植物生态学报 ›› 2005, Vol. 29 ›› Issue (5): 697-705.DOI: 10.17521/cjpe.2005.0093
• 论文 • 下一篇
收稿日期:
2004-08-12
接受日期:
2005-04-05
出版日期:
2005-08-12
发布日期:
2005-08-30
通讯作者:
冯玉龙
基金资助:
WANG Man-Lian1,2, FENG Yu-Long1,*()
Received:
2004-08-12
Accepted:
2005-04-05
Online:
2005-08-12
Published:
2005-08-30
Contact:
FENG Yu-Long
About author:
* E-mail: fyl@xtbg.ac.cn摘要:
比较研究了紫茎泽兰(Ageratina adenophora)和飞机草(Chromolaena odorata)的形态、生物量分配、生长和光合特性对氮营养的可塑性反应,探讨其与入侵性的关系。结果表明:1) 两种入侵植物对氮营养变化表现出很高的可塑性。随供氮量的增加,两种植物的根冠比、根生物量比降低,叶生物量比(LMR)、叶面积比和叶根比升高。低氮时,增加吸收器官的生物量分配,有利于养分吸收;高氮时,更多的生物量投入同化器官,有利于碳积累。相比之下紫茎泽兰对氮素的适应性更强。2) 两种入侵植物偏好较高的氮营养环境,土壤氮含量升高利于紫茎泽兰和飞机草的入侵。在较大的氮范围内,其相对生长速率(RGR)、总生物量、株高、分枝数、叶面积指数、最大净光合速率和光合色素含量都随供氮量的增加而显著增加,过量氮素对上述参数的抑制不显著。在本地种基本停止生长的干季,紫茎泽兰和飞机草仍维持较高的RGR,这与它们的入侵性密切相关。3) 在决定RGR对氮营养的响应过程中,平均叶面积比和净同化速率同等重要。LMR对两种植物的RGR有重要的影响,是决定处理间和种间RGR差异的重要因素。随氮素的增加,紫茎泽兰的比叶面积(SLA)降低,飞机草的SLA升高,但在所有氮水平下,前者的SLA都高于后者,紫茎泽兰SLA的变化规律更利于植物适应氮环境。
王满莲, 冯玉龙. 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应. 植物生态学报, 2005, 29(5): 697-705. DOI: 10.17521/cjpe.2005.0093
WANG Man-Lian, FENG Yu-Long. EFFECTS OF SOIL NITROGEN LEVELS ON MORPHOLOGY, BIOMASS ALLOCATION AND PHOTOSYNTHESIS IN AGERATINA ADENOPHORA AND CHROMOLEANA ODORATA. Chinese Journal of Plant Ecology, 2005, 29(5): 697-705. DOI: 10.17521/cjpe.2005.0093
图1 不同氮水平下紫茎泽兰和飞机草的形态特征 图中数据为8次测定的平均值±一个标准误差 The data were the mean±SE of 8 separate measurements *: 表示同一氮水平下不同种之间差异显著,不同小写字母表示同种不同氮水平下差异显著 Indicates significantly inter-specific difference under the same nitrogen level, and different small letters indicate significantly intra-specific differences under different nitrogen levels
Fig.1 Morphological traits of Ageratina adenophora and Chromoleana odorata grown under different nitrogen levels
图2 不同氮水平下紫茎泽兰和飞机草的生物量和生物量分配特征 图注同图1
Fig.2 Biomass and biomass allocation of Ageratina adenophora and Chromoleana odorata grown under different nitrogen levels Note is same as Fig.1
图3 不同氮水平下紫茎泽兰和飞机草的生长特征 图注同图1
Fig.3 Growth traits of Ageratina adenophora and Chromoleana odorata grown under different nitrogen levels Note is same as Fig.1
图4 不同氮水平下紫茎泽兰和飞机草的单位面积的最大净光合速率、叶绿素含量和类胡萝卜素含量 图注同图1
Fig.4 Maximum net photosynthetic rate, Chlorophyll and carotenoid content per unit area for Ageratina adenophora and Chromoleana odorata grown under different nitrogen levels Note is same as Fig.1
植物特征Plant traits | 紫茎泽兰Ageratina adenophora | 飞机草Chromoleana odorata |
---|---|---|
形态特征 Morphological traits | 可塑性指数 Plasticity index | 可塑性指数 Plasticity index |
株高 Height | 0.23 | 0.35 |
分枝数 Branch numbers | 0.77 | 0.49 |
叶面积指数 Leaf area index, LAI | 0.55 | 0.39 |
总叶面积 Total leaf area, TLA | 0.79 | 0.61 |
比叶面积 Specific leaf area, SLA | 0.13 | 0.16 |
生物量分配特征 Allocation traits | ||
总生物量 Total biomass | 0.70 | 0.49 |
根生物量比 Root mass ratio, RMR | 0.56 | 0.24 |
支持结构生物量比 Supporting organs biomass ratio, SBR | 0.40 | 0.20 |
叶生物量比 Leaf mass ratio, LMR | 0.41 | 0.17 |
根冠比 Root mass/crown mass, R/C | 0.73 | 0.20 |
叶面积比 Leaf area ratio, LAR | 0.42 | 0.23 |
叶根比 Leaf area to root mass ratio, LARMR | 0.67 | 0.47 |
生长特征 Growth traits | ||
相对生长速率 Relative growth rate, RGR | 0.45 | 0.25 |
净同化速率 Net assimilation rate, NAR | 0.48 | 0.19 |
平均叶面积比 Mean leaf area ratio, LMRm | 0.19 | 0.07 |
