植物生态学报 ›› 2016, Vol. 40 ›› Issue (5): 425-435.DOI: 10.17521/cjpe.2015.0357
• 研究论文 • 下一篇
梁鹏鸿, 王襄平*, 吴玉莲, 徐凯, 吴鹏, 郭鑫
出版日期:
2016-05-10
发布日期:
2016-05-25
通讯作者:
王襄平
基金资助:
Peng-Hong LIANG, Xiang-Ping WANG*, Yu-Lian WU, Kai XU, Peng WU, Xin GUO
Online:
2016-05-10
Published:
2016-05-25
Contact:
Xiang-Ping WANG
摘要:
黑龙江黑河为我国红松(Pinus koraiensis)分布的北界, 在研究红松林的生长、演替、分布, 及其对气候变化的响应上有独特的意义。该文通过研究胜山保护区内阔叶红松林的演替系列(软阔叶林、硬阔叶林、阔叶红松近熟林和成熟林4个阶段), 分析了树木径向生长与气候变化的关系在不同演替阶段的差异。结果表明: 从演替早期的软阔叶林到晚期的红松成熟林, 年表统计特征表明树木径向生长对气候波动的敏感性逐步降低。对年轮-气候关系的分析结果也表明气候对树木径向生长的影响随着演替的进展呈现规律性的变化。上年6月和12月的气温与红松成熟林的径向生长显著正相关, 表现出明显的“滞后效应”。红松成熟林的轮宽指数与当年6月气温显著负相关, 而与当年6月降水量显著正相关, 反映出生长季水分对红松生长的限制。上述这些限制作用均随着演替的进展而增强, 但在演替的早期影响不显著。相反, 上年6月降水量与软阔叶林的生长显著负相关, 但该限制作用在演替的中晚期消失。这些差异反映出随着演替的进展, 优势树种对水分的需求逐步提高。滑动相关分析表明研究区近几十年明显的气候干暖化趋势对各林型的生长兼具有利和不利的影响。不同因素综合作用下, 软、硬阔叶林阶段生长尚未产生清晰的长期变化趋势。但由于水分对红松林生长的限制作用增强, 红松林生长明显下降。今后气候进一步干暖化可能对红松林的生长、恢复演替和分布有不利影响。
梁鹏鸿, 王襄平, 吴玉莲, 徐凯, 吴鹏, 郭鑫. 黑龙江胜山保护区阔叶红松林不同演替阶段径向生长与气候变化的关系. 植物生态学报, 2016, 40(5): 425-435. DOI: 10.17521/cjpe.2015.0357
Peng-Hong LIANG, Xiang-Ping WANG, Yu-Lian WU, Kai XU, Peng WU, Xin GUO. Growth responses of broad-leaf and Korean pine mixed forests at different successional stages to climate change in the Shengshan Nature Reserve of Heilongjiang Province, China. Chinese Journal of Plant Ecology, 2016, 40(5): 425-435. DOI: 10.17521/cjpe.2015.0357
演替阶段 Successional stage | 优势种 Dominant species | 胸径平均值 Mean DBH (cm) | 树高平均值 Mean tree height (m) | 最大胸径 Max DBH (cm) | 最大树高 Max tree height (m) | 林分密度 Stem density (tree·hm-2) |
---|---|---|---|---|---|---|
早期 Early | 白桦 Betula platyphylla | 13.2 | 13.3 | 29.8 | 22.6 | 953 |
中期 Middle | 蒙古栎 Quercus mongolica | 11.1 | 8.9 | 43.8 | 24.3 | 1 576 |
中晚期 Mid-late | 红松 Pinus koraiensis, 红皮云杉 Picea koraiensis | 11.9 | 12.0 | 51.8 | 28.9 | 1 723 |
晚期 Late | 红松 Pinus koraiensis, 红皮云杉 Picea koraiensis | 16.6 | 13.1 | 67.7 | 28.6 | 1 180 |
表1 各演替阶段样方的林分特征
Table 1 Stand characteristics of the plots for different succession stages
演替阶段 Successional stage | 优势种 Dominant species | 胸径平均值 Mean DBH (cm) | 树高平均值 Mean tree height (m) | 最大胸径 Max DBH (cm) | 最大树高 Max tree height (m) | 林分密度 Stem density (tree·hm-2) |
---|---|---|---|---|---|---|
早期 Early | 白桦 Betula platyphylla | 13.2 | 13.3 | 29.8 | 22.6 | 953 |
中期 Middle | 蒙古栎 Quercus mongolica | 11.1 | 8.9 | 43.8 | 24.3 | 1 576 |
中晚期 Mid-late | 红松 Pinus koraiensis, 红皮云杉 Picea koraiensis | 11.9 | 12.0 | 51.8 | 28.9 | 1 723 |
晚期 Late | 红松 Pinus koraiensis, 红皮云杉 Picea koraiensis | 16.6 | 13.1 | 67.7 | 28.6 | 1 180 |
早期 Early | 中期 Middle | 中晚期 Mid-late | |
---|---|---|---|
中期 Middle | 0.186 | ||
中晚期 Mid-late | 0.074 | 0.261 | |
晚期 Late | 0.048 | 0.242 | 0.569** |
