植物生态学报 ›› 2024, Vol. 48 ›› Issue (8): 967-976.DOI: 10.17521/cjpe.2024.0011 cstr: 32100.14.cjpe.2024.0011
董云焘1,2(), 贾恒锋1,2, 杨晶1,2, 李佩轩1,2, 方欧娅1,*(
)(
)
收稿日期:
2024-01-16
接受日期:
2024-05-26
出版日期:
2024-08-20
发布日期:
2024-05-16
通讯作者:
*方欧娅(oyfang@ibcas.ac.cn), ORCID:0000-0002-8287-9404
作者简介:
董云焘 ORCID:0009-0007-1723-681X
基金资助:
DONG Yun-Tao1,2(), JIA Heng-Feng1,2, YANG Jing1,2, LI Pei-Xuan1,2, FANG Ou-Ya1,*(
)(
)
Received:
2024-01-16
Accepted:
2024-05-26
Online:
2024-08-20
Published:
2024-05-16
Contact:
*FANG Ou-Ya(oyfang@ibcas.ac.cn), ORCID:0000-0002-8287-9404
Supported by:
摘要:
重建区域干扰历史对于了解当地森林健康状况以及有针对性地指导森林管护具有重要意义。然而, 目前关于祁连山森林的干扰历史及主要干扰类型尚不清楚。该研究以主要分布于祁连山阳坡的树种——祁连圆柏(Juniperus przewalskii)为研究对象, 在8个采样点采集其树木年轮样芯并建立树轮宽度标准年表。通过分析气候因子与树轮指数的相关关系, 确定影响该区域祁连圆柏生长的主要气候因子。通过分析每株树木的生长变化率, 识别树木的生长释放和抑制现象, 从而判断干扰发生的时间和空间格局。结果表明冬季气温、夏季水分条件显著影响了祁连圆柏的生长。重建的干扰历史显示, 研究区在1930s、1970s发生过两次区域性的森林干扰事件, 两次干扰事件与冬季极端寒冷、夏季极端干旱密切相关, 与连续的厄尔尼诺事件发生时间相一致。两次干扰事件均显示出干扰在空间上的差异性, 体现出了不同森林抵抗力的差异。研究结果为预防和缓解森林衰退提供了重要参考。
董云焘, 贾恒锋, 杨晶, 李佩轩, 方欧娅. 祁连山中部祁连圆柏林干扰历史重建. 植物生态学报, 2024, 48(8): 967-976. DOI: 10.17521/cjpe.2024.0011
DONG Yun-Tao, JIA Heng-Feng, YANG Jing, LI Pei-Xuan, FANG Ou-Ya. Reconstruction of disturbance history on Juniperus przewalskii forests in middle Qilian Mountains. Chinese Journal of Plant Ecology, 2024, 48(8): 967-976. DOI: 10.17521/cjpe.2024.0011
样点 编号 Site ID | 位置 Position | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 定年 样本量 Number of dated series | 起止年 Period | 年代长度 Time span (a) | 平均序列 长度 Mean length of series (a) | 序列间 相关系数 Series intercorrelation | 平均敏感性 Average sensitivity | 样本总体 代表量 Express population signal (EPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
YNG | 野牛沟 Yeniugou | 99.53 | 38.42 | 3 390 | 17 | 1772-2020 | 249 | 134.7 | 0.494 | 0.276 | 0.870 |
YHL | 油葫芦 Youhulu | 99.78 | 38.25 | 3 600 | 32 | 1500-2004 | 505 | 292.5 | 0.540 | 0.254 | 0.864 |
DG | 东沟 Donggou | 100.02 | 38.02 | 3 600 | 31 | 1630-2004 | 375 | 288.5 | 0.573 | 0.224 | 0.905 |
HZS | 黄藏寺 Huangzangsi | 100.25 | 38.26 | 3 340 | 34 | 1522-2020 | 499 | 234.0 | 0.447 | 0.248 | 0.859 |
AMDS | 阿咪东索 Amidongsuo | 100.25 | 38.07 | 3 353 | 19 | 1404-2017 | 614 | 390.7 | 0.452 | 0.210 | 0.854 |
DLD | 大拉洞 Daladong | 100.35 | 38.23 | 3 190 | 30 | 1268-2020 | 753 | 416.8 | 0.455 | 0.194 | 0.841 |
QYG | 青阳沟 Qingyanggou | 100.39 | 38.17 | 3 420 | 14 | 1758-2020 | 263 | 190.2 | 0.436 | 0.243 | 0.732 |
MZ | 芒扎 Mangzha | 100.73 | 38.21 | 2 950 | 30 | 1592-2020 | 429 | 107.5 | 0.472 | 0.275 | 0.880 |
