植物生态学报 ›› 2013, Vol. 37 ›› Issue (6): 517-529.DOI: 10.3724/SP.J.1258.2013.00053
所属专题: 生态系统碳水能量通量
朱敏1,2,张振华1,于君宝2,吴立新3,韩广轩2,*(),杨利琼2,邢庆会2,谢宝华2,毛培利2,王光美2
收稿日期:
2013-02-26
接受日期:
2013-01-25
出版日期:
2013-02-26
发布日期:
2013-06-05
通讯作者:
韩广轩
基金资助:
ZHU Min1,2,ZHANG Zhen-Hua1,YU Jun-Bao2,WU Li-Xin3,HAN Guang-Xuan2,*(),YANG Li-Qiong2,XING Qing-Hui2,XIE Bao-Hua2,MAO Pei-Li2,WANG Guang-Mei2
Received:
2013-02-26
Accepted:
2013-01-25
Online:
2013-02-26
Published:
2013-06-05
Contact:
HAN Guang-Xuan
摘要:
2012年6月至2012年10月, 对黄河三角洲芦苇(Phragmites australis)湿地进行了模拟氮沉降试验, 氮沉降水平分别为对照(CK, 0 kg N·hm-2·a-1)、低氮(LN, 50 kg N·hm-2·a-1)和高氮(HN, 100 kg N·hm-2·a-1)。利用LI-8100土壤碳通量测量系统测定土壤呼吸速率。结果表明, 氮沉降促进了芦苇湿地土壤呼吸作用, LN和HN处理使芦苇生长季(6-10月)平均土壤呼吸速率比CK分别提高19%和58%。积水改变了芦苇湿地土壤呼吸日动态。地面无积水时, 各处理土壤呼吸日动态均呈单峰型曲线; 地面有积水时, 土壤呼吸日动态峰值推后或无单峰型波动规律。积水影响土壤呼吸作用对温度的响应。地面无积水时, 各处理土壤呼吸速率均与气温呈极显著的正指数相关关系, 气温分别解释了CK、LN和HN处理下土壤呼吸季节变化的69.9%、64.5%和59.9%; 地面有积水时, 各处理土壤呼吸与气温相关性不显著。CK、LN和HN处理下土壤呼吸温度敏感性系数Q10值分别为1.68、1.75和1.68, 表明LN处理增强了土壤呼吸温度敏感性, HN处理对其影响不显著。
朱敏,张振华,于君宝,吴立新,韩广轩,杨利琼,邢庆会,谢宝华,毛培利,王光美. 氮沉降对黄河三角洲芦苇湿地土壤呼吸的影响. 植物生态学报, 2013, 37(6): 517-529. DOI: 10.3724/SP.J.1258.2013.00053
ZHU Min,ZHANG Zhen-Hua,YU Jun-Bao,WU Li-Xin,HAN Guang-Xuan,YANG Li-Qiong,XING Qing-Hui,XIE Bao-Hua,MAO Pei-Li,WANG Guang-Mei. Effect of nitrogen deposition on soil respiration in Phragmites australis wetland in the Yellow River Delta, China. Chinese Journal of Plant Ecology, 2013, 37(6): 517-529. DOI: 10.3724/SP.J.1258.2013.00053
图1 2012年芦苇生长季中气象因子及各处理芦苇地上部分生物量的季节变化(平均值±标准误差, n = 3)。A,气温、5 cm和10 cm深度土壤温度。B, 降水量。C, 10 cm和20 cm深度土壤湿度。D, 各处理芦苇地上部分生物量的季节变化。
Fig. 1 Seasonal variations of meteorological factors and aboveground biomass of Phragmites australis among different treatments during the growing season in 2012 (mean ± SE, n = 3). A, Air temperature and soil temperature (5 and 10 cm depth). B, Precipitation. C, Soil moisture (10 and 20 cm depth). D, Seasonal variations of aboveground biomass of P. australis among different treatments.
