植物生态学报 ›› 2005, Vol. 29 ›› Issue (6): 968-975.DOI: 10.17521/cjpe.2005.0129
收稿日期:
2004-11-17
接受日期:
2005-04-27
出版日期:
2005-11-17
发布日期:
2005-09-30
通讯作者:
曹坤芳
作者简介:
*E-mail:caokf@xtbg.ac.cn基金资助:
FAN Ze-Xin1,2, CAO Kun- Fang1,*(), ZOU Shou-Qing1
Received:
2004-11-17
Accepted:
2005-04-27
Online:
2005-11-17
Published:
2005-09-30
Contact:
CAO Kun- Fang
摘要:
West、Brown和Enquist提出的树木水分传导的分形网络模型(简称WBE模型)认为,树木连续分枝之间的导管或管胞直径按照一定的比率均匀变细,其总的水力阻力与水分传导的路径长度无关,从而使不同部位叶片获得基本相当的水分供应。该模型对树木高生长的水力限制假说提出了置疑。为了验证WBE模型中树木导管或管胞均匀变细的假说,该文研究了云南哀牢山中湿性常绿阔叶林中6种常绿阔叶树, 腾冲栲(Castanopsis wattii)、景东石砾(Lithocarpus chintungensis)、木果石砾(L. xylocarpus)、长尾青冈(Cyclobalanopsis stewardiana)、滇木荷(Schima noronhae)和舟柄茶(Hartia sinensis)木质部解剖特征随树高和年龄的变化。对这6个树种共14株样木进行了不同高度树干圆盘和边材生长轮取样,样木的高度为15~25 m,按照常规木材解剖的处理和分析方法,在显微镜下测定木材切片的导管直径和密度等特征。结果表明:在14株样木中,有4株树木导管直径随树木高度增加呈线性减小, 1株没有明显变化,其它9株树木导管直径在树冠以下的树干部分变化幅度较小或没有明显变化,而从树冠基部往上直到树木顶端导管直径显著减小。同一植株随着高度的增加,导管密度增加并且在树冠内增加更显著。有三分之一的树木导管占边材面积的比例随树高增加没有明显变化,其余树木导管占边材面积比在树冠以上有所减小。多数树木理论比导率在树冠以下没有明显变化而在树冠基部往上显著降低。在从髓芯开始往外的20~40个年轮范围内导管直径增加显著,但大部分植株导管直径在40个年轮后趋于稳定。不同高度圆盘导管直径随形成层发育时间的变化呈相似的趋势,并且相同发育年龄的导管直径没有明显差异。该文的研究结果说明,导管直径的轴向和径向变化一定程度上补偿了水分运输阻力随树木个体增大而增加的缺陷,但是6种常绿阔叶树树干的导管基本不按一定比率均匀变细,不支持WBE模型。
范泽鑫, 曹坤芳, 邹寿青. 云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化. 植物生态学报, 2005, 29(6): 968-975. DOI: 10.17521/cjpe.2005.0129
FAN Ze-Xin, CAO Kun- Fang, ZOU Shou-Qing. AXIAL AND RADIAL CHANGES IN XYLEM ANATOMICAL CHARACTERISTICS IN SIX EVERGREEN BROADLEAVED TREE SPECIES IN AILAO MOUNTAIN, YUNNAN. Chinese Journal of Plant Ecology, 2005, 29(6): 968-975. DOI: 10.17521/cjpe.2005.0129
图1 6种常绿阔叶树导管管腔直径的轴向变化 数据点为平均值±标准误 Data are means±SE, n=4-6 image fields 图中每个字母代表一个植株,虚线表示树冠基部所在位置 Each panel represents one tree. The dashed line indicates the base of the crown 箭头表示分段回归显著时(F>F0.05)拐点所在树高的位置;如分段回归不显著(F<F0.05)而线性回归显著(p<0.05) 则图中没有任何标识;如分段回归与线性回归均不显著则在树号字母正下方标“ns”
Fig.1 Axial variations of mean lumen diameter in six evergreen broadleaved tree species The > or < indicated the position of the transition zone when the segmented regression was significant, there is no label in trees which the segmented regression was ns while the simple regression was significant, the “ns” was labeled centered below the tree letter when the simple and segmented regression were both ns
图2 6种常绿阔叶树导管密度的轴向变化 数据点为平均值±标准误 Data are means±SE, n=4-6 图中树号和标识与图1相同
Fig.2 Axial variations of vessel density in the six evergreen broadleaved tree species The tree letters and the labels are the same as Fig. 1
图3 6种常绿阔叶树导管占边材面积的百分比的轴向变化 数据点为平均值±标准误 Data are means±SE, n=4-6 图中树号和标识与图1相同