QLB | - | - | - | - | 207 | 1268-2020 | 753 | 259.1 | 0.430 | 0.230 | 0.971 |
表1 祁连山8个样点祁连圆柏树轮信息表
Table 1 Information of the eight Juniperus przewalskii tree-ring chronologies in Qilian Mountains
样点 编号 Site ID | 位置 Position | 经度 Longitude (° E) | 纬度 Latitude (° N) | 海拔 Altitude (m) | 定年 样本量 Number of dated series | 起止年 Period | 年代长度 Time span (a) | 平均序列 长度 Mean length of series (a) | 序列间 相关系数 Series intercorrelation | 平均敏感性 Average sensitivity | 样本总体 代表量 Express population signal (EPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
YNG | 野牛沟 Yeniugou | 99.53 | 38.42 | 3 390 | 17 | 1772-2020 | 249 | 134.7 | 0.494 | 0.276 | 0.870 |
YHL | 油葫芦 Youhulu | 99.78 | 38.25 | 3 600 | 32 | 1500-2004 | 505 | 292.5 | 0.540 | 0.254 | 0.864 |
DG | 东沟 Donggou | 100.02 | 38.02 | 3 600 | 31 | 1630-2004 | 375 | 288.5 | 0.573 | 0.224 | 0.905 |
HZS | 黄藏寺 Huangzangsi | 100.25 | 38.26 | 3 340 | 34 | 1522-2020 | 499 | 234.0 | 0.447 | 0.248 | 0.859 |
AMDS | 阿咪东索 Amidongsuo | 100.25 | 38.07 | 3 353 | 19 | 1404-2017 | 614 | 390.7 | 0.452 | 0.210 | 0.854 |
DLD | 大拉洞 Daladong | 100.35 | 38.23 | 3 190 | 30 | 1268-2020 | 753 | 416.8 | 0.455 | 0.194 | 0.841 |
QYG | 青阳沟 Qingyanggou | 100.39 | 38.17 | 3 420 | 14 | 1758-2020 | 263 | 190.2 | 0.436 | 0.243 | 0.732 |
MZ | 芒扎 Mangzha | 100.73 | 38.21 | 2 950 | 30 | 1592-2020 | 429 | 107.5 | 0.472 | 0.275 | 0.880 |
QLB | - | - | - | - | 207 | 1268-2020 | 753 | 259.1 | 0.430 | 0.230 | 0.971 |
图1 祁连山中部树轮采样点及气象站分布。各采样点名称见表1。
Fig. 1 Distribution of tree-ring sampling sites and meteorological stations in the middle Qilian Mountains. Site ID see Table 1.
图2 祁连山祁连圆柏树轮宽度标准年表。Num, 区域总样芯数量; QLB, 区域总年表; Sites, 各样点年表。
Fig. 2 Standardized tree-ring width chronologies of Juniperus przewalskii in Qilian Mountains. Num, the number of regional total sample cores; QLB, regional total tree-ring chronology; Sites, tree-ring chronologies of each sampling sites.
图3 祁连山祁连圆柏树轮年表与月平均气温(A)、月降水量(B)以及月平均相对湿度(C)的相关关系。QLB, 区域总树轮年表。红色表示正相关, 蓝色表示负相关, 颜色越深, 相关性越强。*, p < 0.05。“p”表示前一年, 例如“p9”表示前一年9月份。各采样点名称见表1。
Fig. 3 Correlation of Juniperus przewalskii tree-ring chronologies with monthly mean air temperature (A), monthly precipitation (B), and monthly mean relative humidity (C) in Qilian Mountains. QLB, the regional total tree-ring chronology. Red indicates positive correlation, blue indicates negative correlation, the darker the color, the stronger the correlation. *, p < 0.05. “p” indicates the previous year, for example, “p9” indicates September of the previous year. Site ID see Table 1.
