植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 739-747.DOI: 10.3773/j.issn.1005-264x.2009.04.012
所属专题: 生态系统碳水能量通量
王光军1,2, 田大伦1,2,*(), 闫文德1,2, 朱凡1,2, 项文化1,2, 梁小翠1
收稿日期:
2008-06-26
修回日期:
2009-02-09
出版日期:
2009-06-26
发布日期:
2009-07-30
通讯作者:
田大伦
作者简介:
*(csufttdl@126.com)基金资助:
WANG Guang-Jun1,2, TIAN Da-Lun1,2,*(), YAN Wen-De1,2, ZHU Fan1,2, XIANG Wen-Hua1,2, LIANG Xiao-Cui1
Received:
2008-06-26
Revised:
2009-02-09
Online:
2009-06-26
Published:
2009-07-30
Contact:
TIAN Da-Lun
摘要:
从2007年1月至12月, 在长沙天际岭国家森林公园, 通过改变杉木林凋落物输入, 研究杉木(Cunninghamia lanceolata)人工林群落去除凋落物、加倍凋落物土壤呼吸速率及5 cm土壤温、湿度的季节变化。结果表明: 去除和加倍凋落物对土壤温度和湿度产生的差异不显著(p>0.05), 对土壤呼吸全年产生的差异接近显著(Marginal significant)(p=0.058)。按植物生长期分别分析, 去除和加倍凋落物对土壤呼吸产生的差异, 在生长旺盛期差异显著(p=0.003), 在生长非旺盛期差异性不显著(p=0.098)。去除凋落物年均土壤呼吸速率为159.2 mg CO2·m-2·h-1, 比对照处理土壤呼吸速率(180.9 mg CO2·m-2·h-1)低15.0%, 加倍凋落物的土壤呼吸为216.8 mg CO2·m-2·h-1, 比对照处理高17.0%。去除和加倍凋落物土壤呼吸季节动态趋势与5 cm深度土壤温度相似, 它们之间呈显著指数相关, 模拟方程分别为: y=27.33e0.087 2t(R2=0.853, p<0.001), y=37.25e0.088 8t(R2=0.896, p<0.001)。去除和加倍凋落物的Q10值分别为2.39和2.43, 均比对照2.26大。去除和加倍凋落物土壤呼吸与土壤湿度之间关系不显著(p>0.05)。这一结果使我们能够在较短时间内观察到改变凋落物输入对土壤呼吸的影响, 证明凋落物是影响土壤CO2通量的重要因子之一。
王光军, 田大伦, 闫文德, 朱凡, 项文化, 梁小翠. 改变凋落物输入对杉木人工林土壤呼吸的短期影响. 植物生态学报, 2009, 33(4): 739-747. DOI: 10.3773/j.issn.1005-264x.2009.04.012
WANG Guang-Jun, TIAN Da-Lun, YAN Wen-De, ZHU Fan, XIANG Wen-Hua, LIANG Xiao-Cui. EFFECTS OF ABOVEGROUND LITTER EXCLUSION AND ADDITION ON SOIL RESPIRATION IN A CUNNINGHAMIA LANCEOLATA PLANTATION IN CHINA. Chinese Journal of Plant Ecology, 2009, 33(4): 739-747. DOI: 10.3773/j.issn.1005-264x.2009.04.012
森林类型 Forest type | 全C Total C (mg C·g-1) | 全N Total N (mg N·g-1) | 碳/氮 C/N | pH | 土壤密度 Soil density (g·cm-3) | 凋落物 Litter production (g·m-2·a-1) |
---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 7.81 (0.24) | 0.89 (0.5) | 11.83 | 3.55 | 1.52 (0.02) | 575.1 (51.5) |
表1 杉木林群落土壤的理化特性和凋落物量
Table 1 Soil physical chemical properties and litter production in Cunninghamia lanceolata plantation
森林类型 Forest type | 全C Total C (mg C·g-1) | 全N Total N (mg N·g-1) | 碳/氮 C/N | pH | 土壤密度 Soil density (g·cm-3) | 凋落物 Litter production (g·m-2·a-1) |
---|---|---|---|---|---|---|
杉木 Cunninghamia lanceolata | 7.81 (0.24) | 0.89 (0.5) | 11.83 | 3.55 | 1.52 (0.02) | 575.1 (51.5) |
图1 杉木人工林去除凋落物、添加凋落物和对照的土壤呼吸速率、温度和湿度季节动态 每个点数据是4块样地的平均值, n=12, bar是标准误 The data of every point were mean of four plots, n=12, bar was SE
Fig. 1 Seasonal dynamics of soil respiration rates, soil temperatures and moistures at 5 cm depth of different treatments with no litter, double litter and control in Cunninghamia lanceolata plantation community