处理 Treatment | 土壤深度 Soil depth (cm) | 铵态氮 Ammonium nitrogen (%) | 硝态氮 Nitrate nitrogen (%) | 全氮 Total nitrogen (%) | 全碳 Total carbon (%) | 有机碳 Organic carbon (%) |
---|---|---|---|---|---|---|
CK | 0-10 | 1.19 ± 0.11b | 0.76 ± 0.18a | 0.06 ± 0.00ab | 1.57 ± 0.02ab | 0.42 ± 0.04c |
LN | 0-10 | 2.00 ± 0.12a | 1.85 ± 0.67a | 0.08 ± 0.01a | 1.89 ± 0.13a | 0.98 ± 0.07a |
HN | 0-10 | 2.13 ± 0.22a | 2.01 ± 0.88a | 0.09 ± 0.00a | 1.71 ± 0.10a | 0.84 ± 0.03b |
CK | 10-20 | 1.12 ± 0.09b | 0.60 ± 0.08a | 0.05 ± 0.01ab | 1.38 ± 0.05b | 0.30 ± 0.03c |
LN | 10-20 | 1.92 ± 0.24a | 1.08 ± 0.34a | 0.07 ± 0.01a | 1.80 ± 0.05a | 0.84 ± 0.03a |
HN | 10-20 | 1.81 ± 0.15a | 0.92 ± 0.24a | 0.09 ± 0.01a | 1.85 ± 0.13a | 0.69 ± 0.04b |
表1 各处理土壤理化性质对比(平均值±标准误差)
Table 1 Comparisons of soil physical and chemical properties in different treatments (mean ± SE)
处理 Treatment | 土壤深度 Soil depth (cm) | 铵态氮 Ammonium nitrogen (%) | 硝态氮 Nitrate nitrogen (%) | 全氮 Total nitrogen (%) | 全碳 Total carbon (%) | 有机碳 Organic carbon (%) |
---|---|---|---|---|---|---|
CK | 0-10 | 1.19 ± 0.11b | 0.76 ± 0.18a | 0.06 ± 0.00ab | 1.57 ± 0.02ab | 0.42 ± 0.04c |
LN | 0-10 | 2.00 ± 0.12a | 1.85 ± 0.67a | 0.08 ± 0.01a | 1.89 ± 0.13a | 0.98 ± 0.07a |
HN | 0-10 | 2.13 ± 0.22a | 2.01 ± 0.88a | 0.09 ± 0.00a | 1.71 ± 0.10a | 0.84 ± 0.03b |
CK | 10-20 | 1.12 ± 0.09b | 0.60 ± 0.08a | 0.05 ± 0.01ab | 1.38 ± 0.05b | 0.30 ± 0.03c |
LN | 10-20 | 1.92 ± 0.24a | 1.08 ± 0.34a | 0.07 ± 0.01a | 1.80 ± 0.05a | 0.84 ± 0.03a |
HN | 10-20 | 1.81 ± 0.15a | 0.92 ± 0.24a | 0.09 ± 0.01a | 1.85 ± 0.13a | 0.69 ± 0.04b |
图2 地面无积水时芦苇湿地各处理土壤呼吸速率的日动态(平均值±标准误差, n = 3)。CK, 0 kg N·hm-2·a-1; LN, 50 kg N·hm-2·a-1; HN, 100 kg N·hm-2·a-1。
Fig. 2 Diurnal variations of soil respiration rate in different treatments in Phragmites australis wetland when there is no surface ponding (mean ± SE, n = 3).
图3 地面有积水时芦苇湿地各处理土壤呼吸速率的日动态(平均值±标准误差, n = 3)。CK, 0 kg N·hm-2·a-1; LN, 50 kg N·hm-2·a-1; HN, 100 kg N·hm-2·a-1。
Fig. 3 Diurnal variations of soil respiration rate in different treatments in Phragmites australis wetland when there is surface ponding (mean ± SE, n = 3).
图4 芦苇湿地各处理土壤呼吸速率的日动态差异性分析(平均值±标准误差, n = 7)。CK, 0 kg N·hm-2·a-1; LN, 50 kg N·hm-2·a-1; HN, 100 kg N·hm-2·a-1。不同字母表示处理间差异显著(p < 0.05)。
Fig. 4 Difference analysis of daily dynamics of soil respiration rate in different treatments in Phragmites australis wetland (mean ± SE, n = 7). Different letters mean significant difference among different treatments at 0.05 level.