图4 祁连山祁连圆柏树木生长的历史干扰状况。虚线标注为厄尔尼诺年。图例表示发生生长释放树木的百分比, 比例越高, 干扰强度越强。各采样点名称见表1。
Fig. 4 Juniperus przewalskii disturbance history in Qilian Mountains. The dashed lines denote El Niño years. The legend indicates the percentage of growth-release trees, the higher the percentage, the stronger the intensity of the disturbance. Site ID see Table 1.
图5 1908-1980年期间以20年为窗口时的干扰事件发生次数分布。虚线标注为厄尔尼诺年。彩色曲线表示各采样点干扰事件发生次数, 黑色曲线表示各采样点干扰事件发生次数的平均值。各采样点名称见表1。
Fig. 5 Number of disturbance events in a 20-year window for the period 1908-1980. The dashed lines are El Niño years. Colored curves indicate the frequency of sampling sites disturbances, the black curve indicates the average of the frequency of sampling sites disturbances. Site ID see Table 1.
图6 祁连山祁连圆柏在1930s和1970s干扰事件中受干扰程度的空间分布。A, 1930s干扰事件。B, 1970s干扰事件。各采样点名称见表1。
Fig. 6 Spatial distribution of Juniperus przewalskii disturbance levels in Qilian Mountains during the 1930s and 1970s disturbance events. A, Disturbance in 1930s. B, Disturbance in 1970s. Site ID see Table 1.
[1] | Altman J (2020). Tree-ring-based disturbance reconstruction in interdisciplinary research: current state and future directions. Dendrochronologia, 63, 125733. DOI: 10.1016/j.dendro.2020.125733. |
[2] | Amoroso MM, Blazina AP (2020). Disturbance history and dynamics of an old-growth Nothofagus forest in southern Patagonia. Forests, 11, 101. DOI: 10.3390/f11010101. |
[3] | Ariya U, Hamano KY, Makimoto T, Kinoshita S, Akaji Y, Miyazaki Y, Hirobe M, Sakamoto K (2016). Temporal and spatial dynamics of an old-growth beech forest in western Japan. Journal of Forest Research, 21, 73-83. |
[4] | Attiwill PM (1994). The disturbance of forest ecosystems: the ecological basis for conservative management. Forest Ecology and Management, 63, 247-300. |
[5] | Black BA, Abrams MD (2003). Use of boundary-line growth patterns as a basis for dendroecological release criteria. Ecological Applications, 13, 1733-1749. |
[6] | Black BA, Abrams MD (2004). Development and application of boundary-line release criteria. Dendrochronologia, 22, 31-42. |
[7] | Cai JQ, Xue F, Yuan S, Zhao ZF, Cui MH, Shi DD, Jiang Y (2022). Impacts of climate on the radial growth of Sabina przewalskii in different habitats in Baishu Mountain, Delingha Region, China. Acta Ecologica Sinica, 42, 6758-6767. |
[蔡家庆, 薛峰, 袁帅, 赵泽芳, 崔明皓, 史丹丹, 江源 (2022). 德令哈地区柏树山不同生境气候对祁连圆柏径向生长的影响. 生态学报, 42, 6758-6767.] | |
[8] | Cai W, Santoso A, Wang G, Yeh SW, An S, Cobb KM, Collins M, Guilyardi E, Jin F, Kug JS, Lengaigne M, McPhaden MJ, Takahashi K, Timmermann A, Vecchi G, et al. (2015). ENSO and greenhouse warming. Nature Climate Change, 5, 849-859. |
[9] | Cheng X, Lyu L, Büntgen U, Cherubini P, Qiu H, Zhang Q (2019). Increased El Niño-Southern Oscillation sensitivity of tree growth on the southern Tibetan Plateau since the 1970s. International Journal of Climatology, 39, 3465-3475. |
[10] | Cheng XH, Wang SZ, Zhu YS (2022). History of forest disturbances recorded by timbers unearthed from tubo tombs alongside the silk road’s Qinghai routes. Quaternary Sciences, 42, 192-205. |
[程雪寒, 王树芝, 朱岩石 (2022). 丝绸之路青海道吐蕃时期墓葬出土木材记载的森林干扰史. 第四纪研究, 42, 192-205.] | |
[11] | Cook ER (1985). A Time Series Analysis Approach to Tree-ring Standardization. PhD dissertation, University of Arizona, Tucson, USA. |
[12] | Cook ER, Kairiukstis LA (1990). Methods of Dendrochronology. Springer, Dordrecht, Netherlands. |