Fig.3 Axial variations of lumen/total sapwood area in the six evergreen broadleaved tree species The tree letters and the labels are the same as Fig. 1
图4 6种常绿阔叶树理论比导率的轴向变化 数据点为平均值±标准误 Data are means±SE, n=4-6 图中树号和标识与图1相同
Fig.4 Axial variations in the theoretical hydraulic conductivity in the six evergreen broadleaved tree species The tree letters and the labels are the same as Fig. 1
树号 Trees | 导管直径 Lumen diameter | 导管密度 Vessel density | 导管占边材面积比 Lumen/total sapwood area | 理论比导率 ks | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | ||||
A | 0.73 | 0.85 | 6.44(16)* | 0.72 | 0.83 | 5.38(17)* | 0.49 | 0.66 | 3.87(16)* | 0.65 | 0.76 | 3.38(16) | |||
B | 0.73 | 0.92 | 16.77(14)* | 0.61 | 0.90 | 20.48(14)* | 0.00 | 0.45 | 5.74(14)* | 0.56 | 0.83 | 10.76(14)* | |||
C | 0.81 | 0.88 | 4.28(15)* | 0.86 | 0.88 | 1.61(15) | 0.03 | 0.59 | 10.04(15)* | 0.55 | 0.73 | 4.78(15)* | |||
D | 0.14 | 0.86 | 37.12(14)* | 0.61 | 0.88 | 13.16(12)* | 0.55 | 0.80 | 8.47(14)* | 0.01 | 0.82 | 26.38(12)* | |||
E | 0.76 | 0.92 | 18.94(19)* | 0.73 | 0.91 | 20.86(19)* | 0.02 | 0.10 | 0.80(19) | 0.65 | 0.79 | 6.19(19)* | |||
F | 0.59 | 0.63 | 0.66(10) | 0.92 | 0.93 | 0.22(7) | 0.13 | 0.43 | 2.57(10) | 0.10 | 0.54 | 4.77(10)* | |||
G | 0.90 | 0.90 | 0.23(17) | 0.61 | 0.80 | 8.07(17)* | 0.46 | 0.63 | 3.34(15) | 0.77 | 0.85 | 4.28(17)* | |||
H | 0.86 | 0.91 | 3.99(14)* | 0.65 | 0.68 | 3.33(13) | 0.67 | 0.84 | 5.96(12)* | 0.83 | 0.87 | 2.16(13) | |||
I | 0.92 | 0.93 | 1.45(16) | 0.36 | 0.59 | 4.20(15)* | 0.66 | 0.71 | 1.45(15) | 0.87 | 0.88 | 0.53(15) | |||
J | 0.19 | 0.56 | 3.32(8) | 0.67 | 0.82 | 3.13(8) | 0.13 | 0.48 | 2.61(8) | 0.01 | 0.43 | 2.99(8) | |||
K | 0.80 | 0.87 | 4.25(17)* | 0.83 | 0.89 | 3.93(14)* | 0.24 | 0.55 | 5.30(17)* | 0.75 | 0.85 | 6.04(17)* | |||
L | 0.84 | 0.85 | 0.34(15) | 0.66 | 0.79 | 4.85(17)* | 0.05 | 0.21 | 1.85(18) | 0.75 | 0.75 | 0.72(14) | |||
M | 0.44 | 0.92 | 31.72(10)* | - | - | - | - | - | - | - | - | - | |||
N | 0.67 | 0.89 | 9.97(10)* | - | - | - | - | - | - | - | - | - |
表1 简单线性回归与分段回归模型对图1~4中数据进行模拟的相关性及F检验结果
Table 1 Summary of correlations and F-tests of the simple linear regression (SimM) and segmented regression model (SegM) on the data of Figure 1-4
树号 Trees | 导管直径 Lumen diameter | 导管密度 Vessel density | 导管占边材面积比 Lumen/total sapwood area | 理论比导率 ks | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | 简单 SimM R2 | 分段 SegM R2 | F值 F(df) | ||||
A | 0.73 | 0.85 | 6.44(16)* | 0.72 | 0.83 | 5.38(17)* | 0.49 | 0.66 | 3.87(16)* | 0.65 | 0.76 | 3.38(16) | |||
B | 0.73 | 0.92 | 16.77(14)* | 0.61 | 0.90 | 20.48(14)* | 0.00 | 0.45 | 5.74(14)* | 0.56 | 0.83 | 10.76(14)* | |||