表2 1960-2012年4个演替阶段差值年表间的相关系数
Table 2 Correlations among the residual chronologies for four successional stages during the period from 1960 to 2012
早期 Early | 中期 Middle | 中晚期 Mid-late | |
---|---|---|---|
中期 Middle | 0.186 | ||
中晚期 Mid-late | 0.074 | 0.261 | |
晚期 Late | 0.048 | 0.242 | 0.569** |
演替阶段 Successional stage | 早期 Early | 中期 Middle | 中晚期 Mid-late | 晚期 Late |
---|---|---|---|---|
共同区间 Common interval time span of year | 1957-2013 | 1969-2013 | 1951-2013 | 1949-2013 |
样本数(树芯/株数) Number of cores/trees | 63/48 | 50/41 | 63/48 | 43/33 |
平均敏感度 Mean sensitivity | 0.289 | 0.236 | 0.248 | 0.178 |
标准偏差 Standard deviation | 0.280 | 0.188 | 0.216 | 0.177 |
一阶自相关系数 Autocorrelation order 1 | 0.165 | -0.244 | -0.166 | 0.188 |
R1样本间平均相关系数 Mean correlations among all radii | 0.473 | 0.251 | 0.341 | 0.299 |
R2不同树木之间平均相关系数 Mean correlations between trees | 0.729 | 0.402 | 0.689 | 0.700 |
R3同一树木不同样本之间平均相关系数 Mean correlations between trees and within trees | 0.470 | 0.250 | 0.336 | 0.293 |
信噪比 Signal-to-noise ratio | 26.043 | 6.380 | 13.459 | 10.682 |
样本总体代表性 Express population signal | 0.963 | 0.864 | 0.931 | 0.914 |
第一主成分所占方差量 PCA1 (%) | 0.501 | 0.308 | 0.377 | 0.347 |
表3 不同演替阶段的年表统计参数
Table 3 Summary statistics for residual chronology of different successional stages
演替阶段 Successional stage | 早期 Early | 中期 Middle | 中晚期 Mid-late | 晚期 Late |
---|---|---|---|---|
共同区间 Common interval time span of year | 1957-2013 | 1969-2013 | 1951-2013 | 1949-2013 |
样本数(树芯/株数) Number of cores/trees | 63/48 | 50/41 | 63/48 | 43/33 |
平均敏感度 Mean sensitivity | 0.289 | 0.236 | 0.248 | 0.178 |
标准偏差 Standard deviation | 0.280 | 0.188 | 0.216 | 0.177 |
一阶自相关系数 Autocorrelation order 1 | 0.165 | -0.244 | -0.166 | 0.188 |
R1样本间平均相关系数 Mean correlations among all radii | 0.473 | 0.251 | 0.341 | 0.299 |
R2不同树木之间平均相关系数 Mean correlations between trees | 0.729 | 0.402 | 0.689 | 0.700 |
R3同一树木不同样本之间平均相关系数 Mean correlations between trees and within trees | 0.470 | 0.250 | 0.336 | 0.293 |
信噪比 Signal-to-noise ratio | 26.043 | 6.380 | 13.459 | 10.682 |
样本总体代表性 Express population signal | 0.963 | 0.864 | 0.931 | 0.914 |
第一主成分所占方差量 PCA1 (%) | 0.501 | 0.308 | 0.377 | 0.347 |
图3 不同演替阶段轮宽指数与单月气候因子的相关系数(标注的数字为p值)。A, 上年6月降水。B, 上年12月平均气温。C, 当年6月降水。D, 当年6月平均气温。Early, 早期; Middle, 中期; Mid-late, 中晚期; Late, 晚期。
Fig. 3 Correlation coefficient between ring-width indices and monthly climate parameters of different successional stage (the number associated with each coefficient was p value). A, Precipitation in June of the previous year. B, Mean air temperature in December of the previous year. C, Precipitation in June of the current year. D, Mean air temperature in June of the current year.
