植物生态学报 ›› 2019, Vol. 43 ›› Issue (12): 1061-1078.DOI: 10.17521/cjpe.2019.0257
苑丹阳1,2,朱良军1,2,张远东3,李宗善4,赵慧颖5,王晓春1,2,*()
收稿日期:
2019-09-27
接受日期:
2019-12-05
出版日期:
2019-12-20
发布日期:
2020-01-19
通讯作者:
王晓春 ORCID:0000-0002-8897-5077
基金资助:
YUAN Dan-Yang1,2,ZHU Liang-Jun1,2,ZHANG Yuan-Dong3,LI Zong-Shan4,ZHAO Hui-Ying5,WANG Xiao-Chun1,2,*()
Received:
2019-09-27
Accepted:
2019-12-05
Online:
2019-12-20
Published:
2020-01-19
Contact:
WANG Xiao-Chun ORCID:0000-0002-8897-5077
Supported by:
摘要:
树轮数据是晚全新世古气候研究中最重要的代用指标。树轮参数各具优缺点, 蓝光强度(BI)是一种获取成本低廉的最大晚材密度(MXD)的光学替代参数, 其蓝色光反射率或强度最小值(256-BI)与相应的MXD值高度相关, 被很多的学者认为是树轮气候学研究中一个具有重要潜能的新兴参数。该研究以吉林老白山3个海拔(900、1 200和1 500 m)的鱼鳞云杉(Picea jezoensis)为例, 分析鱼鳞云杉的BI及轮宽指数(RWI)与气候因子的响应差异, 以期为BI参数在树轮气候学的进一步应用提供参考。结果表明: 不同海拔鱼鳞云杉BI或RWI对气候的响应趋势基本一致。BI与温度主要呈正相关关系, 而RWI与温度主要呈负相关关系, 其中BI与当年夏季及生长季最高温度显著正相关, 而RWI (低、中海拔)与全年平均气温、当年生长季和全年最低温度显著负相关。BI与当年夏季标准化降水蒸散指数(SPEI)显著负相关, RWI与夏季SPEI负相关关系较弱或为正相关; BI和RWI几乎相反的生长-气候关系可能是早、晚材权衡关系的体现。研究区域鱼鳞云杉的BI参数可能与年轮宽度记录不同的气候信号, 在空间尺度上对于当年夏季降水、最高温度以及SPEI的响应好于传统宽度指标。BI与主要气候因子相关关系的时间稳定性好于RWI, 因此, BI在树轮气候学的研究中具有一定的应用潜能。
苑丹阳, 朱良军, 张远东, 李宗善, 赵慧颖, 王晓春. 吉林老白山鱼鳞云杉树轮蓝光强度和轮宽指数与气候响应关系随海拔变化的对比. 植物生态学报, 2019, 43(12): 1061-1078. DOI: 10.17521/cjpe.2019.0257
YUAN Dan-Yang, ZHU Liang-Jun, ZHANG Yuan-Dong, LI Zong-Shan, ZHAO Hui-Ying, WANG Xiao-Chun. Comparison of elevational changes in relationships of blue intensity and ring width index in Picea jezoensis with climatic responses in Laobai Mountain of Jilin, China. Chinese Journal of Plant Ecology, 2019, 43(12): 1061-1078. DOI: 10.17521/cjpe.2019.0257
图1 老白山研究区采样点及气象站分布位置。L900, 低海拔; L1200, 中海拔; L1500, 高海拔。
Fig. 1 Locations of sampling sites and meteorological station in Laobai Mountain. L900, low elevation; L1200, middle elevation; L1500, high elevation.