[13] | D’Orangeville L, Houle D, Duchesne L, Phillips RP, Bergeron Y, Kneeshaw D (2018). Beneficial effects of climate warming on boreal tree growth may be transitory. Nature Communications, 9, 3213. DOI: 10.1038/s41467-018-05705-4. |
[14] | Fang O, Alfaro RI, Zhang Q (2018). Tree rings reveal a major episode of forest mortality in the late 18th century on the Tibetan Plateau. Global and Planetary Change, 163, 44-50. |
[15] | Feng XH, Cheng RM, Xiao WF, Wang XR, Wang RL (2011). The application of tree-ring on forest disturbance history reconstruction. Acta Ecologica Sinica, 31, 3215-3222. |
[封晓辉, 程瑞梅, 肖文发, 王晓荣, 王瑞丽 (2011). 树木年轮在干扰历史重建中的应用. 生态学报, 31, 3215-3222.] | |
[16] | Gao S, Camarero JJ, Babst F, Liang E (2023). Global tree growth resilience to cold extremes following the Tambora volcanic eruption. Nature Communications, 14, 6616. DOI: 10.1038/s41467-023-42409-w. |
[17] | Gao S, Liang E, Liu R, Lu X, Rossi S, Zhu H, Piao S, Peñuelas J, Camarero JJ (2024). Shifts of forest resilience after seismic disturbances in tectonically active regions. Nature Geoscience, 17, 189-196. |
[18] | Holmes RL (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-ring Bulletin, 43, 51-67. |
[19] | Hu HQ, Zhao ZK, Wang XC, Zhang YD (2010). Fire history of Mongolian pine (Pinus sylvestris var. mongolica) forests in Mengkeshan of Tahe, China. Acta Ecologica Sinica, 30, 6372-6379. |
[胡海清, 赵致奎, 王晓春, 张远东 (2010). 基于树轮火疤塔河蒙克山樟子松林火灾的频度分析. 生态学报, 30, 6372-6379.] | |
[20] | IPCC (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, USA. |
[21] | Johnston JD, Schmidt MR, Merschel AG, Downing WM, Coughlan MR, Lewis DG (2023). Exceptional variability in historical fire regimes across a western Cascades landscape, Oregon, USA. Ecosphere, 14, e4735. DOI: 10.1002/ecs2.4735. |
[22] | Li YL, Qin QQ, Wang DW, An WX, He XH, Yu TQ (2024). An analysis on the spatial heterogeneity characteristics of landscape ecological risk in Qilian Mountain National Park. Frontiers in Forests and Global Change, 7, 1308154. DOI: 10.3389/ffgc.2024.1308154. |
[23] | Lian X, Piao S, Chen A, Wang K, Li X, Buermann W, Huntingford C, Peñuelas J, Xu H, Myneni RB (2021). Seasonal biological carryover dominates northern vegetation growth. Nature Communications, 12, 983. DOI: 10.1038/s41467-021-21223-2. |
[24] | Liang E, Leuschner C, Dulamsuren C, Wagner B, Hauck M (2016). Global warming-related tree growth decline and mortality on the north-eastern Tibetan Plateau. Climatic Change, 134, 163-176. |
[25] | Liu J, Li Z, Keyimu M, Wang X, Liang H, Feng X, Gao G, Fu B (2023). Accelerated warming in the late 20th century promoted tree radial growth in the Northern Hemisphere. Journal of Plant Ecology, 16, rtac077. DOI: 10.1093/jpe/rtac077. |
[26] | Liu XD, Chen BD (2000). Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 20, 1729-1742. |
[27] | Liu XH, Qin DH, Shao XM, Chen T, Ren JW (2004). Tree-ring records of temperature changes in the central Qilian Mountains in the past thousand years. Science in China (Series D: Earth Sciences), 34, 89-95. |
[刘晓宏, 秦大河, 邵雪梅, 陈拓, 任贾文 (2004). 祁连山中部过去近千年温度变化的树轮记录. 中国科学(D辑: 地球科学), 34, 89-95.] | |
[28] | Lorimer CG (1985). Methodological considerations in the analysis of forest disturbance history. Canadian Journal of Forest Research, 15, 200-213. |