月平均气温 Monthly mean air temperature | 月降水量 Monthly precipitation | ||||||||
---|---|---|---|---|---|---|---|---|---|
早期 Early | 中期 Middle | 中晚期 Mid-late | 晚期 Late | 早期 Early | 中期 Middle | 中晚期 Mid-late | 晚期 Late | ||
p6 | 0.175 | 0.246 | 0.107 | 0.276* | -0.428** | -0.207 | -0.214 | -0.190 | |
p7 | -0.023 | -0.059 | 0.088 | 0.068 | -0.112 | 0.028 | -0.077 | -0.155 | |
p8 | -0.074 | 0.069 | -0.232 | -0.120 | -0.266 | -0.037 | -0.009 | 0.032 | |
p9 | 0.060 | 0.058 | 0.021 | -0.151 | -0.022 | 0.147 | 0.091 | 0.114 | |
p10 | -0.147 | 0.139 | -0.061 | 0.131 | -0.199 | -0.102 | 0.068 | -0.025 | |
p11 | 0.102 | 0.011 | 0.021 | 0.089 | -0.088 | 0.048 | 0.211 | -0.133 | |
p12 | -0.128 | -0.132 | 0.252’ | 0.272* | 0.110 | 0.353** | -0.171 | -0.086 | |
c1 | -0.129 | 0.010 | -0.052 | -0.048 | 0.149 | 0.023 | -0.110 | 0.065 | |
c2 | -0.224 | -0.033 | -0.021 | 0.015 | 0.160 | -0.007 | 0.031 | -0.139 | |
c3 | -0.013 | -0.025 | 0.128 | 0.052 | -0.130 | -0.154 | -0.113 | -0.019 | |
c4 | -0.184 | -0.275* | 0.053 | 0.051 | 0.208 | 0.037 | 0.182 | 0.045 | |
c5 | 0.027 | -0.114 | -0.103 | -0.065 | -0.065 | 0.054 | -0.051 | 0.018 | |
c6 | 0.189 | -0.258’ | -0.286* | -0.322* | -0.053 | 0.362** | 0.215 | 0.304* | |
c7 | -0.318* | -0.106 | -0.115 | -0.158 | 0.067 | 0.100 | 0.132 | 0.228 | |
c8 | -0.028 | -0.020 | -0.015 | -0.004 | -0.019 | 0.079 | -0.174 | 0.079 | |
c9 | 0.021 | 0.001 | 0.092 | -0.069 | 0.059 | 0.117 | 0.180 | 0.021 |
表4 研究区不同演替阶段差值年表轮宽指数与单月气候因子的相关性
Table 4 Correlations between ring-width indices and monthly climatic indices for different successional stages
月平均气温 Monthly mean air temperature | 月降水量 Monthly precipitation | ||||||||
---|---|---|---|---|---|---|---|---|---|
早期 Early | 中期 Middle | 中晚期 Mid-late | 晚期 Late | 早期 Early | 中期 Middle | 中晚期 Mid-late | 晚期 Late | ||
p6 | 0.175 | 0.246 | 0.107 | 0.276* | -0.428** | -0.207 | -0.214 | -0.190 | |
p7 | -0.023 | -0.059 | 0.088 | 0.068 | -0.112 | 0.028 | -0.077 | -0.155 | |
p8 | -0.074 | 0.069 | -0.232 | -0.120 | -0.266 | -0.037 | -0.009 | 0.032 | |
p9 | 0.060 | 0.058 | 0.021 | -0.151 | -0.022 | 0.147 | 0.091 | 0.114 | |
p10 | -0.147 | 0.139 | -0.061 | 0.131 | -0.199 | -0.102 | 0.068 | -0.025 | |
p11 | 0.102 | 0.011 | 0.021 | 0.089 | -0.088 | 0.048 | 0.211 | -0.133 | |
p12 | -0.128 | -0.132 | 0.252’ | 0.272* | 0.110 | 0.353** | -0.171 | -0.086 | |
c1 | -0.129 | 0.010 | -0.052 | -0.048 | 0.149 | 0.023 | -0.110 | 0.065 | |
c2 | -0.224 | -0.033 | -0.021 | 0.015 | 0.160 | -0.007 | 0.031 | -0.139 | |
c3 | -0.013 | -0.025 | 0.128 | 0.052 | -0.130 | -0.154 | -0.113 | -0.019 | |
c4 | -0.184 | -0.275* | 0.053 | 0.051 | 0.208 | 0.037 | 0.182 | 0.045 | |
c5 | 0.027 | -0.114 | -0.103 | -0.065 | -0.065 | 0.054 | -0.051 | 0.018 | |
