content at 20 cm depth |
---|---|---|---|---|---|
生长季白天 Daytime in growing season | 湿地 Wetland | -0.39** | -0.34** | 0.10** | 0.14** |
农田 Cropland | -0.42** | -0.42** | -0.04** | -0.10** | |
生长季夜间 Nighttime in growing season | 湿地 Wetland | 0.66** | 0.65** | 0.14** | -0.15** |
农田 Cropland | 0.80** | 0.80** | -0.04 | 0.17** | |
非生长季 Non-growing season | 湿地 Wetland | 0.19** | 0.17** | 0.04* | 0.00 |
农田 Cropland | 0.13** | 0.13** | -0.07** | -0.09** | |
夜晚NEE NEE of nighttime | 湿地 Wetland | 0.66** | 0.65** | 0.21** | -0.04** |
农田 Cropland | 0.73** | 073** | 0.18** | 0.31** |
表2 湿地和农田净生态系统CO2交换(NEE)与土壤温度(Ts)和土壤含水量(SWC)的相关系数
Table 2 Correlation coefficients of net ecosystem CO2 exchange (NEE) with soil temperature (Ts) and soil water content (SWC) in wetland and cropland ecosystems
项目 Item | 类型 Type | 5 cm深处土壤温度 Soil temperature at 5 cm depth | 10 cm深处土壤温度 Soil temperature at 10 cm depth | 10 cm深处土壤含水量 Soil water content at 10 cm depth | 20 cm深处土壤含水量 Soil water content at 20 cm depth |
---|---|---|---|---|---|
生长季白天 Daytime in growing season | 湿地 Wetland | -0.39** | -0.34** | 0.10** | 0.14** |
农田 Cropland | -0.42** | -0.42** | -0.04** | -0.10** | |
生长季夜间 Nighttime in growing season | 湿地 Wetland | 0.66** | 0.65** | 0.14** | -0.15** |
农田 Cropland | 0.80** | 0.80** | -0.04 | 0.17** | |
非生长季 Non-growing season | 湿地 Wetland | 0.19** | 0.17** | 0.04* | 0.00 |
农田 Cropland | 0.13** | 0.13** | -0.07** | -0.09** | |
夜晚NEE NEE of nighttime | 湿地 Wetland | 0.66** | 0.65** | 0.21** | -0.04** |
农田 Cropland | 0.73** | 073** | 0.18** | 0.31** |
类型 Type | 土壤含水量 Soil water content (SWC) (%) | Reco.n-Ts | 生态系统呼吸熵 Ecosystem respiration quotient (Q10) | R2 | p |
---|---|---|---|---|---|
湿地 Wetland | < 40 | y = 0.0132e0.0728x | 2.07 | 0.34 | <0.001 |
40 ≤ SWC < 50 | y = 0.0150e0.0815x | 2.26 | 0.63 | <0.001 | |
≥ 50 | y = 0.0119e0.0810x | 2.24 | 0.28 | <0.001 | |
生长季 Growing season | y = 0.0118e0.0831x | 2.30 | 0.44 | <0.001 | |
农田 Cropland | < 40 | y = 0.0028e0.1558x | 4.75 | 0.51 | <0.001 |
40 ≤ SWC < 50 | y = 0.0065e0.1193x | 3.30 | 0.43 | <0.001 | |
≥ 50 | y = 0.0086e0.0996x | 2.71 | 0.47 | <0.001 | |
生长季 Growing season | y = 0.0045e0.1331x | 3.78 | 0.63 | <0.001 |
表3 生长季湿地和农田生态系统不同土壤含水量(SWC)条件下夜间净生态系统CO2交换(Reco.n)与土壤温度(Ts)的关系
Table 3 Relationships between nighttime net ecosystem CO2 exchange (Reco.n) and soil temperature (Ts) under different ranges of soil water content (SWC) between wetland and cropland ecosystems during growing season