图2 蛟河1951-2015年月平均气温(T)、月平均最低气温(Tmin)、月平均最高气温(Tmax)、年降水量(P)、相对湿度(RH)和标准降水蒸腾指数(SPEI)的变化趋势。A, 月变化趋势。B, 年际变化趋势。*代表在0.05的水平上显著相关; **代表在0.01的水平上显著相关。短划线为气象资料的分段线性拟合趋势线。
Fig. 2 Trend of changes in mean monthly temperature (T), mean monthly minimum temperature (Tmin), mean monthly maximum temperature (Tmax), total precipitation (P), relative humidity (RH) and standardized precipitation evapotranspiration index (SPEI) in Jiaohe meteorological station during 1951-2015. A, Trend of monthly change. B, Trend of annual change. *, correlation is significant at the 0.05 level; **, correlation is significant at the 0.01 level. Dash is piecewise fitted linear regression line of the meteorological data.
样点编码 Site code | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 样本数 Core number | 年表长度 Chronology length |
---|---|---|---|---|---|
L900 | 44.08° | 128.03° | 908 | 40 | 1801-2015 |
L1200 | 44.10° | 128.05° | 1 194 | 40 | 1670-2015 |
L1500 | 44.10° | 128.05° | 1 506 | 40 | 1794-2015 |
表1 老白山鱼鳞云杉树轮样点及年表基本信息
Table 1 Information of the sampling sites and chronologies in Picea Jezoensis in Laobai Mountain
样点编码 Site code | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 样本数 Core number | 年表长度 Chronology length |
---|---|---|---|---|---|
L900 | 44.08° | 128.03° | 908 | 40 | 1801-2015 |
L1200 | 44.10° | 128.05° | 1 194 | 40 | 1670-2015 |
L1500 | 44.10° | 128.05° | 1 506 | 40 | 1794-2015 |
图3 老白山鱼鳞云杉年轮蓝光强度(BI)及年轮宽度的测量。A, CooRecorder软件生成窗口。B, 测量过程详解。d, 像素深度; f, 点偏移度; R, 年轮宽度; w, 像素宽度。
Fig. 3 Measurement of blue intensity (BI) and ring width in Picea jezoensis in Laobai Mountain. A, CooRecorder blue intensity generation window. B, Detailed measurement process. d, depth; f, offest; R, ring width; w, width.
图4 近200年老白山不同海拔鱼鳞云杉年轮蓝光强度(BI)及轮宽指数(RWI)变化。A, 低海拔。B, 中海拔。C, 高海拔。
Fig. 4 Variation in the blue intensity (BI) and ring width index (RWI) in Picea jezoensis at different elevations in Laibai Mountain over the recent 200 years. A, Low elevation. B, Middle elevation. C, High elevation.
L-BI | L-RWI | M-BI | M-RWI | H-BI | |
---|---|---|---|---|---|
L-RWI | 0.15 | ||||
M-BI | 0.49** | -0.28** | |||
M-RWI | 0.24** | 0.21* | 0.39** | ||
H-BI | 0.42** | -0.40** | 0.77** | 0.14 | |
H-RWI | 0.16 | -0.05 | 0.21* | 0.35** | 0.40** |
表2 老白山不同海拔鱼鳞云杉年轮宽度与年轮蓝光强度标准年表相关系数
Table 2 Correlation coefficients between the standard chronologies of blue intensity (BI) and ring width index (RWI) at low (L), middle (M) and high (H) elevations in Picea jezoensis in Laobai Mountain
L-BI | L-RWI | M-BI | M-RWI | H-BI | |
---|---|---|---|---|---|
L-RWI | 0.15 | ||||
M-BI | 0.49** | -0.28** | |||
M-RWI | 0.24** | 0.21* | 0.39** | ||
H-BI | 0.42** | -0.40** | 0.77** | 0.14 | |
H-RWI | 0.16 | -0.05 | 0.21* | 0.35** | 0.40** |
图5 老白山低(L)、中(M)、高(H)海拔鱼鳞云杉年轮蓝光强度(BI)与年轮宽度指数(RWI)标准年表及两者与月气候因子的相关系数。A, 降水量。B, 相对湿度。C, 月平均气温。D, 月平均最低气温。E, 月平均最高气温。F, 标准降水蒸腾指数。p, 上一年; *, 在0.05的水平上显著相关。
Fig. 5 Standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and their correlation coefficients with monthly climatic factors at low (L), middle (M) and high (H) elevations in Laobai Mountain. A, Precipitation. B, Relative humidity. C, Mean monthly temperature. D, Minimum mean monthly temperature. E, Maximum mean monthly temperature. F, Standardized precipitation evapotranspiration index. p, previous year; *, the correlation is significant at the 0.05 level.