光合特征 Photosynthetic traits | ||
最大净光合速率 Maximum net photosynthetic rate, Pmax | 0.26 | 0.25 |
叶绿素含量Chlorophyll content, ChlA | 0.39 | 0.19 |
类胡萝卜素含量Carotenoid content, CarA | 0.29 | 0.11 |
表1 紫茎泽兰和飞机草的形态、生物量分配、生长和光合特性的可塑性指数
Table 1 Phenotypic plasticity index for traits related to the morphology, biomass allocation, growth and photosynthesis in Ageratina adenophora and Chromoleana odorata grown under different nitrogen levels
植物特征Plant traits | 紫茎泽兰Ageratina adenophora | 飞机草Chromoleana odorata |
---|---|---|
形态特征 Morphological traits | 可塑性指数 Plasticity index | 可塑性指数 Plasticity index |
株高 Height | 0.23 | 0.35 |
分枝数 Branch numbers | 0.77 | 0.49 |
叶面积指数 Leaf area index, LAI | 0.55 | 0.39 |
总叶面积 Total leaf area, TLA | 0.79 | 0.61 |
比叶面积 Specific leaf area, SLA | 0.13 | 0.16 |
生物量分配特征 Allocation traits | ||
总生物量 Total biomass | 0.70 | 0.49 |
根生物量比 Root mass ratio, RMR | 0.56 | 0.24 |
支持结构生物量比 Supporting organs biomass ratio, SBR | 0.40 | 0.20 |
叶生物量比 Leaf mass ratio, LMR | 0.41 | 0.17 |
根冠比 Root mass/crown mass, R/C | 0.73 | 0.20 |
叶面积比 Leaf area ratio, LAR | 0.42 | 0.23 |
叶根比 Leaf area to root mass ratio, LARMR | 0.67 | 0.47 |
生长特征 Growth traits | ||
相对生长速率 Relative growth rate, RGR | 0.45 | 0.25 |
净同化速率 Net assimilation rate, NAR | 0.48 | 0.19 |
平均叶面积比 Mean leaf area ratio, LMRm | 0.19 | 0.07 |
光合特征 Photosynthetic traits | ||
最大净光合速率 Maximum net photosynthetic rate, Pmax | 0.26 | 0.25 |
叶绿素含量Chlorophyll content, ChlA | 0.39 | 0.19 |
类胡萝卜素含量Carotenoid content, CarA | 0.29 | 0.11 |
[1] |
Alpert P, Bone E, Holzapfel C (2000). Invasiveness, invisibility and the role of environmental stress in preventing the spread of non-native plants. Perspectives in Plant Ecology, Evolution and Systematics, 3,52-66.
DOI URL |
[2] |
Baruch Z, Fernández D (1993). Water relations of native and introduced C4 grasses in a neo-tropical savanna. Oecologia, 96,179-185.
DOI URL PMID |
[3] |
Brooks ML (2003). Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. Journal of Applied Ecology, 40,344-353.
DOI URL |
[4] | Bungard RA, Ruban AV, Hibberd JM, Press MC, Horton P, Scholes JD (1999). Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proceedings of the National Academy of Sciences, USA, 96,1135-1139. |
[5] | Burns JH (2004). A comparison of invasive and noninvasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions, 10,387-397. |
[6] | Cao HL(曹洪麟), Ge XJ(葛学军), Ye WH (叶万辉) (2004). The distribution and damage of Eupatorium odoratum in Guangdong. Guangdong Forestry Science and Technology (广东林业科技), 20,57-59. (in Chinese with English abstract) |
[7] |
Durand LZ, Goldstein G (2001). Photosynthesis, photo-inhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia, 126,345-354.
URL PMID |
[8] | Elberse IAM, van Damme JMM, van Tienderen PH (2003). Plasticity of growth characteristics in wild barley (Hordeum spontaneum) in response to nutrient limitation. Journal of Ecology, 91,371-382. |
[9] | Feng YL (冯玉龙), Feng ZL (冯志立), Cao KF (曹坤芳) (2001). The protection against photodamage in Amomum villosum Lour. Acta Phytophysiologica Sinica (植物生理学报), 27,483-488. (in Chinese with English abstract) |
[10] |
Fichtner K, Schulze ED (1992). The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia, 92,236-241.