类型 Type | 土壤含水量 Soil water content (SWC) (%) | Reco.n-Ts | 生态系统呼吸熵 Ecosystem respiration quotient (Q10) | R2 | p |
---|---|---|---|---|---|
湿地 Wetland | < 40 | y = 0.0132e0.0728x | 2.07 | 0.34 | <0.001 |
40 ≤ SWC < 50 | y = 0.0150e0.0815x | 2.26 | 0.63 | <0.001 | |
≥ 50 | y = 0.0119e0.0810x | 2.24 | 0.28 | <0.001 | |
生长季 Growing season | y = 0.0118e0.0831x | 2.30 | 0.44 | <0.001 | |
农田 Cropland | < 40 | y = 0.0028e0.1558x | 4.75 | 0.51 | <0.001 |
40 ≤ SWC < 50 | y = 0.0065e0.1193x | 3.30 | 0.43 | <0.001 | |
≥ 50 | y = 0.0086e0.0996x | 2.71 | 0.47 | <0.001 | |
生长季 Growing season | y = 0.0045e0.1331x | 3.78 | 0.63 | <0.001 |
地点 Location | 主要植被类型 Main vegetation type | 生态系统呼吸熵 Ecosystem respiration quotient (Q10) | 观测时间 Observation time (year-month-day) | 文献 Reference |
---|---|---|---|---|
加拿大亚伯达北部 Northern Alberta, Canada | 泥炭藓 Sphagnum | 1.80 | 2004年生长季 Growing season in 2004 | |
薹草属植物 Carex | 1.90 | |||
加拿大亚伯达 Alberta, Canada | 云杉和落叶松沼泽 Picea and Larix fen | 1.92 | 2003年8月 August 2003 | |
加拿大渥太华流域 Ottawa River Valley, Canada | 香蒲沼泽 Cattail marsh | 2.80 | 2005-05-09-2006-05-30 | |
中国盘锦 Panjin, China | 芦苇湿地 Reed wetland | 2.38 | 2005 | |
中国青藏高原 Qinghai-Xizang Plateau, China | 莎草科、毛茛科 Cyperaceae and Ranunculaceae | 2.64 ± 0.1 | 2005 | |
中国鄱阳湖 Poyang Lake, China | 薹草 Carex cinerascen | 3.31 | 2009年9月-2010年4月非淹水期 Non-flooded period (2009-09-2010-04) | |
中国青海 Qinghai, China | 垂穗披碱草草地 Elymus nutans pasture | 4.81 | 2006 | |
中国华北平原 North China Plain | 冬小麦、夏玉米 Winter wheat and summer maize | 2.94 | 2002-11-2003-10 | |
2.49 | 2003-11-2004-10 | |||
中国三江平原 Sanjiang Plain, China | 稻田 Rice field | 2.50 | 2004-05-15-2004-09-23 |
表4 不同湿地和农田植被类型生态系统呼吸熵Q10的比较
Table 4 Comparison of ecosystem respiration quotient (Q10) in different wetland and cropland vegetations
地点 Location | 主要植被类型 Main vegetation type | 生态系统呼吸熵 Ecosystem respiration quotient (Q10) | 观测时间 Observation time (year-month-day) | 文献 Reference |
---|---|---|---|---|
加拿大亚伯达北部 Northern Alberta, Canada | 泥炭藓 Sphagnum | 1.80 | 2004年生长季 Growing season in 2004 | |
薹草属植物 Carex | 1.90 | |||
加拿大亚伯达 Alberta, Canada | 云杉和落叶松沼泽 Picea and Larix fen | 1.92 | 2003年8月 August 2003 | |
加拿大渥太华流域 Ottawa River Valley, Canada | 香蒲沼泽 Cattail marsh | 2.80 | 2005-05-09-2006-05-30 | |
中国盘锦 Panjin, China | 芦苇湿地 Reed wetland | 2.38 | 2005 | |
中国青藏高原 Qinghai-Xizang Plateau, China | 莎草科、毛茛科 Cyperaceae and Ranunculaceae | 2.64 ± 0.1 | 2005 | |
中国鄱阳湖 Poyang Lake, China | 薹草 Carex cinerascen | 3.31 | 2009年9月-2010年4月非淹水期 Non-flooded period (2009-09-2010-04) | |