图6 老白山低(L)、中(M)、高(H)海拔云杉年轮蓝光强度(BI)与年轮宽度指数(RWI)年表及两者与季节气候因子的相关系数。A, 降水量。B, 相对湿度。C, 季平均气温。D, 季平均最低气温。E, 季平均最高气温。F, 标准降水蒸腾指数。*代表在0.05的水平上显著相关。SPR, 春季; SUM, 夏季; AUT, 秋季; GS, 生长季; AN, 全年。
Fig. 6 Standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and their correlation coefficients with seasonal climatic factors at low (L), middle (M) and high (H) elevations in Laobai Mountain. A, Precipitation. B, Relative humidity. C, Mean seasonal temperature. D, Minimum mean seasonal temperature. E, Maximum mean seasonal temperature. F, Standardized precipitation evapotranspiration index. *, the correlation is significant at the 0.05 level. SPR, spring; SUM, summer; AUT, autumn; GS, growing season; AN, annual.
图7 老白山低(L)(A)、中(M)(B)、高(H)(C)海拔鱼鳞云杉年轮蓝光强度(BI)年表和年轮宽度指数(RWI)年表与当年夏季降水量(P)的滑动相关及滑动相关系数的标准偏差。虚线表示95%置信水平; r, 滑动相关系数; **, 在0.01的水平上显著相关。
Fig. 7 Moving correlation analysis between the standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer precipitation at low (L)(A), middle (M)(B) and high (H)(C) elevations in Laobai Mountain and the standard deviations of the moving correlation coefficients. Dotted line represents 95% confidence level; r, moving correlation coefficient; **, the correlation is significant at the 0.01 level.
图8 老白山低(L)(A)、中(M)(B)、高(H)(C)海拔云杉年轮蓝光强度(BI)年表和年轮宽度指数(RWI)年表与当年夏季最高气温(Tmax)的滑动相关及滑动相关系数的标准偏差。虚线表示95%置信水平; r, 滑动相关系数; **, 在0.01的水平上显著相关。
Fig. 8 Moving correlation analysis between the standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer maximum temperature at low (L)(A), middle (M)(B) and high (H)(C) elevations in Laobai Mountain and the standard deviations of the moving correlation coefficients. Dotted line represents 95% confidence level; r, moving correlation coefficient; **, the correlation is significant at the 0.01 level.
图9 老白山低(L)(A)、中(M)(B)、高(H)(C)海拔云杉年轮蓝光强度(BI)和年轮宽度指数(RWI)与当年夏季标准化降水蒸散指数(SPEI)的滑动相关及滑动相关系数的标准差。虚线表示95%置信水平; r, 滑动相关系数; **, 在0.01的水平上显著相关。
Fig. 9 Moving correlation analysis between the standard chronologies of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer Standardized Precipitation Evapotranspiration Index (SPEI) at low (L)(A), middle (M)(B) and high (H)(C) elevations in Laobai Mountain and the standard deviations of the moving correlation coefficients. Dotted line represents 95% confidence level; r, moving correlation coefficient; **, the correlation is significant at the 0.01 level.
图10 老白山低、中、高海拔鱼鳞云杉年轮蓝光强度(BI)年表与年轮宽度指数(RWI)年表与当年气候因子空间相关关系。p < 0.01的区域被显示, 红色区域为采样点。
Fig. 10 Correlation coefficients between average chronology of blue intensity (BI) and ring width index (RWI) in Picea jezoensis and summer climatic factors at low, middle and high elevations in Laobai Mountain. SPEI, Standard Precipitation Evapotranspiration Index. Correlation with the significance of p > 0.01 level was mask out; the red dot is the sample area.