月份 Month | CK (μmol CO2·m-2·s-1) | LN (μmol CO2·m-2·s-1) | HN (μmol CO2·m-2·s-1) |
---|---|---|---|
6月 June | 1.95 ± 0.13b | 1.95 ± 0.16b | 2.68 ± 0.18a |
7月 July | 1.65 ± 0.09ab | 2.23 ± 0.32a | 2.78 ± 0.35a |
9月 September | 2.11 ± 0.09c | 2.57 ± 0.09b | 3.33 ± 0.11a |
10月 October | 1.19 ± 0.09b | 1.50 ± 0.12b | 2.13 ± 0.20a |
生长季 Growing season | 1.67 ± 0.15b | 1.99 ± 0.17b | 2.64 ± 0.21a |
表2 芦苇湿地各处理土壤呼吸速率的季节动态(平均值±标准误差)
Table 2 Seasonal dynamics of soil respiration rate in different treatments in Phragmites australis wetland (mean ± SE)
月份 Month | CK (μmol CO2·m-2·s-1) | LN (μmol CO2·m-2·s-1) | HN (μmol CO2·m-2·s-1) |
---|---|---|---|
6月 June | 1.95 ± 0.13b | 1.95 ± 0.16b | 2.68 ± 0.18a |
7月 July | 1.65 ± 0.09ab | 2.23 ± 0.32a | 2.78 ± 0.35a |
9月 September | 2.11 ± 0.09c | 2.57 ± 0.09b | 3.33 ± 0.11a |
10月 October | 1.19 ± 0.09b | 1.50 ± 0.12b | 2.13 ± 0.20a |
生长季 Growing season | 1.67 ± 0.15b | 1.99 ± 0.17b | 2.64 ± 0.21a |
处理 Treatment | 气温 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||
---|---|---|---|---|
5 cm | 10 cm | 20 cm | ||
CK | 0.836** | 0.803** | 0.767** | 0.742** |
LN | 0.744** | 0.551** | 0.515** | 0.505** |
HN | 0.725** | 0.535** | 0.499** | 0.501** |
表3 地面无积水时土壤呼吸与温度的相关关系
Table 3 Correlation ships between soil respiration and temperature when there is no surface ponding
处理 Treatment | 气温 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||
---|---|---|---|---|
5 cm | 10 cm | 20 cm | ||
CK | 0.836** | 0.803** | 0.767** | 0.742** |
LN | 0.744** | 0.551** | 0.515** | 0.505** |
HN | 0.725** | 0.535** | 0.499** | 0.501** |
处理 Treatment | 回归方程 Regression equation | R2 | F | p | Q10 |
---|---|---|---|---|---|
CK | Rs = 0.454e0.052T | 0.699 | 76.785 | 0.000 | 1.68 |
LN | Rs = 0.521e0.056T | 0.645 | 59.882 | 0.000 | 1.75 |
HN | Rs = 0.781e0.052T | 0.599 | 49.297 | 0.000 | 1.68 |
表4 地面无积水时土壤呼吸与气温的指数函数方程
Table 4 Exponential function equations of soil respiration and air temperature when there is no surface ponding
处理 Treatment | 回归方程 Regression equation | R2 | F | p | Q10 |
---|---|---|---|---|---|
CK | Rs = 0.454e0.052T | 0.699 | 76.785 | 0.000 | 1.68 |
LN | Rs = 0.521e0.056T | 0.645 | 59.882 | 0.000 | 1.75 |
HN | Rs = 0.781e0.052T | 0.599 | 49.297 | 0.000 | 1.68 |
图5 各处理土壤呼吸速率与气温的指数函数方程(平均值±标准误差, n = 3)。CK, 0 kg N·hm-2·a-1; LN, 50 kg N·hm-2·a-1; HN, 100 kg N·hm-2·a-1。
Fig. 5 Exponential function equations of soil respiration rate and air temperature in different treatments (mean ± SE, n = 3).