中国青海 Qinghai, China | 垂穗披碱草草地 Elymus nutans pasture | 4.81 | 2006 | |
中国华北平原 North China Plain | 冬小麦、夏玉米 Winter wheat and summer maize | 2.94 | 2002-11-2003-10 | |
2.49 | 2003-11-2004-10 | |||
中国三江平原 Sanjiang Plain, China | 稻田 Rice field | 2.50 | 2004-05-15-2004-09-23 |
[1] | Barr AG, Griffis TJ, Black TA, Lee X, Staebler RM, Fuentes JD, Chen Z, Morgenstern K (2002). Comparing the carbon budgets of boreal and temperate deciduous forest stands. Canadian Journal of Forest Research, 32, 813-822. |
[2] | Bonneville MC, Strachan IB, Humphreys ER, Roulet NT (2008). Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 148, 69-81. |
[3] | Cai WM, Tang HJ, Chen YQ, Zhang FR (2004). Landscape pattern of rural residential areas in Yellow River Delta in recent 20 years. Resources Science, 26(5), 89-97. (in Chinese with English abstract) |
[ 蔡为民, 唐华俊, 陈佑启, 张凤荣 (2004). 近20年黄河三角洲典型地区农村居民点景观格局. 资源科学, 26(5), 89-97.] | |
[4] | Carrara A, Janssens IA, Yuste JC, Ceulemans R (2004). Seasonal changes in photosynthesis, respiration and NEE of a mixed temperate forest. Agricultural and Forest Meteorology, 126, 15-31. |
[5] | Chen GS, Tian HQ (2007). Land use/cover change effects on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 189-204. (in Chinese with English abstract) |
[ 陈广生, 田汉勤 (2007). 土地利用/覆盖变化对陆地生态系统碳循环的影响. 植物生态学报, 31, 189-204.] | |
[6] | Chi GY, Wang J, Chen X, Shi Y (2006). Dynamic changes of soil organic carbon (SOC) of different land use types in Sanjiang Plain. Soil, 38, 755-761. (in Chinese with English abstract) |
[ 迟光宇, 王俊, 陈欣, 史奕 (2006). 三江平原不同土地利用方式下土壤有机碳的动态变化. 土壤, 38, 755-761.] | |
[7] | Cui BS, Liu XT (2001). Ecological character changes and sustainability management of wetlands in the Yellow River Delta. Scientia Geographica Sinica, 21, 250-256. (in Chinese with English abstract) |
[ 崔保山, 刘兴土 (2001). 黄河三角洲湿地生态特征变化及可持续性管理对策. 地理科学, 21, 250-256.] | |
[8] | Dong HF, Yu JB, Sun ZG, Mu XJ, Chen XB, Mao PL, Wu CF, Guan B (2010). Spatial distribution characteristics of organic carbon in the soil-plant systems in the Yellow River estuary tidal flat wetland. Environmental Science, 31, 1594-1599. (in Chinese with English abstract) |
[ 董洪芳, 于君宝, 孙志高, 牟晓杰, 陈小兵, 毛培利, 吴春发, 管博 (2010). 黄河口滨岸潮滩湿地植物-土壤系统有机碳空间分布特征. 环境科学, 31, 1594-1599.] | |
[9] | Du ZX, Zeng HD, Huang XH, Wei GJ, Li XB, Zhang J, Yang YS (2010). Soil respiration and controlling factors at Phragmites communis community in riverside wetland. Journal of Subtropical Resources and Environment, 5(3), 49-54. (in Chinese with English abstract) |