[1] |
Babst F, Wright WE, Szejner P, Wells L, Belmecheri S, Monson RK ( 2016). Blue intensity parameters derived from Ponderosa pine tree rings characterize intra-annual density fluctuations and reveal seasonally divergent water limitations. Trees, 30, 1403-1415.
DOI URL PMID |
[2] | Björklund J, Gunnarson BE, Seftigen K, Zhang P, Linderholm HW ( 2015). Using adjusted Blue Intensity data to attain high-quality summer temperature information: A case study from Central Scandinavia. The Holocene, 25, 547-556. |
[3] | Björklund JA, Gunnarson BE, Seftigen K, Esper J, Linderholm HW ( 2014). Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Climate of the Past, 10, 877-885. |
[4] | Björklund JA, Gunnarson BE, Seftigen K, Esper J, Linderholm HW ( 2013). Is blue intensity ready to replace maximum latewood density as a strong temperature proxy? A tree-ring case study on Scots pine from northern Sweden. Climate of the Past Discussions, 9, 5227-5261. |
[5] | Briffa KR, Melvin TM (2010). A closer look at regional curve standardization of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes MK, Swetnam TW, Diaz HF eds. Dendroclimatology. Springer, Dordrecht. 113-145. |
[6] |
Brookhouse M, Graham R ( 2016). Application of the minimum blue-intensity technique to a southern-hemisphere conifer. Tree-Ring Research, 72, 103-107.
DOI URL |
[7] | Buckley BM, Hansen KG, Griffin KL, Schmiege S, Oelkers R, DʼArrigo RD, Stahle DK, Davi N, Nguyen TQT, Le CN, Wilson RJS ( 2018). Blue intensity from a tropical conifer’s annual rings for climate reconstruction: An ecophysiological perspective. Dendrochronologia, 50, 10-22. |
[8] |
Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J ( 2007). Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiology, 27, 689-702.
DOI URL PMID |
[9] | Büntgen U, Frank DC, Nievergelt D, Esper J ( 2006). Summer temperature variations in the European Alps, A.D. 755-2004. Journal of Climate, 19, 5606-5623. |
[10] | Campbell R, McCarroll D, Loader NJ, Grudd H, Robertson I, Jalkanen R ( 2007). Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy. The Holocene, 17, 821-828. |
[11] | Campbell R, McCarroll D, Robertson I, Loader NJ, Grudd H, Gunnarson B ( 2011). Blue intensity in Pinus sylvestris tree rings: A manual for a new palaeoclimate proxy. Tree-Ring Research, 67, 127-134. |
[12] | Chen F, Yuan YJ, Wei WS, Yu SL, Fan ZA, Zhang RB, Zhang TW, Li Q, Shang HM ( 2012). Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China. Theoretical and Applied Climatology, 107, 633-643. |
[13] | Chen F, Yuan YJ, Wei WS, Yu SL, Shang HM, Zhang TW, Zhang RB, Wang HQ ( 2017). Air temperature from May through August in northern Xinjiang reconstructed from multi-site tree-ring density. Journal of Glaciology and Geocryology, 39(1), 43-53. |
[ 陈峰, 袁玉江, 魏文寿, 喻树龙, 尚华明, 张同文, 张瑞波, 王慧琴 ( 2017). 利用年轮密度重建新疆北部5-8月温度变化. 冰川冻土, 39(1), 43-53.] | |
[14] | Dolgova E ( 2016). June-September temperature reconstruction in the Northern Caucasus based on blue intensity data. Dendrochronologia, 39, 17-23. |
[15] | Duan JP ( 2015). Advances in tree-ring density study. Quaternary Sciences, 35, 1271-1282. |
[ 段建平 ( 2015). 树木年轮密度研究进展. 第四纪研究, 35, 1271-1282.] | |
[16] | Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U ( 2012). Orbital forcing of tree- ring data. Nature Climate Change, 2, 862-866. |
[17] | Fan ZX, Bräuning A, Yang B, Cao KF ( 2009). Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change, 65(1-2), 1-11. |
[18] | Fritts HC (1976). Tree Rings and Climate. Academic Press, London. |
[19] | Fuentes M, Salo R, Björklund J, Seftigen K, Zhang P, Gunnarson B, Aravena JC, Linderholm HW ( 2017). A 970-year- long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings. The Holocene, 28, 254-266. |
[20] |
Gao LS, Wang XM, Zhao XH ( 2011). Response of Pinus koraiensis and Picea jezoensis var. komarovii to climate in the transition zone of Changbai Mountain, China. Chinese Journal of Plant Ecology, 35, 27-34.