C | 0.81 | 0.88 | 4.28(15)* | 0.86 | 0.88 | 1.61(15) | 0.03 | 0.59 | 10.04(15)* | 0.55 | 0.73 | 4.78(15)* | |||
D | 0.14 | 0.86 | 37.12(14)* | 0.61 | 0.88 | 13.16(12)* | 0.55 | 0.80 | 8.47(14)* | 0.01 | 0.82 | 26.38(12)* | |||
E | 0.76 | 0.92 | 18.94(19)* | 0.73 | 0.91 | 20.86(19)* | 0.02 | 0.10 | 0.80(19) | 0.65 | 0.79 | 6.19(19)* | |||
F | 0.59 | 0.63 | 0.66(10) | 0.92 | 0.93 | 0.22(7) | 0.13 | 0.43 | 2.57(10) | 0.10 | 0.54 | 4.77(10)* | |||
G | 0.90 | 0.90 | 0.23(17) | 0.61 | 0.80 | 8.07(17)* | 0.46 | 0.63 | 3.34(15) | 0.77 | 0.85 | 4.28(17)* | |||
H | 0.86 | 0.91 | 3.99(14)* | 0.65 | 0.68 | 3.33(13) | 0.67 | 0.84 | 5.96(12)* | 0.83 | 0.87 | 2.16(13) | |||
I | 0.92 | 0.93 | 1.45(16) | 0.36 | 0.59 | 4.20(15)* | 0.66 | 0.71 | 1.45(15) | 0.87 | 0.88 | 0.53(15) | |||
J | 0.19 | 0.56 | 3.32(8) | 0.67 | 0.82 | 3.13(8) | 0.13 | 0.48 | 2.61(8) | 0.01 | 0.43 | 2.99(8) | |||
K | 0.80 | 0.87 | 4.25(17)* | 0.83 | 0.89 | 3.93(14)* | 0.24 | 0.55 | 5.30(17)* | 0.75 | 0.85 | 6.04(17)* | |||
L | 0.84 | 0.85 | 0.34(15) | 0.66 | 0.79 | 4.85(17)* | 0.05 | 0.21 | 1.85(18) | 0.75 | 0.75 | 0.72(14) | |||
M | 0.44 | 0.92 | 31.72(10)* | - | - | - | - | - | - | - | - | - | |||
N | 0.67 | 0.89 | 9.97(10)* | - | - | - | - | - | - | - | - | - |
图5 4种壳斗科常绿阔叶树不同树干高度导管管腔直径随生长轮数的变化 数据点为平均值±标准误 Data are means±SE, n=3 数据用Lowess回归拟合出平滑曲线
Fig.5 Variation of mean lumen diameter with annual grown rings from pith at different heights aboveground in four evergreen broadleaved tree species (Fagaceae) The curve were fitted by Lowess (locally weighted, piecewise, linear regression) with F=0.6-0.9
[1] |
Becker P, Gribben RJ, Lim CM (2000a). Tapered conduits can buffer hydraulic conductance from path-length effects. Tree Physiology, 20,965-967.
URL PMID |
[2] | Becker P, Meinzer FC, Wullschleger SD (2000b). Hydraulic limitation of tree height: a critique. Functional Ecology, 14,4-11. |
[3] |
Becker P, Gribben RJ (2001). Estimation of conduit taper for the hydraulic resistance model of West et al.. Tree Physiology, 21,697-700.
DOI URL PMID |
[4] |
Becker P, Gribben RJ, Schulte PL (2003). Incorporation of transfer resistance between tracheary elements in hydraulic resistance models for tapered conduits. Tree Physiology, 23,1009-1019.
URL PMID |
[5] | Comstock JP, Sperry JS (2000). Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytologist, 148,195-218. |
[6] | Di Lucca CM (1989). Juvenile-mature wood transition. In: Kellogg RM ed. Second Growth Douglas-fir: Its Management and Conversion for Value. Forintek Canada Corp., Vancouver BC,23-38. |
[7] |
Domec JC, Gartner BL (2002). Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure. Tree Physiology, 22,91-104.