[ 杜紫贤, 曾宏达, 黄向华, 魏国军, 李熙波, 张静, 杨玉盛 (2010). 城市沿江芦苇湿地土壤呼吸动态及其影响因子分析. 亚热带资源与环境学报, 5(3), 49-54.] | |
[10] | Feng ZJ, Zhao XS (2008). The environmental interpretation for the space change of the reed biomass in the Yellow River Delta. Research of Soil and Water Conservation, 15(3), 170-174. (in Chinese with English abstract) |
[ 冯忠江, 赵欣胜 (2008). 黄河三角洲芦苇生物量空间变化环境解释. 水土保持研究, 15(3), 170-174.] | |
[11] | Flanagan LB, Johnson BG (2005). Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 130, 237-253. |
[12] | Franzen LG (1992). Can earth afford to lose the wetlands in the battle against the increasing greenhouse effect? In: Proceeding of the 9th International Peat Congress, Uppsala, Sweden. 1-18. |
[13] | Glenn AJ, Flanagan LB, Syed KH, Carlson PJ (2006). Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agricultural and Forest Meteorology, 140, 115-135. |
[14] | Guo MY, Wei ZJ, Yun XJ, Wu YL, Liu HM, Li Y, Xin XP (2011). Effect of grazing on grassland soil respiration. Pratacultural Science, 28, 729-736. (in Chinese with English abstract) |
[ 郭明英, 卫智军, 运向军, 吴艳玲, 刘红梅, 李耀, 辛晓平 (2011). 放牧对草原土壤呼吸的影响. 草业科学, 28, 729-736.] | |
[15] | Hao QJ, Wang YS, Song CC, Jiang CS (2007a). CO2 budget in agro-ecosystems in the Sanjiang Plain. Journal of Agro- Environment Science, 26, 1556-1560. (in Chinese with English abstract) |
[ 郝庆菊, 王跃思, 宋长春, 江长胜 (2007a). 三江平原农田生态系统CO2收支研究. 农业环境科学学报, 26, 1556-1560.] | |
[16] | Hao QJ, Wang YS, Song CC, Jiang CS (2007b). Effects of marsh reclamation on methane and nitrous oxide emissions. Acta Ecologica Sinica, 27, 3417-3426. (in Chinese with English abstract) |
[ 郝庆菊, 王跃思, 宋长春, 江长胜 (2007b). 垦殖对沼泽湿地CH4和N2O排放的影响. 生态学报, 27, 3417-3426.] | |
[17] | Hao YB, Wang YF, Sun XM, Huang XZ, Cui XY, Niu HS, Zhang YH, Yu GR (2006). Seasonal variation in carbon exchange and its ecological analysis over Leymus chinensis steppe in Inner Mongolia. Science in China (Series D: Earth Sciences), 36(Suppl. I), 174-182. (in Chinese) |
[ 郝彦宾, 王艳芬, 孙晓敏, 黄祥忠, 崔晓勇, 牛海山, 张亚红, 于贵瑞 (2006). 内蒙古羊草草原碳交换季节变异及其生态学解析. 中国科学D辑: 地球科学, 36(增刊I), 174-182.] | |
[18] |
Hu QW, Xing RX, Zhu LL, Wu Q, Yao B, Liu Y, Hu BH (2011). Characteristics of CO2 emission from Carex- dominated wetland in Poyang Lake in non-flooded period. Chinese Journal of Applied Ecology, 22, 1431-1436. (in Chinese with English abstract)
URL PMID |
[ 胡启武, 幸瑞新, 朱丽丽, 吴琴, 尧波, 刘影, 胡斌华 (2011). 鄱阳湖苔草湿地非淹水期CO2释放特征. 应用生态学报, 22, 1431-1436.]