DOI URL |
[ 高露双, 王晓明, 赵秀海 ( 2011). 长白山过渡带红松和鱼鳞云杉径向生长对气候因子的响应. 植物生态学报, 35, 27-34.]
DOI URL |
|
[21] |
Gindl W, Grabner M, Wimmer R ( 2000). The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, 14, 409-414.
URL PMID |
[22] |
Heeter KJ, Harley GL, van de Gevel SL, White PB ( 2019). Blue intensity as a temperature proxy in the eastern United States: A pilot study from a southern disjunct population of Picea rubens (Sarg.). Dendrochronologia, 55, 105-109.
DOI URL |
[23] |
Holmes RL ( 1983). Computer-assisted quality control in tree- ring dating and measurement. Tree-Ring Bulletin, 43, 69-75.
DOI URL PMID |
[24] | Hughes MK ( 2001). An improved reconstruction of summer temperature at Srinagar, Kashmir since 1660 AD, based on tree-ring-width and maximum latewood density of Abies pindrow [Royle] Spach. Palaeobotanist, 50, 13-19. |
[25] | Kaczka RJ, Spyt B, Janecka K, Beil I, Büntgen U, Scharnweber T, Nievergelt D, Wilmking M ( 2018). Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia, 49, 94-101. |
[26] | Lange PW ( 1954). The distribution of lignin in the cell wall of normal and reaction wood from spruce and a few hardwoods. Svensk Papperstidn, 57, 525-532. |
[27] |
Li GQ, Bai F, Sang WG ( 2011). Different responses of radial growth to climate warming in Pinus koraiensis and Picea jezoensis var. komarovii at their upper elevational limits in Changbai Mountain, China. Chinese Journal of Plant Ecology, 35, 500-511.
DOI URL |
[ 李广起, 白帆, 桑卫国 ( 2011). 长白山红松和鱼鳞云杉在分布上限的径向生长对气候变暖的不同响应. 植物生态学报, 35, 500-511.]
DOI URL |
|
[28] |
Linderholm HW, Björklund J, Seftigen K, Gunnarson BE, Fuentes M ( 2015). Fennoscandia revisited: A spatially improved tree-ring reconstruction of summer temperatures for the last 900 years. Climate Dynamics, 45, 933-947.
DOI URL |
[29] |
Luckman BH, Wilson RJS ( 2005). Summer temperatures in the Canadian Rockies during the last millennium: A revised record. Climate Dynamics, 24, 131-144.
DOI URL |
[30] |
McCarroll D, Pettigrew E, Luckman A, Guibal F, Edouard JL ( 2002). Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arctic, Antarctic, and Alpine Research, 34, 450-453.
DOI URL |
[31] |
Nagavciuc V, Roibu CC, Ionita M, Mursa A, Cotos MG, Popa I ( 2019). Different climate response of three tree ring proxies of Pinus sylvestris from the Eastern Carpathians, Romania. Dendrochronologia, 54, 56-63.
DOI URL |
[32] | Österreicher A, Weber G, Leuenberger M, Nicolussi K ( 2015). Exploring blue intensity comparison of blue intensity and MXD data from Alpine spruce trees. Tree Rings in Archaeology, Climatology and Ecology, 13, 56-61. |
[33] |
Rydval M, Larsson LÅ, McGlynn L, Gunnarson BE, Loader NJ, Young GHF, Wilson R ( 2014). Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland. Dendrochronologia, 32, 191-204.
DOI URL |
[34] |
Sheppard PR, Graumlich LJ, Conkey LE ( 1996). Reflected-light image analysis of conifer tree rings for reconstructing climate. The Holocene, 6, 62-68.