处理 Treatment | 气温 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||
---|---|---|---|---|
5 cm | 10 cm | 20 cm | ||
CK | -0.547 | -0.662* | -0.625* | -0.732** |
LN | 0.015 | -0.022 | -0.040 | -0.220 |
HN | -0.152 | -0.183 | -0.199 | -0.380 |
表5 地面有积水时土壤呼吸与温度的相关关系
Table 5 Correlation ships between soil respiration and temperature when there is surface ponding
处理 Treatment | 气温 Air temperature (℃) | 土壤温度 Soil temperature (℃) | ||
---|---|---|---|---|
5 cm | 10 cm | 20 cm | ||
CK | -0.547 | -0.662* | -0.625* | -0.732** |
LN | 0.015 | -0.022 | -0.040 | -0.220 |
HN | -0.152 | -0.183 | -0.199 | -0.380 |
图6 各处理土壤呼吸速率与地上部分生物量的关系(平均值±标准误差, n = 7)。CK, 0 kg N·hm-2·a-1; LN, 50 kg N·hm-2·a-1; HN, 100 kg N·hm-2·a-1。
Fig. 6 Relationships between soil respiration rate and aboveground biomass in different treatments (mean ± SE, n = 3).
土壤深度 Soil depth (cm) | 铵态氮 Ammonium nitrogen (%) | 硝态氮 Nitrate nitrogen (%) | 全氮 Total nitrogen (%) | 全碳 Total carbon (%) | 有机碳 Organic carbon (%) |
---|---|---|---|---|---|
0-10 | 0.684* | 0.315 | -0.10 | -0.219 | 0.314 |
10-20 | 0.950** | 0.287 | 0.213 | 0.176 | 0.183 |
表6 各处理土壤呼吸与土壤理化性质的相关关系
Table 6 Correlation ships between soil respiration and soil physical and chemical properties in different treatments
土壤深度 Soil depth (cm) | 铵态氮 Ammonium nitrogen (%) | 硝态氮 Nitrate nitrogen (%) | 全氮 Total nitrogen (%) | 全碳 Total carbon (%) | 有机碳 Organic carbon (%) |
---|---|---|---|---|---|
0-10 | 0.684* | 0.315 | -0.10 | -0.219 | 0.314 |
10-20 | 0.950** | 0.287 | 0.213 | 0.176 | 0.183 |
[1] | Aber JD, McDowell WH, Nadelhoffer KJ, Magill A, Berntson G, Kamakea M, McNulty SG, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921-934. |
[2] | Allen AS, Schlesinger WH (2004). Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology & Biochemistry, 36, 581-589. |
[3] | Atkin OK, Edwards EJ, Loveys BR (2000). Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist, 147, 141-154. |
[4] |
Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004). Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 196, 43-56.
DOI URL |
[5] |
Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF (2002). Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia, 131, 559-568.
DOI URL PMID |
[6] | Chmura GL, Anisfield SC, Cahoon DR, Lynch JC (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17, 1111. |
[7] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Changed Biology, 4, 217-227. |
[8] | Dörr H, Mǔnnich KO (1987). Annual variation in soil respiration in selected areas of the temperate zone. Tellus B, 39, 114-121. |
[9] | Du ZX, Zeng HD, Huang XH, Wei GJ, Li XB, Zhang J, Yang YS (2010). Soil respiration and controlling factors at Phragmites communis community in riverside wetland. Journal of Subtropical Resources and Environment, 5, 49-55. (in Chinese with English abstract) |
[ 杜紫贤, 曾宏达, 黄向华, 魏国军, 李熙波, 张静, 杨玉盛 (2010). 城市沿江芦苇湿地土壤呼吸动态及影响因子分析. 亚热带资源与环境学报, 5, 49-55.] | |
[10] | Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33, 155-165. |
[11] |
Gorham E (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
DOI URL PMID |
[12] | Gundersen P, Emmett BA, Kjonaas OJ, Koopmans C, Tietema A (1998). Impact of nitrogen deposition on nitrogen cycling in forest: a synthesis of NITREX data. Forest Ecology and Management, 101, 37-55. |
[13] | Han M, Zhang XH, Liu LY (2006). Research progress on wetland of the Yellow River Delta. Ecology and Environment, 15, 872-875. (in Chinese with English abstract) |
[ 韩美, 张晓惠, 刘丽云 (2006). 黄河三角洲湿地研究进展. 生态环境, 15, 872-875.] | |
[14] | Han GX, Zhou GS (2009). Review of spatial and temporal variations of soil respiration and driving mechanisms. Chinese Journal of Plant Ecology, 33, 197-205. (in Chinese with English abstract) |
[ 韩广轩, 周广胜 (2009). 土壤呼吸作用时空动态变化及其影响机制研究与展望. 植物生态学报, 33, 197-205.] | |
[15] | Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15-26. |
[16] | Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Spatial heterogeneity of soil respiration and contribution of root respiration in a maize (Zea mays L.) agricultural field. Acta Ecologica Sinica, 27, 5254-5261. (in Chinese with English abstract) |
[ 韩广轩, 周广胜, 许振柱, 杨扬, 刘景利, 史奎桥 (2007). 玉米农田土壤呼吸作用的空间异质性及其根系呼吸作用的贡献. 生态学报, 27, 5254-5261.] | |
[17] |
Högberg P, Nordgren A, Ågren GI (2002). Carbon allocation between tree root growth and root respiration in boreal pine forest. Oecologia, 132, 579-581.