URL PMID |
[8] | Enquist BJ, West GB, Charnov EL, Brown JH (1999). Allometric scaling of prucuction and life-history variation in vascular plants. Nature, 401,907-911. |
[9] | Enquist BJ (2003). Cope's rule and the evolution of long-distance transport in vascular plants: allometric scaling, biomass partitioning and optimization. Plant, Cell and Environment, 26,151-161. |
[10] | Goudie JW, DiLucca CM (2002). Modelling the relationship between crown morphology and wood characteristics of coastal western hemlock in British Columbia. In:Nepveu G ed. Fourth workshop on the connection between silviculture and wood quality through modelling approaches and simulation software. INRA, Nancy,308-319. |
[11] |
James SA, Meinzer FC, Goldstein G, Woodruff D, Jones T, Restom T, Mejia M, Clearwater M, Campanello P (2003). Axial and radial water transport and internal water storage in tropical forest canopy trees. Oecologia, 134,37-45.
URL PMID |
[12] | Li JY (李吉跃), Zhai HB (翟洪波) (2000). Hydraulic architecture and drought resistance of wood plants. Chinese Journal of Applied Ecology (应用生态学报), 11,301-305.. (in Chinese with English abstract) |
[13] |
McCulloh KA, Sperry JS, Adler FR (2003). Water transport in plants obeys Murray's law. Nature, 421,939-942.
URL PMID |
[14] |
McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, Køstner B, Magnani F, Marshall JD, Meinzer FC, Phillips N, Ryan MG, Whitehead D (2002). The relationship between tree height and leaf area: sapwood area ratio. Oecologia, 132,12-20.
DOI URL PMID |
[15] | McElorone AJ, Pockman WT, Martínez-Vilalta J, Jackson RB (2004). Variation in xylem structure and function in stems and roots to 20 m depth. New Phytologist, 163,507-517. |
[16] |
Mencuccini M, Grace J, Fioravanti M (1997). Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiology, 17,105-113.
URL PMID |
[17] | Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Science of the United Seates of America, 98,2922-2927. |
[18] |
Noshiro S, Suzuki M (2001). Ontogenetic wood anatomy of tree and subtree species of Nepalese Rhododendron (Ericaceae) and characterization of shrub species. American Journal of Botany, 88,560-569.
URL PMID |
[19] | Pothier D, Margolis HA, Waring RH (1989). Patterns to change of saturated sapwood permeability and sapwood conductance with stand development. Canadian Journal of Forest Research, 19,432-439. |
[20] | Qiu XZ (邱学忠) (1998). Studies on the Forest Ecosystem on Ailao Mountains, Yunnan, China (哀牢山森林生态系统研究). Yunnan Science and Technology Press, Kunming,1-100. (in Chinese with English abstract) |
[21] |
Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47,235-242.
DOI URL |
[22] |
Schulte PJ (1999). Water flow through a 20-pore perforation plate in vessels of Liquidambar styraciflua. Journal of Experimental Botany, 50,1179-1187.
DOI URL |
[23] | Shinozaki TK, Yoda K, Hozumi K, Kira T (1964). A quantitative analysis of plant form: the pipe model theory. I. Basic analysis. Japanese Journal of Ecology, 14,97-105. |
[24] | Sperry JS (2003). Evolution of water transport and xylem structure. International Journal of Plant Science, 164,115-127. |
[25] |
Spicer R, Gartner BL (2001). The effects of cambial age and position within the stem on specific conductivity in Douglas-fir ( Pseudotsuga menziensii) sapwood. Trees, 15,222-229.
DOI URL |
[26] | Tyree MT, Davis SD, Cochard H (1994). Biophysical perspectives of xylem evolution: is there a tradeoff hydraulic efficiency for vulnerability of dysfunction? International Association of Wood Anatomists Journal, 15,355-360. |
[27] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. 2nd edn. Springer-Verlag, Berlin, 283. |
[28] | West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems. Nature, 400,664-667. |
[1] | 张雨鉴, 刘艳红. 林火干扰下的树木生理及主要影响因素[J]. 植物生态学报, 2024, 48(3): 269-286. |
[2] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[3] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[4] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[5] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[6] | 郭霞丽, 余碧云, 梁寒雪, 黄建国. 结合微树芯方法的树木生长生理生态学研究进展[J]. 植物生态学报, 2017, 41(7): 795-804. |
[7] | 朱良军, 李宗善, 王晓春. 树轮木质部解剖特征及其与环境变化的关系[J]. 植物生态学报, 2017, 41(2): 238-251. |
[8] | 马玉珠,程栋梁,钟全林,靳冰洁,林江铭,卢宏典,郭炳桥. 7种木本植物的分支指数与代谢指数[J]. 植物生态学报, 2014, 38(6): 599-607. |
[9] | 付立华, 张建国, 段爱国, 孙洪刚, 何彩云. 最大密度法则研究进展[J]. 植物生态学报, 2008, 32(2): 501-511. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19