DOI URL |
[35] | Sheppard PR, Wiedenhoeft A ( 2007). An advancement in removing extraneous color from wood for low-magnification reflected-light image analysis of conifer tree rings. Wood and Fiber Science, 39, 173-183. |
[36] | Sidor CG, Popa I, Vlad R, Cherubini P ( 2015). Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees, 29, 985-997. |
[37] | Stokes MA, Smiley TL (1968). An Introduction to Tree-ring Dating. University of Arizona Press, Tucson. |
[38] |
Vicente-Serrano SM, Beguería S, López-Moreno JI ( 2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718.
DOI URL |
[39] | Wang SL, Zhao Y, Gai XR, Wang XY, Yu DP, Zhou WM, Zhou L, Dai LM ( 2017). Response of radial growth of Picea jezoensis var. komarovii to climate factors along an altitudinal gradient on Changbai Mountain, Northeast China. Chinese Journal of Ecology, 36, 3131-3137. |
[ 王守乐, 赵媛, 盖学瑞, 王晓雨, 于大炮, 周旺明, 周莉, 代力民 ( 2017). 长白山鱼鳞云杉径向生长对气候响应的海拔差异. 生态学杂志, 36, 3131-3137.] | |
[40] | Wang T, Yu D, Li JF, Ma KP ( 2003). Advances in research on the relationship between climatic change and tree-ring width. Acta Photoecologia Sinica, 27, 23-33. |
[ 王婷, 于丹, 李江风, 马克平 ( 2003). 树木年轮宽度与气候变化关系研究进展. 植物生态学报, 27, 23-33.] | |
[41] |
Wang XC, Pederson N, Chen ZJ, Lawton K, Zhu C, Han SJ ( 2019). Recent rising temperatures drive younger and southern Korean pine growth decline. Science of the Total Environment, 649, 1105-1116.
DOI URL PMID |
[42] |
Wang H, Shao XM, Fang XQ, Jiang Y, Liu CL, Qiao Q ( 2017). Relationships between tree-ring cell features of Pinus koraiensis and climate factors in the Changbai Mountains, Northeastern China. Journal of Forestry Research, 28, 105-114.
DOI URL |
[43] | Wang XC, Zhang XQ, Zhu JH, Hou ZH, Chai ZL ( 2009). Research on relationship between tree-ring and global warming. World Forestry Research, 22(6), 38-42. |
[ 王晓春, 张小全, 朱建华, 侯振宏, 柴正礼 ( 2009). 树木年轮与全球变暖的关系研究进展. 世界林业研究, 22(6), 38-42.] | |
[44] |
Wilson R, Anchukaitis K, Andreu-Hayles L, Cook E, D’Arrigo R, Davi N, Haberbauer L, Krusic P, Luckman B, Morimoto D, Oelkers R, Wiles G, Wood C ( 2019). Improved dendroclimatic calibration using blue intensity in the southern Yukon. The Holocene, 29, 1817-1830.
DOI URL |
[45] |
Wilson R, DʼArrigo R, Andreu-Hayles L, Oelkers R, Wiles G, Anchukaitis K, Davi N ( 2017). Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past, 13, 1007-1022.
DOI URL |
[46] | Yang YK, Huang Q, Liu Y, Wang YM, Bai T, Wang WK ( 2012). Response analysis between climate factors and the density of wood growth of Picea crassifolia. Journal of Xi’an University of Technology, 28, 432-438. |
[ 杨银科, 黄强, 刘禹, 王义民, 白涛, 王文科 ( 2012). 云杉树轮生长密度对气候要素的响应分析. 西安理工大学学报, 28, 432-438.] | |
[47] |
Yanosky TM, Robinove CJ ( 1986). Digital image measurement of the area and anatomical structure of tree rings. Canadian Journal of Botany, 64, 2896-2902.