[29] | Ma LB, Zhu ZH, Li SX, Li JY (2023). Analysis of spatial and temporal changes in human interference in important ecological function areas in China: the Gansu section of Qilian Mountain National Park as an example. Environmental Monitoring and Assessment, 195, 1029. DOI: 10.1007/s10661-023-11633-8. |
[30] | Ma YR, Guan QY, Sun YF, Zhang J, Yang LQ, Yang EQ, Li HC, Du QQ (2022). Three-dimensional dynamic characteristics of vegetation and its response to climatic factors in the Qilian Mountains. Catena, 208, 105694. DOI: 10.1016/j.catena.2021.105694. |
[31] | Manzanedo RD, Pederson N (2019). Towards a more ecological dendroecology. Tree-Ring Research, 75, 152-159. |
[32] | Mu Y, Lindenmayer D, Zheng S, Yang Y, Wang D, Liu J (2023). Size-focused conservation may fail to protect the world’s oldest trees. Current Biology, 33, 4641-4649. |
[33] | Nowacki GJ, Abrams MD (1997). Radial-growth averaging criteria for reconstruction disturbance histories from presettlement-origin oaks. Ecological Monographs, 67, 225-249. |
[34] | Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu X, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, et al. (2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424-430. |
[35] | Rozas V (2001). Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Annals of Forest Science, 58, 237-251. |
[36] | Rubino DL, McCarthyz BC (2004). Comparative analysis of dendroecological methods used to assess disturbance events. Dendrochronologia, 21, 97-115. |
[37] | Ruiz-Villanueva V, Díez-Herrero A, Stoffel M, Bollschweiler M, Bodoque JM, Ballesteros JA (2010). Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology, 118, 383-392. |
[38] | Senf C, Seidl R (2021). Mapping the forest disturbance regimes of Europe. Nature Sustainability, 4, 63-70. |
[39] | Splechtna BE, Gratzer G, Black BA (2005). Disturbance history of a European old-growth mixed-species forest—A spatial dendro-ecological analysis. Journal of Vegetation Science, 16, 511-522. |
[40] | Stan AB, Daniels LD (2010). Growth releases of three shade-tolerant species following canopy gap formation in old-growth forests. Journal of Vegetation Science, 21, 74-87. |
[41] | Wang GX, Cheng GD, Shen YP (2002). Features of eco-environmental changes in Hexi Corridor Region in the last 50 years and comprehensive control strategies. Journal of Natural Resources, 17, 78-86. |
[王根绪, 程国栋, 沈永平 (2002). 近50年来河西走廊区域生态环境变化特征与综合防治对策. 自然资源学报, 17, 78-86.] | |
[42] | Wang XF, Yang B, Jiao L, Song M, Chen X, Qian TN (2023). Missing rings of Qilian juniper associated with drought on the Northeastern Tibetan Plateau, China. Dendrochronologia, 81, 126127. DOI: 10.1016/j.dendro.2023.126127. |
[43] | Wang YK, Yang QS, Guo SX, Li JJ, Wang L, Yuan H (2014). Changes of forest resources in north slope of Qilian Mountains. Arid Land Geography, 37, 966-979. |
[汪有奎, 杨全生, 郭生祥, 李进军, 王零, 袁虹 (2014). 祁连山北坡森林资源变迁. 干旱区地理, 37, 966-979.] | |
[44] | Wu X, Jiao L, Du DS, Xue RH, Wei MY, Zhang P (2024). Elevation response of above-ground net primary productivity for Picea crassifolia to climate change in Qilian Mountains of Northwest China based on tree rings. Journal of Geographical Sciences, 34, 146-164. |
[45] | Xu HN, Wang JL, Peng XM, Ren ZJ (2022). Responses of radial growth of Juniperus przewalskii to different droughts over the northeastern Tibetan Plateau, China. Chinese Journal of Applied Ecology, 33, 2097-2104. |
[徐贺年, 王江林, 彭小梅, 任子健 (2022). 青藏高原东北部祁连圆柏径向生长对不同类型干旱的响应. 应用生态学报, 33, 2097-2104.]