URL PMID |
[18] | Hsieh YP (1996). Assessing aboveground net primary production of vascular plants in marshes. Estuaries, 19, 82-85. |
[19] | Hu ZH, Li HM, Yang YP, Chen ST, Li CZ, Shen SH (2010). Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest. Environmental Science, 31, 1726-1731. (in Chinese with English abstract) |
[ 胡正华, 李涵茂, 杨燕萍, 陈书涛, 李岑子, 申双和 (2010). 模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响. 环境科学, 31, 1726-1731.] | |
[20] | Hyvönen R, Persson T, Andersson S, Olsson B, Ågren GI, Linder S (2008). Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry, 89, 121-137. |
[21] | Jia BR, Zhou GS, Wang FY, Wang YH (2005). Soil respiration and its influencing factors at grazing and fenced typical Leymus chinensis steppe, Nei Monggol. Environment Science, 26, 1-7. (in Chinese with English abstract) |
[ 贾丙瑞, 周广胜, 王风玉, 王玉辉 (2005). 放牧与围栏羊草草原土壤呼吸作用及其影响因子. 环境科学, 26, 1-7.] | |
[22] | Jia SX, Wang ZQ, Mei L, Sun Y, Quan XK, Shi JW, Yu YQ, Sun HL, Gu JC (2007). Effect of nitrogen fertilization on soil respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Journal of Plant Ecology (Chinese Version), 31, 372-379. (in Chinese with English abstract) |
[ 贾淑霞, 王政权, 梅莉, 孙玥, 全先奎, 史建伟, 于水强, 孙海龙, 谷加存 (2007). 施肥对落叶松和水曲柳人工林土壤呼吸的影响. 植物生态学报, 31, 372-379.] | |
[23] | Lai CT, Katul GB, Bitmnor J, Siqueira M, Ellsworth D, Maier C, Johnsen K, Mckeand S, Oren R (2002). Modelling the limits on the response of net carbon exchange to fertilization in south-eastern pine forest. Plant, Cell, & Environment, 25, 1095-1120. |
[24] |
Li RH, Tu LL, Hu TX, Zhang J, Lu Y, Liu WT, Luo SH, Xiang YB (2010). Effects of simulated nitrogen deposition on soil respiration in a Neosinocalamus affinis plantation in rainy area of West China. Chinese Journal of Applied Ecology, 21, 1649-1655. (in Chinese with English abstract)
URL PMID |
[ 李仁洪, 涂利华, 胡庭兴, 张健, 鲁洋, 刘文婷, 雒守华, 向元彬 (2010). 模拟氮沉降对华西雨屏区慈竹林土壤呼吸的影响. 应用生态学报, 21, 1649-1655.]
URL PMID |
|
[25] |
Li SN, Wang GX, Deng W, Hu YM, Hu WW (2009). Influence of hydrology process on wetland landscape pattern: a case study in the Yellow River Delta. Ecological Engineering, 35, 1719-1726.
DOI URL |
[26] | Liu SH, Fang JY (1997). Effect factors of soil respiration and the temperature’s effects on soil respiration in the global scale. Acta Ecologica Sinica, 17, 469-476. (in Chinese with English abstract) |
[ 刘绍辉, 方精云 (1997). 土壤呼吸的影响因素及全球尺度下温度的影响. 生态学报, 17, 469-476.] | |
[27] | Lu CY, Jin L, Ye Y, Ye GF (2012). Diurnal variation of soil respiration and its temperature sensitivity in Kandelia candel mangrove wetland. Journal of Xiamen University (Natural Science), 51, 793-797. (in Chinese with English abstract) |
[ 卢昌义, 金亮, 叶勇, 叶功富 (2012). 秋茄红树林湿地土壤呼吸昼夜变化及其温度敏感性. 厦门大学学报(自然科学版), 51, 793-797.] | |
[28] | Lü CQ, Tian HQ, Huang Y (2007). Ecological effects of increased nitrogen deposition in terrestrial ecosystems. Journal of Plant Ecology (Chinese Version), 31, 205-218. (in Chinese with English abstract) |
[ 吕超群, 田汉勤, 黄耀 (2007). 陆地生态系统氮沉降增加的生态效应. 植物生态学报, 31, 205-218.] | |
[29] |
Madritch MD, Hunter MD (2003). Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia, 136, 124-128.