c6 | 0.189 | -0.258’ | -0.286* | -0.322* | -0.053 | 0.362** | 0.215 | 0.304* | |
c7 | -0.318* | -0.106 | -0.115 | -0.158 | 0.067 | 0.100 | 0.132 | 0.228 | |
c8 | -0.028 | -0.020 | -0.015 | -0.004 | -0.019 | 0.079 | -0.174 | 0.079 | |
c9 | 0.021 | 0.001 | 0.092 | -0.069 | 0.059 | 0.117 | 0.180 | 0.021 |
图4 不同演替阶段年表与气候因子的滑动相关关系分析。T, 月平均气温; P, 月降水量。T或P前的大写字母(如JUNE)为上年各月, 首字母大写的(如June)为当年各月。绿色表示年表与气候因子的相关关系不显著。
Fig. 4 Correlations with moving intervals between ring-width indices and monthly climatic indices for different successional stages. T, monthly mean air temperature; P, monthly precipitation. Capital letters before T or P (e.g. JUNE) denote the climatic indices for the previous year, and the first letter capitalized (e.g. June) is for the current year. Green color indicates non-significant correlations.
1 |
Armstrong W, Br?ndle R, Jackson M (1994). Mechanisms of flood tolerance in plants.Acta Botanica Neerlandica, 43, 307-358.
DOI URL |
2 | Barber VA, Juday GP, Finney BP (2000). Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 405, 668-673. |
3 | Chang JF, Wang XP, Zhang XP, Lin X (2009). Alpine timberline dynamics in relation to climatic variability in the northern Daxing’an Mountains.Mountain Research, (6), 703-711. (in Chinese with English abstract)[常锦峰, 王襄平, 张新平, 林鑫 (2009). 大兴安岭北部大白山高山林线动态与气候变化的关系. 山地学报, (6), 703-711.] |
4 |
Chen L, Gao LS, Zhang Y, ZHANG SX, Zhao XH (2013). Characteristics of tree-ring chronology of Pinus koraiensis and its relationship with climate factors on the northern slope of Changbai Mountain.Acta Ecologica Sinica, 33, 1285-1291. (in Chinese with English abstract)[陈列, 高露双, 张赟, 张思行, 赵秀海 (2013). 长白山北坡不同林型内红松年表特征及其与气候因子的关系. 生态学报, 33, 1285-1291.]
DOI URL |
5 | Chen L, Wu SH, Dai EF (2011). Analysis of the tree-ring width chronologies of Pinus koraiensis and Larix olgensis on Changbai Mountains, Northeast China.Geographical Research, 30, 1147-1155. (in Chinese with English abstract)[陈力, 吴绍洪, 戴尔阜 (2011). 长白山红松和落叶松树轮宽度年表特征. 地理研究, 30, 1147-1155.] |
6 | Cook ER (1985). A Time Series Analysis Approach to Tree-ring Standardization. PhD dissertation, The University of Arizona, Tucson, USA. |
7 | Cook ER, Kairiukstis LA (1990). Methods of Dendrochronology: Applications in the Environmental Sciences. Springer Science & Business Media, Berlin, Germany. |
8 | Fritts HC (1976). Tree rings and climate.Scientific American, 226(5), 95-99. |
9 |
Gao LS, Wang XM, Zhao XH (2011). Response of Pinus koraiensis and Picea jezoensis var. komarovii to climate in the transition zone of Changbai Mountain, China.Chinese Journal of Plant Ecology, 35, 27-34. (in Chinese with English abstract)[高露双, 王晓明, 赵秀海 (2011). 长白山过渡带红松和鱼鳞云杉径向生长对气候因子的响应. 植物生态学报, 35, 27-34.]