项目 Items | 非生长期(1~4月、11和12月) Non-growing season (Jan. to Apr., Nov. and Dec.) | 生长旺盛期(5~10月) Growing season (May-Oct.) | 全年 Total annual | ||||||
---|---|---|---|---|---|---|---|---|---|
月份间效应 Test of with months | 处理间效应 Test of between treatments | 月份间效应 Test of with months | 处理间效应 Test of between treatments | 月份间效应 Test of with months | 处理间效应 Test of between treatments | ||||
SR | 自由度 df | 5 | 2 | 5 | 2 | 11 | 2 | ||
F值 F value | 7.836 | 1.793 | 8.836 | 4.638 | 53.113 | 2.967 | |||
p | 0.020 | 0.182 | 0.000 | 0.018 | 0.000 | 0.058 | |||
ST (℃) | 自由度 df | 5 | 2 | 5 | 2 | 11 | 2 | ||
F值 F value | 38.323 | 0.001 | 41.837 | 0.633 | 196.257 | 0.325 | |||
p | 0.000 | 0.999 | 0.000 | 0.538 | 0.000 | 0.724 | |||
SM (%) | 自由度 df | 5 | 2 | 5 | 2 | 11 | 2 | ||
F值 F value | 36.938 | 0.761 | 14.457 | 0.720 | 29.651 | 1.483 | |||
p | 0.000 | 0.477 | 0.000 | 0.496 | 0.000 | 0.235 |
表2 用repeated measures ANOVA分析杉木人工林3种凋落物处理在生长期、非生长期和全年土壤呼吸(SR)、土壤温度(ST)和湿度(SM)的结果
Table 2 Result of repeated measures ANOVA for soil respiration (SR), soil temperature (ST) and soil moisture (SM) by three litter treatments in the non-growing season, growing season and total annual in Cunninghamia lanceolata plantation community
项目 Items | 非生长期(1~4月、11和12月) Non-growing season (Jan. to Apr., Nov. and Dec.) | 生长旺盛期(5~10月) Growing season (May-Oct.) | 全年 Total annual | ||||||
---|---|---|---|---|---|---|---|---|---|
月份间效应 Test of with months | 处理间效应 Test of between treatments | 月份间效应 Test of with months | 处理间效应 Test of between treatments | 月份间效应 Test of with months | 处理间效应 Test of between treatments | ||||
SR | 自由度 df | 5 | 2 | 5 | 2 | 11 | 2 | ||
F值 F value | 7.836 | 1.793 | 8.836 | 4.638 | 53.113 | 2.967 | |||
p | 0.020 | 0.182 | 0.000 | 0.018 | 0.000 | 0.058 | |||
ST (℃) | 自由度 df | 5 | 2 | 5 | 2 | 11 | 2 | ||
F值 F value | 38.323 | 0.001 | 41.837 | 0.633 | 196.257 | 0.325 | |||
p | 0.000 | 0.999 | 0.000 | 0.538 | 0.000 | 0.724 | |||
SM (%) | 自由度 df | 5 | 2 | 5 | 2 | 11 | 2 | ||
F值 F value | 36.938 | 0.761 | 14.457 | 0.720 | 29.651 | 1.483 | |||
p | 0.000 | 0.477 | 0.000 | 0.496 | 0.000 | 0.235 |
图3 去除和添加凋落物引起土壤呼吸的绝对变化值与对照样方的土壤温度相关关系
Fig. 3 The relationship between changes in soil respirations of litter exclusion, litter addition and soil temperature of control in Cunninghamia lanceolata plantation
图4 去除凋落物、添加凋落物和对照点土壤呼吸与5 cm土壤温度、湿度相关关系
Fig. 4 The relationships between soil respirations and soil temperatures and moistures at 5 cm depth in the litter exclusion, litter addition and control treatments in Cunninghamia lanceolata plantation
[1] |
Atkin OK, Edwards EJ, Loveys BR (2000). Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist, 147, 141-154.