DOI URL PMID |
[11] | Lambers H, Poorter H (1992). Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research, 23,188-261. |
[12] | Lichtenthaler HK, Wellburn AR (1983). Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions (London), 603,591-592. |
[13] | Ling B (凌冰), Zhang MX (张茂新), Pang XF (庞雄飞) (2003). Biological activities of the volatile oil from Chromolaena odorata on fungi and insects and its chemical constituent. Natural Product Research and Development (天然产物研究与开发), 15,183-187. (in English). |
[14] | Liu LH (刘伦辉), Liu WY (刘文耀), Zheng Z (郑征), Jing GF (荆桂芬) (1989). The characteristic research of autecology of pamakani (Eupatorium adenophorum). Acta Ecologica Sinica (生态学报), 9,66-70. (in Chinese with English abstract) |
[15] | Luken JO, Tholemeier TC, Kuddes LM, Kunkel BA (1995). Performance, plasticity and acclimation of the non-indigenous shrub Lonicera maackii (Caprifoliaceae) in contrasting light environments. Canadian Journal of Botany, 73,1953-1961. |
[16] |
Maron JL, Connors PG (1996). A native nitrogen-fixing shrub facilitates weed invasion. Oecologia, 105,302-312.
DOI URL PMID |
[17] | Meziane D, Shipley B (1999). Interacting components of inter-specific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology, 13,611-622. |
[18] | Milberg P, Lamont BB, Pérez-Fernández MA (1999). Survival and growth of native and exotic composites in response to a nutrient gradient. Plant Ecology, 145,125-132. |
[19] |
Pattison RR, Goldstein G, Ares A (1998). Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia, 117,449-459.
DOI URL PMID |
[20] | Poorter H, Evans JR (1998). Photosynthetic nitrogen use efficiency of species that differ inherently in specific leaf area. Oecologia, 116,26-37. |
[21] | Poorter L (1999). Growth response of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology, 13,396-410. |
[22] | Sun B (孙波), Zhang TL (张桃林), Zhao QG (赵其国) (1995). Comprehensive evaluation of soil fertility in the hilly and mountainous region of Southeastern China. Acta Pedologica Sinica (土壤学报), 32,362-369. (in Chinese with English abstract) |
[23] | Thompson WA, Huang LK, Kriedemann PE (1992). Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. II. Leaf gas exchange and component processes of photosynthesis. Australian Journal of Plant Physiology. 19,19-42. |
[24] |
Turnbull MH (1991). The effect of light quantity and quality during development on the photosynthetic characteristics of six Australian rainforest tree species. Oecologia, 87,110-117.
URL PMID |
[25] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a panamanian rainforest. Ecology, 81,1925-1936. |
[26] | van Arendonk JJCM, Niemann GJ, Boon JJ, Lambers H (1997). Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image-processing analysis and pyrolysis-mass spectrometry. Plant, Cell and Environment, 20,881-897. |
[27] | Wang JF (王俊峰), Feng YL (冯玉龙) (2004). The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants. Acta Phytoecologica Sinica (植物生态学报), 28,781-786. (in Chinese with English abstract) |
[28] | Wang JF (王俊峰), Feng YL (冯玉龙), Liang HZ (梁红柱) (2004). Acclimation of photosynthetic characteristics to growth light intensity in Eupatorium adenophorum Spreng. Chinese Journal of Applied Ecology (应用生态学报), 15,1373-1377. (in Chinese with English abstract) |
[29] | Wang JF (王俊峰), Feng YL (冯玉龙), Li Z (李志) (2003). Acclimation of photosynthesis to growth light intensity in Chromolaena odorata (L.) and Gynura sp. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学报), 29,542-548. (in Chinese with English abstract) |
[30] | Williams DG, Mack RN, Black RA (1995). Ecophysiology and growth of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology, 76,1569-1580. |
[31] | Williamson M, Fitter A (1996). The varying success of invaders. Ecology, 77,1661-1666. |
[32] | Zhang SR (张世熔), Huang YF (黄元仿), Li BG (李保国), Zhang FR (张凤荣), Hu KL (胡克林) (2003). Temporal-spatial variability of soil nitrogen nutrients in Quzhou County, Hebei Province. Acta Pedologica Sinica (土壤学报), 40,475-479. (in Chinese with English abstract) |
[33] | Zhang YJ (张亚杰), Feng YL (冯玉龙) (2004). The relationships between photosynthetic capacity and lamina mass per unit area, nitrogen content and partitioning in seedlings of two Ficus species grown under different irradiance. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学报), 30,269-276. (in Chinese with English abstract) |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[7] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[8] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[9] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[10] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[11] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[12] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[13] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[14] | 万春燕, 余俊瑞, 朱师丹. 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异[J]. 植物生态学报, 2023, 47(10): 1386-1397. |
[15] | 李变变, 张凤华, 赵亚光, 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023, 47(1): 101-113. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19