DOI URL |
[48] |
Yu J, Liu QJ, Zhou G, Meng SW, Zhou H, Xu ZZ, Shi JN, Du WX ( 2017). Response of radial growth of Pinus koraiensis and Picea jezoensis to climate change in Xiaoxing’anling Mountains, Northeast China. Chinese Journal of Applied Ecology, 28, 3451-3460.
DOI URL PMID |
[ 于健, 刘琪璟, 周光, 孟盛旺, 周华, 徐振招, 史景宁, 杜文先 ( 2017). 小兴安岭红松和鱼鳞云杉径向生长对气候变化的响应. 应用生态学报, 28, 3451-3460.]
DOI URL PMID |
|
[49] | Zhang P, Ionita M, Lohmann G, Chen DL, Linderholm HW ( 2017). Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia? Climate Dynamics, 49, 2721-2736. |
[50] | Zhang Y, Fang KY, Zhou FF, Dong ZP, Gan ZF, Li DW ( 2016). A study on the inter-annual latewood growth of Pinus massoniana in fuzhou. Journal of Subtropical Resources and Environment, 11, 59-64. |
[ 张雨, 方克艳, 周非飞, 董志鹏, 甘展峰, 李大稳 ( 2016). 福州马尾松年内晚材生长动态观测研究. 亚热带资源与环境学报, 11, 59-64]. | |
[51] | Zhu LJ, Cooper DJ, Yang JW, Zhang X, Wang XC ( 2018). Rapid warming induces the contrasting growth of Yezo spruce (Picea jezoensis var. microsperma) at two elevation gradient sites of northeast China. Dendrochronologia, 50, 52-63. |
[52] |
Zhu LJ, Li ZS, Wang XC ( 2017). Anatomical characteristics of xylem in tree rings and its relationship with environments. Chinese Journal of Plant Ecology, 41, 238-251.
DOI URL |
[ 朱良军, 李宗善, 王晓春 ( 2017). 树轮木质部解剖特征及其与环境变化的关系. 植物生态学报, 41, 238-251.]
DOI URL |
[1] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[2] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[3] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[4] | 牟文博 徐当会 王谢军 张瑞英 顾玉玲 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[5] | 向响, 黄永梅, 杨崇曜, 李泽卿, 陈慧颖, 潘莹萍, 霍佳璇, 任梁. 海拔对青海湖流域群落水平植物功能性状的影响[J]. 植物生态学报, 2021, 45(5): 456-466. |
[6] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[7] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[8] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[9] | 李蕾, 王一峰, 苟文霞, 马文梅, 蒋春玲. 狮牙草状风毛菊果期资源分配对海拔的响应[J]. 植物生态学报, 2020, 44(11): 1164-1171. |
[10] | 秦浩, 张殷波, 董刚, 张峰. 山西关帝山森林群落物种、谱系和功能多样性海拔格局[J]. 植物生态学报, 2019, 43(9): 762-773. |
[11] | 章异平, 海旭莹, 徐军亮, 吴文霞, 曹鹏鹤, 安文静. 秦岭东段栓皮栎枝条非结构性碳水化合物含量的季节动态[J]. 植物生态学报, 2019, 43(6): 521-531. |
[12] | 焦亮, 王玲玲, 李丽, 陈晓霞, 闫香香. 阿尔泰山西伯利亚落叶松径向生长对气候变化的分异响应[J]. 植物生态学报, 2019, 43(4): 320-330. |
[13] | 史娜娜, 肖能文, 王琦, 韩煜, 高晓奇, 冯瑾, 全占军. 锡林郭勒植被NDVI时空变化及其驱动力定量分析[J]. 植物生态学报, 2019, 43(4): 331-341. |
[14] | 申佳艳, 李帅锋, 黄小波, 雷志全, 施兴全, 苏建荣. 南盘江流域云南松径向生长对气候暖干化的响应[J]. 植物生态学报, 2019, 43(11): 946-958. |
[15] | 殷爽, 王传宽, 金鹰, 周正虎. 东北地区大秃顶子山土壤-微生物-胞外酶C:N:P 化学计量特征沿海拔梯度的变化[J]. 植物生态学报, 2019, 43(11): 999-1009. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19