DOI URL |
[2] |
Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396, 570-572.
DOI URL |
[3] |
Bowden RD, Nadelhoffer KJ, Boone RD, Melillo JM, Garrison JB (1993). Contributions of aboveground litter, below ground litter and root respiration to total soil respiration in a temperate hardwood forest. Canadian Journal of Forest Research, 23, 1402-1407.
DOI URL |
[4] |
Brant JB, Sulzman EW, Myrold DD (2006). Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biology and Biochemistry, 38, 2219-2232.
DOI URL |
[5] |
Burton AJ, Pregitzer KS (2003). Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology, 23, 273-280.
DOI URL PMID |
[6] | Davidson EA, Richardson AD, Savage KE, Hollinger DY (2005). A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruve-dominated forest. Global Change Biology, 11, doi: 10.1111/j.1365-2486.01062.X. |
[7] |
Dixon RK, Brown S, Houghton RA, Sdomon AM, Trexier MC, Wisniewski J (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
DOI URL PMID |
[8] |
Dunne J, Harte J, Taylor K (2003). Response of subalpine meadow plant reproductive phenology to manipulated climate change and natural climate variability. Ecological Monographs, 73, 69-86.
DOI URL |
[9] |
Fisk MC, Fahey TJ (2001). Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry, 53, 201-223.
DOI URL |
[10] |
Holub SM, Lajtha K, Spears JDH, Toth AJ, Crow ES, Caldwell AB, Papp M, Nagy TP (2005). Organic matter manipulations have little effect on gross and net nitrogen transformations in two temperate forest mineral soils in the USA and central Europe. Forest Ecology and Management, 214, 320-330.
DOI URL |
[11] | Institute of Soil Science, Chinese Academy of Sciences (中国科学院南京土壤研究所) (1978). Soil Physical and Chemical Analysis (土壤理化分析). Shanghai Science & Technology Press,Shanghai. |
[12] | IPCC (Inter governmental Panel on Climate Change) (2000). Land Use, Land-use Change, and Forestry, a Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. |
[13] |
Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 1623-1627.
DOI URL PMID |
[14] |
Li YQ, Xu M, Sun OJ, Cui WC (2004). Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests. Soil Biology and Biochemistry, 36, 2111-2114.
DOI URL |
[15] | Liu SH (刘尚华), Lü SH (吕世海), Feng CY (冯朝阳), Shi FL (石凤翎) (2008). Study on soil and litter respiration characteristics of six communities in Baihua Mountainous Area in West Beijing. Chinese Journal of Grassland (中国草业学报), 30, 78-86. (in Chinese with English abstract) |
[16] | Liu WX, Zhang Z, Wan SQ (2008). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 14, doi: 10.1111/j. 1365-2486.2008.01728.x |
[17] |
Liu WY, Fox JED, Xu ZF (2002). Litterfall and nutrient dynamics in a montance moist evergreen broad-leaved forest in Ailao Mountains, SW China. Plant Ecology, 164, 157-170.
DOI URL |
[18] |
Luo YQ, Wan SQ, Hui DF, Wallace LL (2001). Acclimatization of soil respiration to warming in a tallgrass prairie. Nature, 413, 622-625.
DOI URL PMID |
[19] | Nadelhoffer KJ, Boone RD, Bowden RD, Canary JD, Kaye J, Micks P, Ricca JA, Aitkenhead A, Lajtha K, McDowell WH (2004). The DIRT experiment: litter and root influences on forest soil organic matter stocks and function. In: Foster D, Aber J eds. Forests in Time: the Environmental Consequences of 1000 Years of Change in New England. Yale University Press, New Haven, 300-315. |
[20] | Nadelhoffer KJ, Bowden RD, Boone RD, Canary JD, Kaye J, Micks P, Ricca JA, Aitkenhead A, McDowell WH (2000). Controls on forest soil organic matter development and dynamics: chronic litter manipulation as a potential internal LTER activity. In: Lajtha K, Vanderbilt K eds. Cooperation in Long Term Ecological Research in Central and Eastern Europe: Proceedings of the ILTER Regional Workshop, 22-25 June, 1999, Budapest, Hungary. Oregon State University, Corvallis, OR. |
[21] | Niu SL, Wu MY, Han Y, Xia JY, Li LH, Wan SQ (2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219. |
[22] |
Olson JS (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44, 322-331.