URL PMID |
|
[19] | Li J, Yu Q, Sun XM, Tong J, Ren CY, Wang J, Liu EM, Zhu ZL, Yu GR (2006). Carbon exchange and environment regulation mechanism in cropland ecosystem on the China North Plain. Science in China (Series D: Earth Sciences), 36(Suppl. I), 210-223. (in Chinese) |
[ 李俊, 于强, 孙晓敏, 同娟, 任传友, 王靖, 刘恩民, 朱治林, 于贵瑞 (2006). 华北平原农田生态系统碳交换及其环境调控机制. 中国科学D辑: 地球科学, 36(增刊I), 210-223.] | |
[20] | Li Q, Xue HX, Wang YL, Hu ZH, Li J (2011). The preliminary study on the impact of soil temperature and moisture on carbon flux over Stipa krylovii ecosystem. Journal of Agro-Environment Science, 30, 605-610. (in Chinese with English abstract) |
[ 李琪, 薛红喜, 王云龙, 胡正华, 李洁 (2011). 土壤温度和水分对克氏针茅草原生态系统碳通量的影响初探. 农业环境科学学报, 30, 605-610.] | |
[21] | Li YJ (2008). Dynamics of Carbon, Water and Heat Fluxes and Their Environmental Controls in a Maize Agroecosystem. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[ 李祎君 (2008). 玉米农田水热碳通量动态及其环境控制机理研究. 博士学位论文, 中国科学院植物研究所, 北京.] | |
[22] | Li YZ, Yu JB, Han GX, Wang XH, Wang YL, Guan B (2011). Dynamic evolution of natural wetlands in Yellow River Delta and related driving factors. Chinese Journal of Ecology, 30, 1535-1541. (in Chinese with English abstract) |
[ 栗云召, 于君宝, 韩广轩, 王雪宏, 王永丽, 管博 (2011). 黄河三角洲自然湿地动态演变及其驱动因子. 生态学杂志, 30, 1535-1541.] | |
[23] | Lin TB, Wang ZQ, Song XL, Qu YW, Meng ZY (2008). CO2 flux and impact factors in winter wheat field ecosystem. Chinese Journal of Eco-Agriculture, 16, 1458-1463. (in Chinese with English abstract) |
[ 林同保, 王志强, 宋雪雷, 曲奕威, 孟战赢 (2008). 冬小麦农田二氧化碳通量及其影响因素分析. 中国生态农业学报, 16, 1458-1463.] | |
[24] | Liu XT, Ma XH (2000). Influence of large-scale reclamation on natural environment and regional environmental protection in the Sanjiang Plain. Scientia Geographica Sinica, 20, 14-19. (in Chinese with English abstract) |
[ 刘兴土, 马学慧 (2000). 三江平原大面积开荒对自然环境影响及区域生态环境保护. 地理科学, 20, 14-19.] | |
[25] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323. |
[26] |
Lü GH, Zhou L, Zhao XL, Jia QY, Xie YB, Zhou GS (2006). Vertical distribution of soil organic carbon and total nitrogen in reed wetland. Chinese Journal of Applied Ecology, 17, 384-389. (in Chinese with English abstract)
URL PMID |
[ 吕国红, 周莉, 赵先丽, 贾庆宇, 谢艳兵, 周广胜 (2006). 芦苇湿地土壤有机碳和全氮含量的垂直分布特征. 应用生态学报, 17, 384-389.]
URL PMID |
|
[27] | Ma AN, Lu JJ (2008). The progress of research on carbon flux in wetland ecosystems. Wetland Science, 6, 116-123. (in Chinese with English abstract) |
[ 马安娜, 陆健健 (2008). 湿地生态系统碳通量研究进展. 湿地科学, 6, 116-123.] | |
[28] | Ma AN, Lu JJ (2011). Net ecosystem exchange of carbon and tidal effects in Chongxi Wetland, Yangtze Estuary. Research of Environmental Sciences, 24, 716-721. (in Chinese with English abstract) |
[ 马安娜, 陆健健 (2011). 长江口崇西湿地生态系统的二氧化碳交换及潮汐影响. 环境科学研究, 24, 716-721.] | |
[29] |
Mahecha MD, Reichstein M, Carvalhais N, Lasslop G, Lange H, Seneviratne SI, Vargas R, Ammann C, Arain MA, Cescatti A, Janssens IA, Migliavacca M, Montagnani L, Richardson AD (2010). Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329, 838-840.