DOI |
|
[46] | Yang J, Zhao BW, Zheng JC, Zhang Q, Li Y, Ma FH, Fang OY (2023). Linkage between spruce forest decline and cloud cover increase in the Qilian Mountains of the northeastern Tibetan Plateau. Trees, 37, 1097-1106. |
[47] | Yu GR, Liu YB, Wang XC, Ma KP (2008). Age-dependent tree-ring growth responses to climate in Qilian juniper (Sabina przewalskii Kom.). Trees, 22, 197-204. |
[48] | Zhan SM, Wang KY, Zhang LN, Ran YL, Liu XH (2019). Species-specific growth responses to climatic factors in the eastern Qilian Mountains. Chinese Journal of Ecology, 38, 2007-2014. |
[詹思敏, 王可逸, 张凌楠, 冉依林, 刘晓宏 (2019). 祁连山东部不同树种径向生长对气候因子的响应. 生态学杂志, 38, 2007-2014.] | |
[49] | Zhang F, Gou X, Liu W, Levia DF, Li Y (2013). Individual and time-varying tree-ring growth to climate sensitivity of Pinus tabuliformis Carr. and Sabina przewalskii Kom. in the eastern Qilian Mountains, China. Trees, 27, 359-370. |
[50] | Zhang Q, Yan M, Liang HX (2017). History of growth suppression and release events in forests in Changzhi Prefecture, Shanxi Province, China. Acta Ecologica Sinica, 37, 3115-3123. |
[张启, 闫明, 梁寒雪 (2017). 山西省长治市过去150年森林的生长抑制和释放历史. 生态学报, 37, 3115-3123.] | |
[51] | Zhang QB, Qiu HY (2007). A millennium-long tree-ring chronology of Sabina przewalskii on northeastern Qinghai-Tibetan Plateau. Dendrochronologia, 24, 91-95. |
[52] | Zhang WP, Hu YY, Li ZH, Feng XP, Li DW (2021). Predicting suitable distribution areas of Juniperus przewalskii in Qinghai Province under climate change scenarios. Chinese Journal of Applied Ecology, 32, 2514-2524. |
[张伟萍, 胡云云, 李智华, 冯雪萍, 李登武 (2021). 气候变化情景下祁连圆柏在青海省的适宜分布区预测. 应用生态学报, 32, 2514-2524.]
DOI |
|
[53] |
Zhang Y, Stoffel M, Liang E, Guillet S, Shao X (2019). Centennial-scale process activity in a complex landslide body in the Qilian Mountains, northeast Tibetan Plateau, China. Catena, 179, 29-38.
DOI |
[54] | Zhang YR, Gou XH, Wang T, Zhang F, Wang K, Yang HJ, Yang KX (2024). Response of tree growth to drought variability in arid areas: local hydroclimate and large-scale precipitation. Environmental Research, 249, 118417. DOI: 10.1016/j.envres.2024.118417. |
[55] | Zhao ZC, Luo Y, Huang JB (2023). Global warming and El Niño events. Climate Change Research, 19, 663-666. |
[赵宗慈, 罗勇, 黄建斌 (2023). 全球变暖和厄尔尼诺事件. 气候变化研究进展, 19, 663-666.] | |
[56] | Zhu LJ, Jin GZ, Wang XC (2015). Reconstruction of disturbance history of a typical broad-leaved Pinus koraiensis forest and mechanisms of disturbance occurrence. Chinese Journal of Plant Ecology, 39, 125-139. |
[朱良军, 金光泽, 王晓春 (2015). 典型阔叶红松林干扰历史重建及干扰形成机制. 植物生态学报, 39, 125-139.]
DOI |
[1] | 张鹏, 焦亮, 薛儒鸿, 魏梦圆, 杜达石, 吴璇, 王旭鸽, 李倩. 干旱强度影响祁连山西段不同海拔青海云杉的生长恢复[J]. 植物生态学报, 2024, 48(8): 977-987. |
[2] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[3] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[4] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[5] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[6] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[7] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[8] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[9] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[10] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[11] | 张富广, 曾彪, 杨太保. 气候变化背景下近30年祁连山高寒荒漠分布时空变化[J]. 植物生态学报, 2019, 43(4): 305-319. |
[12] | 苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比[J]. 植物生态学报, 2019, 43(12): 1061-1078. |
[13] | 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚. 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应[J]. 植物生态学报, 2018, 42(6): 629-639. |
[14] | 梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫. 黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系[J]. 植物生态学报, 2016, 40(5): 425-435. |
[15] | 李宝, 程雪寒, 吕利新. 西藏朗县地区不同龄级高山松林木径向生长对火干扰的响应[J]. 植物生态学报, 2016, 40(5): 436-446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19