DOI URL |
[23] |
Pan KW (潘开文), He J (何静), Wu N (吴宁) (2004). Effect of forest litter on microenvironment conditions of forestland. Chinese Journal of Applied Ecology(应用生态学报), 15, 153-158. (in Chinese with English abstract)
URL PMID |
[24] | Peng SL, Ren H, Wu JG, Lu HF (2003). Effects of litters removal on plant species diversity: a case study in tropicalEucalypus forest ecosystems in South China. Journal of Environment Sciences-China, 15, 367-371. |
[25] |
Prescott CE (2005). Do rates of litter decomposition tell us anything we really need to know? Forest Ecology and Management, 220, 66-74.
DOI URL |
[26] | Raich JW, Schlesinger WH (1992). The global carbon dioxide efflux in soil respiration and its relationship to vegetation and climate. Tellus, 44(B), 81-99. |
[27] |
Raich JW, Potter CS (1995). Global patterns of carbon dioxide emissions from soils. Global Biochemical Cycles, 9, 23-36.
DOI URL |
[28] |
Sayer EJ, Tanner VJ, Lacey AL (2006). Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest. Forest Ecology and Management, 229, 285-293.
DOI URL |
[29] |
Siira-Pietikainen A, Haimi J, Kanninen A, Pietikainen J, Fritze H (2001). Responses of decomposer community to root-isolation and addition of slash. Soil Biology and Biochemistry, 33, 1993-2004.
DOI URL |
[30] |
Subke JA, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF (2004). Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia, 139, 551-559.
DOI URL |
[31] |
Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005). Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry, 73, 231-256.
DOI URL |
[32] | Tang JW, Badocchi DD, Xu LK (2005). Tree photosynjournal modulates soil respiration on a diurnal time scale. Global Chang Ecology, 11, 1298-1304. |
[33] |
Victor AK, Dimitrios A, Alexandros T, Tsiontsis A, Brofas G, Stamatelos G (2001). Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management, 144, 113-127.
DOI URL |
[34] |
Wan SQ, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13, 2411-2424.
DOI URL |
[35] |
Wang CK, Bond-Lamberty B, Gower ST (2002). Soil surface CO2 flux in a boreal black spruce fire chronosequence. Journal of Geophysical Research Atmospheres, 108, 8224.
DOI URL |
[36] |
Wang GJ (王光军), Tian DL (田大伦), Yan WD (闫文德), Zhu F (朱凡), Li SZ (李树战) (2009). Soil system respiration and its controlling factor in Chinese Fir and Masson Pine communities of subtropics. Chinese Journal of Plant Ecology (植物生态学报), 33, 53-62. (in Chinese with English abstract)
DOI URL |
[37] | Waring RH, Schlesinger WH (1985). Forest Ecosystems: Concepts and Management. Academic Press, New York, 115-160. |
[38] |
Xu L, Baldocchl DD, Tang J (2004). How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles 18, GB4002, doi: 10.1029/2004GB 002281.
DOI URL PMID |
[39] |
Xu M, Qi Y (2001). Spatial and seasonal variations of Q10 determined by soil respiration measurements at a Sierra Nevadan forest. Global Biogeochemical Cycles, 15, 687-696.
DOI URL |
[40] |
Zhang GL, Jiang H, Niu GD, Liu XW, Peng SL (2006). Simulating the dynamics of carbon and nitrogen in litter-removed pine forest. Ecological Modelling, 195, 363-376.
DOI URL |
[41] |
Zhang W, Parker K, Luo Y, Wallace L, Hu S (2005). Soil microbial responses to experimental atmospheric warming and clipping in a tallgrass prairie. Global Change Biology, 11, 266-277.
DOI URL |
[42] | Zhang XP (张雪萍), Li ZH (李振会), Yin XQ (殷秀琴) (1996). The composition and ecological distribution of soil animal in larch plantation. Journal of Jilin Forestry University (吉林林学院学报), 12, 165-168. (in Chinese with English abstract) |
[1] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[2] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[3] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[4] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[5] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[6] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[7] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[10] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[11] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[12] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[13] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[14] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[15] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19