URL PMID |
[30] | Ruimy A, Jarvis PG, Baldocchi DD, Saugier B (1995). CO2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research, 26, 1-68. |
[31] | Shi PL, Sun XM, Xu LL, Zhang XZ, He YT, Zhang DQ, Yu GR (2006). The net ecosystem CO2 exchange and its influence factor in pole grass meadow, Tibet Plateau. Science in China (Series D: Earth Sciences), 36(Suppl. I), 194-203. (in Chinese) |
[ 石培礼, 孙晓敏, 徐玲玲, 张宪洲, 何永涛, 张东秋, 于贵瑞 (2006). 西藏高原草原化嵩草草甸生态系统CO2净交换及其影响因子. 中国科学D辑: 地球科学, 36(增刊I), 194-203.] | |
[32] | Song CC (2003). Advance in research on carbon cycling in wetlands. Scientia Geographica Sinica, 23, 622-628. (in Chinese with English abstract) |
[ 宋长春 (2003). 湿地生态系统碳循环研究进展. 地理科学, 23, 622-628.] | |
[33] | Song CY, Liu GH, Liu QS, Cao MC, Huang C (2008). Distribution patterns of plant communities in the Yellow River Delta and related affecting factors. Chinese Journal of Ecology, 27, 2042-2048. (in Chinese with English abstract) |
[ 宋创业, 刘高焕, 刘庆生, 曹铭昌, 黄翀 (2008). 黄河三角洲植物群落分布格局及其影响因素. 生态学杂志, 27, 2042-2048.] | |
[34] | Song T, Wang YS, Song CC, Shi LQ, Huang Y, Wang PX (2006). CO2 fluxes from rice fields of Sanjiang Plain and its environmental response factors. China Environmental Science, 26, 657-661. (in Chinese with English abstract) |
[ 宋涛, 王跃思, 宋长春, 石立庆, 黄耀, 王盘兴 (2006). 三江平原稻田CO2通量及其环境响应特征. 中国环境科学, 26, 657-661.] | |
[35] | Syed KH, Flanagan LB, Carlson PJ, Glenn AJ, van Gaalen KE (2006). Environmental control of net ecosystem CO2 exchange in a treed, moderately rich fen in northern Alberta. Agricultural and Forest Meteorology, 140, 97-114. |
[36] | Tong XJ, Li J, Liu D (2011). Characteristics and controlling factors of photosynthesis in a maize ecosystem on the North China Plain. Acta Ecologica Sinica, 31, 4889-4899. (in Chinese with English abstract) |
[ 同小娟, 李俊, 刘渡 (2011). 华北平原玉米田生态系统光合作用特征及影响因素. 生态学报, 31, 4889-4899.] | |
[37] | Wan ZM, Song CC, Yang GS, Huang JY, Wang LL, Li YC (2009). The active soil organic carbon fraction and its relationship with soil enzyme activity in different types of marshes in the Sanjiang Plain. Acta Scientiae Circumstantiae, 29, 406-412. (in Chinese with English abstract) |
[ 万忠梅, 宋长春, 杨桂生, 黄靖宇, 王丽丽, 李英臣 (2009). 三江平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系. 环境科学学报, 29, 406-412.] | |
[38] |
Wang H, Wang R, Yu Y, Mitchell MJ, Zhang L (2011). Soil organic carbon of degraded wetlands treated with freshwater in the Yellow River Delta, China. Journal of Environmental Management, 92, 2628-2633.