URL PMID |
[30] | Mo JM, Xue JH, Fang YT (2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413-1420. (in Chinese with English abstract) |
[ 莫江明, 薛璟花, 方运霆 (2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413-1420.] | |
[31] | O’Nell KP, Kasischke ES, Richter DD (2002). Environment control on soil CO2 flux following fire in black spruce, white spruce and aspen stands of interior Alaska. Canadian Journal of Forest Research, 32, 1525-1541. |
[32] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99. |
[33] | Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 9, 23-26. |
[34] | Sarathchandra SU, Ghani A, Yeates GW, Burch G, Cox NR (2001). Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology & Biochemistry, 33, 953-964. |
[35] | Sariyildiz T, Anderson JM (2003). Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology & Biochemistry, 35, 391-399. |
[36] | Schlesinger WH (1997). Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 8, 51-81. |
[37] | Schlesinger WH, Andrews JA (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7-20. |
[38] | Schulze ED (2006). Biological control of the terrestrial carbon sink. Biogeosciences, 3, 147-166. |
[39] |
Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenetski KV, Sheng Y (2004). Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science, 16, 353-356.
DOI URL PMID |
[40] | Spalding MD, Blasco F, Field CD (1997). World Mangrove Atlas. International Society for Mangrove Ecosystems, Okinawa. 176-178. |
[41] | Tang N, Cui BS, Zhao XS (2006). The restoration of reed (Phragmites australis) wetland in the Yellow River Delta. Acta Ecologica Sinica, 26, 2616-2624. (in Chinese with English abstract) |
[ 唐娜, 崔保山, 赵欣胜 (2006). 黄河三角洲芦苇湿地的恢复. 生态学报, 26, 2616-2624.] | |
[42] | Tu LH, Hu TX, Huang LH, Li RH, Dai HZ, Luo SH, Xiang YB (2009). Response of soil respiration to simulated nitrogen deposition in Pleioblastus amarus forest, rainy area of West China. Chinese Journal of Plant Ecology, 33, 728-738. (in Chinese with English abstract) |
[ 涂利华, 胡庭兴, 黄立华, 李仁洪, 戴洪忠, 雒守华, 向元彬 (2009). 华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应. 植物生态学报, 33, 728-738.] | |
[43] |
Tu LH, Hu TX, Zhang J, He YY, Tian XY, Xiao YL (2010). Effects of simulated nitrogen deposition on the fine root characteristics and soil respiration in a Pleioblastus amarus plantation in rainy area of West China. Chinese Journal of Applied Ecology, 21, 2472-2478. (in Chinese with English abstract)
URL PMID |
[ 涂利华, 胡庭兴, 张健, 何远洋, 田祥宇, 肖银龙 (2010). 模拟氮沉降对华西雨屏区苦竹林细根特性和土壤呼吸的影响. 应用生态学报, 21, 2472-2478.]
URL PMID |
|
[44] |
Vargas R, Allen MF (2008). Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytologist, 179, 460-471.
DOI URL PMID |
[45] |
Wang H, Wang R, Yu Y, Mitchell MJ, Zhang L (2011). Soil organic carbon of degraded wetlands treated with freshwater in the Yellow River Delta, China. Journal of Environmental Management, 92, 2628-2633.
DOI URL PMID |
[46] | Wang Q (2006). Effects of Stimulated Atmospheric Nitrogen Deposition on Physical-Chemical Properties on Soil and Dynamics of Carbon in Minbei Forest. Master degree dissertation, Fujian Agriculture and Forest University, Fujian. 18-22. (in Chinese with English abstract) |
[ 王强 (2006). 模拟大气氮沉降对闽北森林土壤理化性质及森林碳动态的影响. 硕士学位论文, 福建农林大学, 福建. 18-22.] | |
[47] |
Wickland KP, Striegl RG, Mast MA, Clow DW (2001). Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998. Global Biogeochemical Cycles, 15, 321-335.