DOI URL |
10 | Gao LS, Wang XM, Zhao XH (2013). Growth response of two coexisting species to climate change in broadleaved Korean pine forests in Changbai Mountain, northeastern China.Journal of Beijing Forestry University, 35(3), 24-31. (in Chinese with English abstract)[高露双, 王晓明, 赵秀海 (2013). 长白山阔叶红松林共存树种径向生长对气候变化的响应. 北京林业大学学报, 35(3), 24-31.] |
11 | Goldblum D, Rigg L (2005). Tree growth response to climate change at the deciduous boreal forest ecotone, Ontario, Canada.Canadian Journal of Forest Research, 35, 2709-2718. |
12 |
Guo QX, Li JL, Liu JX, Zhang YM (2001). The scientific significance of the forest vegetation ecotone between Daxing’an and Xiaoxing’an Mountains to global climate change study.Journal of Northeast Forestry University, 29(5), 1-4. (in Chinese with English abstract)[国庆喜, 李具来, 刘继新, 张玉民 (2001). 大小兴安岭森林植被交错区生态系统在全球气候变化研究中的科学意义. 东北林业大学学报, 29(5), 1-4.]
DOI URL |
13 | Gutiérrez E (1991). Climate-tree-growth relationships for Pinus uncinata Ram. in the Spanish pre-Pyrenees.Acta Oecologica, 12, 213-225. |
14 | Holmes RL (1983). Computer-assisted quality control in tree- ring dating and measurement.Tree-Ring Bulletin, 43, 69-78. |
15 |
Holtmeier FK, Broll G (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales.Global Ecology and Biogeography, 14, 395-410.
DOI URL |
16 | Hu FS, Lee BY, Kaufman DS, Yoneji S, Nelson DM, Henne PD (2002). Response of tundra ecosystem in southwestern Alaska to Younger Dryas climatic oscillation.Global Change Biology, 8, 1156-1163. |
17 | IPCC (Intergovernmental Panel on Climate Change) (2007). Contribution of Working Group I to the fourth assessment report of the IPCC intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL eds. Climate Change in 2007: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
18 |
Kramer K, Leinonen I, Loustau D (2000). The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview.International Journal of Biometeorology, 44(2), 67-75.
DOI |
19 |
Leal S, Melvin T, Grabner M, Wimmer R, Briffa K (2007). Tree-ring growth variability in the Austrian Alps: The influence of site, altitude, tree species and climate.Boreas, 36, 426-440.
DOI URL |
20 |
Lebourgeois F, Gomez N, Pinto P, Mérian P (2013). Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe.Forest Ecology and Management, 303, 61-71.
DOI URL |
21 | Li JF (2000). Research and Application of Dendrohydrology. Science Press, Beijing.(in Chinese) [李江风 (2000). 树木年轮水文学研究与应用. 科学出版社, 北京.] |
22 | Li T, He XY, Chen ZJ (2014). Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern Northeast: A case study in Qianshan Mountains.Chinese Journal of Applied Ecology, 25, 1841-1848. (in Chinese with English abstract)[李腾, 何兴元, 陈振举 (2014). 东北南部蒙古栎径向生长对气候变化的响应——以千山为例. 应用生态学报, 25, 1841-1848.] |
23 |
Liang EY, Shao XM, Qin N (2008). Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau.Global and Planetary Change, 61, 313-320.
DOI URL |
24 | Qiu Y, Gao LS, Zhang X, Guo J, Ma ZY (2014). Effect of climate change on net primary productivity of Korean pine (Pinus koraiensis) at different successional stages of broad-leaved Korean pine forest.Chinese Journal of Applied Ecology, 25, 1870-1878. (in Chinese with English abstract)[丘阳, 高露双, 张雪, 郭静, 马志远 (2014). 气候变化对阔叶红松林不同演替阶段红松种群生产力的影响. 应用生态学报, 25, 1870-1878.] |
25 | Stokes MA (1996). An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson, USA. |
26 |
Walther GR (2003). Plants in a warmer world.Perspectives in Plant Ecology, Evolution and Systematics, 6(3), 169-185.