DOI URL PMID |
[39] | Wang HM, Li ZH, Han GD, Han JW (2007). Analysis of dynamical characteristics of landscape patterns in Yellow River Delta. Bulletin of Soil and Water Conservation, 27, 81-85. (in Chinese with English abstract) |
[ 王海梅, 李政海, 韩国栋, 韩经纬 (2007). 黄河三角洲土地利用及景观格局的动态分析. 水土保持通报, 27, 81-85.] | |
[40] | Wang JF, Wang GX, Wang YB, Li YS (2007). The influence of marsh and alpine meadow grassland degradation to CO2 emissions in the Qinghai-Tibet Plateau. Chinese Science Bulletin, 52, 1554-1560. (in Chinese) |
[ 王俊峰, 王根绪, 王一博, 李元寿 (2007). 青藏高原沼泽与高寒草甸草地退化对生长期CO2排放的影响. 科学通报, 52, 1554-1560.] | |
[41] | Wu LB, Gu S, Zhao L, Xu SX, Zhou HK, Feng C, Xu WX, Li YN, Zhao XQ, Tang YH (2010). Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chinese Journal of Plant Ecology, 34, 770-780. (in Chinese with English abstract) |
[ 吴力博, 古松, 赵亮, 徐世晓, 周华坤, 冯超, 徐维新, 李英年, 赵新全, 唐艳鸿 (2010). 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 34, 770-780.] | |
[42] | Xie YB, Jia QY, Zhou L, Li RP, Lü GH (2006). Soil respiration and its controlling factors at Phragmites communis wetland in Panjin. Journal of Meteorology and Environment, 22(4), 53-58. (in Chinese with English abstract) |
[ 谢艳兵, 贾庆宇, 周莉, 李荣平, 吕国红 (2006). 盘锦湿地芦苇群落土壤呼吸作用动态及其影响因子分析. 气象与环境学报, 22(4), 53-58.] | |
[43] | Xue HX, Li F, Li Q, Wang LX, Wang YL, Hu ZH (2012). Research progress on carbon flux over agro-ecosystem based on the eddy covariance method in China. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 4, 226-232. (in Chinese with English abstract) |
[ 薛红喜, 李峰, 李琪, 王连喜, 王云龙, 胡正华 (2012). 基于涡度相关法的中国农田生态系统碳通量研究进展. 南京信息工程大学学报: 自然科学版, 4, 226-232.] | |
[44] | Yang Q, Lü XG (1999). A preliminary study on the soil respiration in wetland ecosystem of Sanjiang Plain. Chinese Journal of Soil Science, 30, 254-256. (in Chinese) |
[ 杨青, 吕宪国 (1999). 三江平原湿地生态系统土壤呼吸动态变化的初探. 土壤通报, 30, 254-256.] | |
[45] |
Zhang FW, Li YN, Cao GM, Li FX, Ye GJ, Liu JH, Wei YL, Zhao XQ (2012). CO2 fluxes and their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai Lake, China. Chinese Journal of Plant Ecology, 36, 187-198. (in Chinese with English abstract)
DOI URL |
[ 张法伟, 李英年, 曹广民, 李凤霞, 叶广继, 刘吉宏, 魏永林, 赵新全 (2012). 青海湖北岸高寒草甸草原生态系统CO2通量特征及其驱动因子. 植物生态学报, 36, 187-198.]
DOI URL |
|
[46] |
Zhang FW, Liu AH, Li YN, Zhao L, Wang QX, Du MY (2008). CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 28, 453-462. (in Chinese with English abstract)
DOI URL |
[ 张法伟, 刘安花, 李英年, 赵亮, 王勤学, 杜明远 (2008). 青藏高原高寒湿地生态系统CO2通量. 生态学报, 28, 453-462.]