DOI URL |
[48] |
Wu DQ, Liu J, Wang W, Ding WJ, Wang RQ (2009). Mutiscale analysis of vegetation index and topographic variables in the Yellow River Delta of China. Chinese Journal of Plant Ecology, 33, 237-245. (in Chinese with English abstract)
DOI URL |
[ 吴大千, 刘建, 王炜, 丁文娟, 王仁卿 (2009). 黄河三角洲植被指数与地形要素的多尺度分析. 植物生态学报, 33, 237-245.]
DOI URL |
|
[49] |
Xie T, Liu XH, Sun T (2011). The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecological Modelling, 222, 241-252.
DOI URL |
[50] | Xie YB, Jia QY, Zhou L, Li RP, Lü GH (2006). Soil respiration and its controlling factors at Phragmites communis wetland in Panjin. Journal of Meteorology and Environment, 22, 53-58. (in Chinese with English abstract) |
[ 谢艳兵, 贾庆宇, 周莉, 李荣平, 吕国红 (2006). 盘锦湿地芦苇群落土壤呼吸作用动态及其影响因子分析. 气象与环境学报, 22, 53-58.] | |
[51] | Xie YB, Jia QY, Li RP, Lü GH (2009). Research on influences of biological factors on the soil respiration of reed ecosystem in the wetland of Panjin. Journal of Anhui Agricultural Science, 37, 18070-18072. (in Chinese with English abstract) |
[ 谢艳兵, 贾庆宇, 李荣平, 吕国红 (2009). 生物因子对盘锦湿地芦苇生态系统土壤呼吸影响的研究. 安徽农业科学, 37, 18070-18072.] | |
[52] |
Xu M, Qi Y (2001). Soil surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677.
DOI URL |
[53] | Yang Q, Lü XG (1999). A preliminary study on the soil respiration in wetland ecosystem of Sanjiang Plain. Chinese Journal of Soil Science, 30, 254-256. (in Chinese with English abstract) |
[ 杨青, 吕宪国 (1999). 三江平原湿地生态系统土壤呼吸动态变化的初探. 土壤通报, 30, 254-256.] | |
[54] | Zhang XL, Ye SY, Yin P, Chen DJ (2009). Characters and successions of natural wetland vegetation in Yellow River Delta. Ecology and Environment Sciences, 18, 292-298. (in Chinese with English abstract) |
[ 张绪良, 叶思源, 印萍, 陈东景 (2009). 黄河三角洲自然湿地植被的特征及演化. 生态环境学报, 18, 292-298.] | |
[55] | Zhang XY, Yan WD, Zheng W, Zhao LS (2012). Effects of nitrogen deposition on soil respiration of Pinus elliottii. Chinese Agricultural Science Bulletin, 28, 5-10. (in Chinese with English abstract) |
[ 张徐源, 闫文德, 郑威, 赵亮生 (2012). 氮沉降对湿地松林土壤呼吸的影响. 中国农学通报, 28, 5-10.] | |
[56] | Zong XY, Liu GH, Qiao YL, Liu S (2009). Study on dynamic changes of wetland landscape pattern in Yellow River Delta. Journal of Geo-Information Science, 11, 91-97. (in Chinese with English abstract) |
[ 宗秀影, 刘高焕, 乔玉良, 刘松 (2009). 黄河三角洲湿地景观格局动态变化分析. 地球信息科学学报, 11, 91-97.] | |
[57] | Zhang Y, Liu XJ, Zhang FS, Ju XT, Zou GY, Hu KL (2006). Spatial and temporal variation of atmospheric nitrogen deposition in North China Plain. Acta Ecologica Sinica, 26, 1633-1639. (in Chinese with English abstract) |
[ 张颖, 刘学军, 张福锁, 巨晓棠, 邹国元, 胡克林 (2006). 华北平原大气氮素沉降的时空变异. 生态学报, 26, 1633-1639.] |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[8] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[9] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[10] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[11] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[12] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[13] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[14] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[15] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19