DOI URL |
27 | Wang J, Jiang ZH, Ding YG (2008). Multi-model ensemble prediction of extreme temperature indices in China.Resource Science, 30, 1084-1092. (in Chinese with English abstract)[王冀, 江志红, 丁裕国, 张金玲, 张霞 (2008). 21世纪中国极端气温指数变化情况预估. 资源科学, 30, 1084-1092.] |
28 |
Wang T, Zhang QB, Ma KP (2006a). Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China.Global Ecology and Biogeography, 15, 406-415.
DOI URL |
29 | Wang XC, Zhou XF, Li SJ, Sun L, Mu CC (2004). The effect of climate warming on the structure characteristic of the timberline in Laotudingzi Mountain. Acta Ecologica Sinica, 24, 2412-2421. (in Chinese with English abstract)[王晓春, 周晓峰, 李淑娟, 孙龙, 牟长城 (2004). 气候变暖对老秃顶子林线结构特征的影响. 生态学报, 24, 2412-2421.] |
30 |
Wang XP, Tang ZY, Fang JY (2006b). Climatic control on forests and tree species distribution in the forest region of Northeast China.Journal of Integrative Plant Biology, 48, 778-789.
DOI URL |
31 |
Wen XY, Wang SW, Zhu JH, Viner D (2006). An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data.Chinese Journal of Atmospheric Sciences, 30, 894-904. (in Chinese with English abstract)[闻新宇, 王绍武, 朱锦红, Viner David (2006). 英国CRU高分辨率格点资料揭示的20世纪中国气候变化. 大气科学, 30, 894-904.]
DOI URL |
32 | Wu P (2015). Litter Fall Production and Decomposition in Relation to Climate, Biological and Local Environments Factors in Forests of Northeast China. Master degree dissertation, Beijing Forestry University, Beijing. (in Chinese)[吴鹏 (2015). 东北地区森林凋落物产量、分解速率及其与气候、生物因素、局域环境因子的关系. 硕士学位论文, 北京林业大学, 北京.] |
33 | Wu YL, Wang XP, Li QY, Sun Y (2014). Response of broad-leaved Korean pine forest productivity of Mt. Changbai to climate change: An analysis based on BIOME-BGC Modeling.Acta Scientiarum Naturalium Universitatis Pekinensis, 50, 577-586. (in Chinese with English abstract)[吴玉莲, 王襄平, 李巧燕, 孙阎 (2014). 长白山阔叶红松林净初级生产力对气候变化的响应: 基于BIOME-BGC模型的分析. 北京大学学报 (自然科学版), 50, 577-586.] |
34 | Yu DP, Wang GG, Dai L, Wang Q (2007). Dendroclimatic analysis of Betula ermanii forests at their upper limit of distribution in Changbai Mountain, Northeast China.Forest Ecology and Management, 240, 105-113. |
35 | Zeng LB, Wang XP, Chang JF, Lin X, Wu YL, Yin WL (2012). Alpine timberline ecotone tree growth in relation to climatic variability for picea crassifolia forests in the middle Qilian Mountains, northwestern China.Journal of Beijing Forestry University, 34(5), 50-56. (in Chinese with English abstract)[曾令兵, 王襄平, 常锦峰, 林鑫, 吴玉莲, 尹伟伦 (2012). 祁连山中段青海云杉高山林线交错区树轮宽度与气候变化的关系. 北京林业大学学报, 34(5), 50-56.] |
36 | Zhou YL (1997). Vegetation Geography in Northeast China. Science Press, Beijing. (in Chinese)[周以良 (1997). 中国东北植被地理. 科学出版社, 北京.] |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 杨安娜, 李曾燕, 牟凌, 杨柏钰, 赛碧乐, 张立, 张增可, 王万胜, 杜运才, 由文辉, 阎恩荣. 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024, 48(3): 377-389. |
[9] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[10] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[11] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[12] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[13] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[14] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[15] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19