DOI URL |
|
[47] | Zhang JB, Song CC (2004). Effects of different land-use on soil physical-chemical properties in the Sanjiang Plain. Chinese Journal of Soil Science, 35, 371-373. (in Chinese with English abstract) |
[ 张金波, 宋长春 (2004). 三江平原不同土地利用方式对土壤理化性质的影响. 土壤通报, 35, 371-373.] | |
[48] | Zhang XL, Li PY, Liu YL, Xu XY, Cao CX, Shan K (2007). Studies on the wetland of the Yellow River Delta: a review. Marine Sciences, 31(7), 81-85. (in Chinese with English abstract) |
[ 张晓龙, 李培英, 刘月良, 徐兴永, 曹成效, 单凯 (2007). 黄河三角洲湿地研究进展. 海洋科学, 31(7), 81-85.] | |
[49] |
Zhou L, Zhou GS, Jia QY (2009). Annual cycle of CO2 exchange over a reed (Phragmites australis) wetland in Northeast China. Aquatic Botany, 91, 91-98.
DOI URL |
[50] | Zhou T, Shi PJ (2006). Indirect impacts of land use change on soil organic carbon change in China. Advances in Earth Science, 21, 138-143. (in Chinese with English abstract) |
[ 周涛, 史培军 (2006). 土地利用变化对中国土壤碳储量变化的间接影响. 地球科学进展, 21, 138-143.] |
[1] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[2] | 冯印成, 王云琦, 王玉杰, 王凯, 王松年, 王杰帅. 重庆缙云山针阔混交林水汽通量特征及其影响因子[J]. 植物生态学报, 2022, 46(8): 890-903. |
[3] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[4] | 王彦兵, 游翠海, 谭星儒, 陈波宇, 许梦真, 陈世苹. 中国北方干旱半干旱区草原生态系统能量平衡闭合的季节和年际变异[J]. 植物生态学报, 2022, 46(12): 1448-1460. |
[5] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[6] | 李红琴, 张亚茹, 张法伟, 马文婧, 罗方林, 王春雨, 杨永胜, 张雷明, 李英年. 增强回归树模型在青藏高原高寒灌丛通量数据插补中的应用[J]. 植物生态学报, 2022, 46(12): 1437-1447. |
[7] | 陈世苹, 游翠海, 胡中民, 陈智, 张雷明, 王秋凤. 涡度相关技术及其在陆地生态系统通量研究中的应用[J]. 植物生态学报, 2020, 44(4): 291-304. |
[8] | 柴曦, 李英年, 段呈, 张涛, 宗宁, 石培礼, 何永涛, 张宪洲. 青藏高原高寒灌丛草甸和草原化草甸CO2通量动态及其限制因子[J]. 植物生态学报, 2018, 42(1): 6-19. |
[9] | 徐静馨, 郑有飞, 麦博儒, 赵辉, 储仲芳, 黄积庆, 袁月. 基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征[J]. 植物生态学报, 2017, 41(6): 670-682. |
[10] | 孔庆仙, 夏江宝, 赵自国, 屈凡柱. 不同地下水矿化度对柽柳光合特征及树干液流的影响[J]. 植物生态学报, 2016, 40(12): 1298-1309. |
[11] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
[12] | 王玉辉, 井长青, 白洁, 李龙辉, 陈曦, 罗格平. 亚洲中部干旱区3个典型生态系统生长季水碳通量特征[J]. 植物生态学报, 2014, 38(8): 795-808. |
[13] | 张峰, 周广胜. 玉米农田冠层光合参数的多光谱遥感反演[J]. 植物生态学报, 2014, 38(7): 710-719. |
[14] | 夏江宝, 张淑勇, 赵自国, 赵艳云, 高源, 谷广义, 孙景宽. 贝壳堤岛旱柳光合效率的土壤水分临界效应及其阈值分级[J]. 植物生态学报, 2013, 37(9): 851-860. |
[15] | 朱敏,张振华,于君宝,吴立新,韩广轩,杨利琼,邢庆会,谢宝华,毛培利,王光美. 氮沉降对黄河三角洲芦苇湿地土壤呼吸的影响[J]. 植物生态学报, 2013, 37(6): 517-529. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19